// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/nospec.h> #include <linux/hugetlb.h> #include <linux/compat.h> #include <linux/io_uring.h> #include <uapi/linux/io_uring.h> #include "io_uring.h" #include "openclose.h" #include "rsrc.h" struct io_rsrc_update { struct file *file; u64 arg; u32 nr_args; u32 offset; }; static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage); #define IO_RSRC_REF_BATCH 100 /* only define max */ #define IORING_MAX_FIXED_FILES (1U << 20) #define IORING_MAX_REG_BUFFERS (1U << 14) void io_rsrc_refs_drop(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { if (ctx->rsrc_cached_refs) { io_rsrc_put_node(ctx->rsrc_node, ctx->rsrc_cached_refs); ctx->rsrc_cached_refs = 0; } } int __io_account_mem(struct user_struct *user, unsigned long nr_pages) { unsigned long page_limit, cur_pages, new_pages; if (!nr_pages) return 0; /* Don't allow more pages than we can safely lock */ page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; cur_pages = atomic_long_read(&user->locked_vm); do { new_pages = cur_pages + nr_pages; if (new_pages > page_limit) return -ENOMEM; } while (!atomic_long_try_cmpxchg(&user->locked_vm, &cur_pages, new_pages)); return 0; } static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { if (ctx->user) __io_unaccount_mem(ctx->user, nr_pages); if (ctx->mm_account) atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm); } static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { int ret; if (ctx->user) { ret = __io_account_mem(ctx->user, nr_pages); if (ret) return ret; } if (ctx->mm_account) atomic64_add(nr_pages, &ctx->mm_account->pinned_vm); return 0; } static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst, void __user *arg, unsigned index) { struct iovec __user *src; #ifdef CONFIG_COMPAT if (ctx->compat) { struct compat_iovec __user *ciovs; struct compat_iovec ciov; ciovs = (struct compat_iovec __user *) arg; if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov))) return -EFAULT; dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base); dst->iov_len = ciov.iov_len; return 0; } #endif src = (struct iovec __user *) arg; if (copy_from_user(dst, &src[index], sizeof(*dst))) return -EFAULT; return 0; } static int io_buffer_validate(struct iovec *iov) { unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1); /* * Don't impose further limits on the size and buffer * constraints here, we'll -EINVAL later when IO is * submitted if they are wrong. */ if (!iov->iov_base) return iov->iov_len ? -EFAULT : 0; if (!iov->iov_len) return -EFAULT; /* arbitrary limit, but we need something */ if (iov->iov_len > SZ_1G) return -EFAULT; if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp)) return -EOVERFLOW; return 0; } static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot) { struct io_mapped_ubuf *imu = *slot; unsigned int i; if (imu != ctx->dummy_ubuf) { for (i = 0; i < imu->nr_bvecs; i++) unpin_user_page(imu->bvec[i].bv_page); if (imu->acct_pages) io_unaccount_mem(ctx, imu->acct_pages); kvfree(imu); } *slot = NULL; } void io_rsrc_refs_refill(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH; percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH); } static void __io_rsrc_put_work(struct io_rsrc_node *ref_node) { struct io_rsrc_data *rsrc_data = ref_node->rsrc_data; struct io_ring_ctx *ctx = rsrc_data->ctx; struct io_rsrc_put *prsrc, *tmp; list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) { list_del(&prsrc->list); if (prsrc->tag) { if (ctx->flags & IORING_SETUP_IOPOLL) { mutex_lock(&ctx->uring_lock); io_post_aux_cqe(ctx, prsrc->tag, 0, 0, true); mutex_unlock(&ctx->uring_lock); } else { io_post_aux_cqe(ctx, prsrc->tag, 0, 0, true); } } rsrc_data->do_put(ctx, prsrc); kfree(prsrc); } io_rsrc_node_destroy(ref_node); if (atomic_dec_and_test(&rsrc_data->refs)) complete(&rsrc_data->done); } void io_rsrc_put_work(struct work_struct *work) { struct io_ring_ctx *ctx; struct llist_node *node; ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work); node = llist_del_all(&ctx->rsrc_put_llist); while (node) { struct io_rsrc_node *ref_node; struct llist_node *next = node->next; ref_node = llist_entry(node, struct io_rsrc_node, llist); __io_rsrc_put_work(ref_node); node = next; } } void io_wait_rsrc_data(struct io_rsrc_data *data) { if (data && !atomic_dec_and_test(&data->refs)) wait_for_completion(&data->done); } void io_rsrc_node_destroy(struct io_rsrc_node *ref_node) { percpu_ref_exit(&ref_node->refs); kfree(ref_node); } static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref) { struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs); struct io_ring_ctx *ctx = node->rsrc_data->ctx; unsigned long flags; bool first_add = false; unsigned long delay = HZ; spin_lock_irqsave(&ctx->rsrc_ref_lock, flags); node->done = true; /* if we are mid-quiesce then do not delay */ if (node->rsrc_data->quiesce) delay = 0; while (!list_empty(&ctx->rsrc_ref_list)) { node = list_first_entry(&ctx->rsrc_ref_list, struct io_rsrc_node, node); /* recycle ref nodes in order */ if (!node->done) break; list_del(&node->node); first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist); } spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags); if (first_add) mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay); } static struct io_rsrc_node *io_rsrc_node_alloc(void) { struct io_rsrc_node *ref_node; ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL); if (!ref_node) return NULL; if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero, 0, GFP_KERNEL)) { kfree(ref_node); return NULL; } INIT_LIST_HEAD(&ref_node->node); INIT_LIST_HEAD(&ref_node->rsrc_list); ref_node->done = false; return ref_node; } void io_rsrc_node_switch(struct io_ring_ctx *ctx, struct io_rsrc_data *data_to_kill) __must_hold(&ctx->uring_lock) { WARN_ON_ONCE(!ctx->rsrc_backup_node); WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node); io_rsrc_refs_drop(ctx); if (data_to_kill) { struct io_rsrc_node *rsrc_node = ctx->rsrc_node; rsrc_node->rsrc_data = data_to_kill; spin_lock_irq(&ctx->rsrc_ref_lock); list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list); spin_unlock_irq(&ctx->rsrc_ref_lock); atomic_inc(&data_to_kill->refs); percpu_ref_kill(&rsrc_node->refs); ctx->rsrc_node = NULL; } if (!ctx->rsrc_node) { ctx->rsrc_node = ctx->rsrc_backup_node; ctx->rsrc_backup_node = NULL; } } int io_rsrc_node_switch_start(struct io_ring_ctx *ctx) { if (ctx->rsrc_backup_node) return 0; ctx->rsrc_backup_node = io_rsrc_node_alloc(); return ctx->rsrc_backup_node ? 0 : -ENOMEM; } __cold static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx) { int ret; /* As we may drop ->uring_lock, other task may have started quiesce */ if (data->quiesce) return -ENXIO; data->quiesce = true; do { ret = io_rsrc_node_switch_start(ctx); if (ret) break; io_rsrc_node_switch(ctx, data); /* kill initial ref, already quiesced if zero */ if (atomic_dec_and_test(&data->refs)) break; mutex_unlock(&ctx->uring_lock); flush_delayed_work(&ctx->rsrc_put_work); ret = wait_for_completion_interruptible(&data->done); if (!ret) { mutex_lock(&ctx->uring_lock); if (atomic_read(&data->refs) > 0) { /* * it has been revived by another thread while * we were unlocked */ mutex_unlock(&ctx->uring_lock); } else { break; } } atomic_inc(&data->refs); /* wait for all works potentially completing data->done */ flush_delayed_work(&ctx->rsrc_put_work); reinit_completion(&data->done); ret = io_run_task_work_sig(); mutex_lock(&ctx->uring_lock); } while (ret >= 0); data->quiesce = false; return ret; } static void io_free_page_table(void **table, size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); for (i = 0; i < nr_tables; i++) kfree(table[i]); kfree(table); } static void io_rsrc_data_free(struct io_rsrc_data *data) { size_t size = data->nr * sizeof(data->tags[0][0]); if (data->tags) io_free_page_table((void **)data->tags, size); kfree(data); } static __cold void **io_alloc_page_table(size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); size_t init_size = size; void **table; table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT); if (!table) return NULL; for (i = 0; i < nr_tables; i++) { unsigned int this_size = min_t(size_t, size, PAGE_SIZE); table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT); if (!table[i]) { io_free_page_table(table, init_size); return NULL; } size -= this_size; } return table; } __cold static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put, u64 __user *utags, unsigned nr, struct io_rsrc_data **pdata) { struct io_rsrc_data *data; int ret = -ENOMEM; unsigned i; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0])); if (!data->tags) { kfree(data); return -ENOMEM; } data->nr = nr; data->ctx = ctx; data->do_put = do_put; if (utags) { ret = -EFAULT; for (i = 0; i < nr; i++) { u64 *tag_slot = io_get_tag_slot(data, i); if (copy_from_user(tag_slot, &utags[i], sizeof(*tag_slot))) goto fail; } } atomic_set(&data->refs, 1); init_completion(&data->done); *pdata = data; return 0; fail: io_rsrc_data_free(data); return ret; } static int __io_sqe_files_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); __s32 __user *fds = u64_to_user_ptr(up->data); struct io_rsrc_data *data = ctx->file_data; struct io_fixed_file *file_slot; struct file *file; int fd, i, err = 0; unsigned int done; bool needs_switch = false; if (!ctx->file_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_files) return -EINVAL; for (done = 0; done < nr_args; done++) { u64 tag = 0; if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) || copy_from_user(&fd, &fds[done], sizeof(fd))) { err = -EFAULT; break; } if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) { err = -EINVAL; break; } if (fd == IORING_REGISTER_FILES_SKIP) continue; i = array_index_nospec(up->offset + done, ctx->nr_user_files); file_slot = io_fixed_file_slot(&ctx->file_table, i); if (file_slot->file_ptr) { file = (struct file *)(file_slot->file_ptr & FFS_MASK); err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file); if (err) break; file_slot->file_ptr = 0; io_file_bitmap_clear(&ctx->file_table, i); needs_switch = true; } if (fd != -1) { file = fget(fd); if (!file) { err = -EBADF; break; } /* * Don't allow io_uring instances to be registered. If * UNIX isn't enabled, then this causes a reference * cycle and this instance can never get freed. If UNIX * is enabled we'll handle it just fine, but there's * still no point in allowing a ring fd as it doesn't * support regular read/write anyway. */ if (io_is_uring_fops(file)) { fput(file); err = -EBADF; break; } err = io_scm_file_account(ctx, file); if (err) { fput(file); break; } *io_get_tag_slot(data, i) = tag; io_fixed_file_set(file_slot, file); io_file_bitmap_set(&ctx->file_table, i); } } if (needs_switch) io_rsrc_node_switch(ctx, data); return done ? done : err; } static int __io_sqe_buffers_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned int nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); struct iovec iov, __user *iovs = u64_to_user_ptr(up->data); struct page *last_hpage = NULL; bool needs_switch = false; __u32 done; int i, err; if (!ctx->buf_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_bufs) return -EINVAL; for (done = 0; done < nr_args; done++) { struct io_mapped_ubuf *imu; int offset = up->offset + done; u64 tag = 0; err = io_copy_iov(ctx, &iov, iovs, done); if (err) break; if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) { err = -EFAULT; break; } err = io_buffer_validate(&iov); if (err) break; if (!iov.iov_base && tag) { err = -EINVAL; break; } err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage); if (err) break; i = array_index_nospec(offset, ctx->nr_user_bufs); if (ctx->user_bufs[i] != ctx->dummy_ubuf) { err = io_queue_rsrc_removal(ctx->buf_data, i, ctx->rsrc_node, ctx->user_bufs[i]); if (unlikely(err)) { io_buffer_unmap(ctx, &imu); break; } ctx->user_bufs[i] = ctx->dummy_ubuf; needs_switch = true; } ctx->user_bufs[i] = imu; *io_get_tag_slot(ctx->buf_data, offset) = tag; } if (needs_switch) io_rsrc_node_switch(ctx, ctx->buf_data); return done ? done : err; } static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args) { __u32 tmp; int err; if (check_add_overflow(up->offset, nr_args, &tmp)) return -EOVERFLOW; err = io_rsrc_node_switch_start(ctx); if (err) return err; switch (type) { case IORING_RSRC_FILE: return __io_sqe_files_update(ctx, up, nr_args); case IORING_RSRC_BUFFER: return __io_sqe_buffers_update(ctx, up, nr_args); } return -EINVAL; } int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { struct io_uring_rsrc_update2 up; if (!nr_args) return -EINVAL; memset(&up, 0, sizeof(up)); if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update))) return -EFAULT; if (up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args); } int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg, unsigned size, unsigned type) { struct io_uring_rsrc_update2 up; if (size != sizeof(up)) return -EINVAL; if (copy_from_user(&up, arg, sizeof(up))) return -EFAULT; if (!up.nr || up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, type, &up, up.nr); } __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg, unsigned int size, unsigned int type) { struct io_uring_rsrc_register rr; /* keep it extendible */ if (size != sizeof(rr)) return -EINVAL; memset(&rr, 0, sizeof(rr)); if (copy_from_user(&rr, arg, size)) return -EFAULT; if (!rr.nr || rr.resv2) return -EINVAL; if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE) return -EINVAL; switch (type) { case IORING_RSRC_FILE: if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data) break; return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); case IORING_RSRC_BUFFER: if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data) break; return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); } return -EINVAL; } int io_files_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT))) return -EINVAL; if (sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; up->offset = READ_ONCE(sqe->off); up->nr_args = READ_ONCE(sqe->len); if (!up->nr_args) return -EINVAL; up->arg = READ_ONCE(sqe->addr); return 0; } static int io_files_update_with_index_alloc(struct io_kiocb *req, unsigned int issue_flags) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); __s32 __user *fds = u64_to_user_ptr(up->arg); unsigned int done; struct file *file; int ret, fd; if (!req->ctx->file_data) return -ENXIO; for (done = 0; done < up->nr_args; done++) { if (copy_from_user(&fd, &fds[done], sizeof(fd))) { ret = -EFAULT; break; } file = fget(fd); if (!file) { ret = -EBADF; break; } ret = io_fixed_fd_install(req, issue_flags, file, IORING_FILE_INDEX_ALLOC); if (ret < 0) break; if (copy_to_user(&fds[done], &ret, sizeof(ret))) { __io_close_fixed(req->ctx, issue_flags, ret); ret = -EFAULT; break; } } if (done) return done; return ret; } int io_files_update(struct io_kiocb *req, unsigned int issue_flags) { struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update); struct io_ring_ctx *ctx = req->ctx; struct io_uring_rsrc_update2 up2; int ret; up2.offset = up->offset; up2.data = up->arg; up2.nr = 0; up2.tags = 0; up2.resv = 0; up2.resv2 = 0; if (up->offset == IORING_FILE_INDEX_ALLOC) { ret = io_files_update_with_index_alloc(req, issue_flags); } else { io_ring_submit_lock(ctx, issue_flags); ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up2, up->nr_args); io_ring_submit_unlock(ctx, issue_flags); } if (ret < 0) req_set_fail(req); io_req_set_res(req, ret, 0); return IOU_OK; } int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx, struct io_rsrc_node *node, void *rsrc) { u64 *tag_slot = io_get_tag_slot(data, idx); struct io_rsrc_put *prsrc; prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL); if (!prsrc) return -ENOMEM; prsrc->tag = *tag_slot; *tag_slot = 0; prsrc->rsrc = rsrc; list_add(&prsrc->list, &node->rsrc_list); return 0; } void __io_sqe_files_unregister(struct io_ring_ctx *ctx) { #if !defined(IO_URING_SCM_ALL) int i; for (i = 0; i < ctx->nr_user_files; i++) { struct file *file = io_file_from_index(&ctx->file_table, i); if (!file) continue; if (io_fixed_file_slot(&ctx->file_table, i)->file_ptr & FFS_SCM) continue; io_file_bitmap_clear(&ctx->file_table, i); fput(file); } #endif #if defined(CONFIG_UNIX) if (ctx->ring_sock) { struct sock *sock = ctx->ring_sock->sk; struct sk_buff *skb; while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL) kfree_skb(skb); } #endif io_free_file_tables(&ctx->file_table); io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; ctx->nr_user_files = 0; } int io_sqe_files_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_files; int ret; if (!ctx->file_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_files = 0; ret = io_rsrc_ref_quiesce(ctx->file_data, ctx); ctx->nr_user_files = nr; if (!ret) __io_sqe_files_unregister(ctx); return ret; } /* * Ensure the UNIX gc is aware of our file set, so we are certain that * the io_uring can be safely unregistered on process exit, even if we have * loops in the file referencing. We account only files that can hold other * files because otherwise they can't form a loop and so are not interesting * for GC. */ int __io_scm_file_account(struct io_ring_ctx *ctx, struct file *file) { #if defined(CONFIG_UNIX) struct sock *sk = ctx->ring_sock->sk; struct sk_buff_head *head = &sk->sk_receive_queue; struct scm_fp_list *fpl; struct sk_buff *skb; if (likely(!io_file_need_scm(file))) return 0; /* * See if we can merge this file into an existing skb SCM_RIGHTS * file set. If there's no room, fall back to allocating a new skb * and filling it in. */ spin_lock_irq(&head->lock); skb = skb_peek(head); if (skb && UNIXCB(skb).fp->count < SCM_MAX_FD) __skb_unlink(skb, head); else skb = NULL; spin_unlock_irq(&head->lock); if (!skb) { fpl = kzalloc(sizeof(*fpl), GFP_KERNEL); if (!fpl) return -ENOMEM; skb = alloc_skb(0, GFP_KERNEL); if (!skb) { kfree(fpl); return -ENOMEM; } fpl->user = get_uid(current_user()); fpl->max = SCM_MAX_FD; fpl->count = 0; UNIXCB(skb).fp = fpl; skb->sk = sk; skb->destructor = unix_destruct_scm; refcount_add(skb->truesize, &sk->sk_wmem_alloc); } fpl = UNIXCB(skb).fp; fpl->fp[fpl->count++] = get_file(file); unix_inflight(fpl->user, file); skb_queue_head(head, skb); fput(file); #endif return 0; } static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc) { struct file *file = prsrc->file; #if defined(CONFIG_UNIX) struct sock *sock = ctx->ring_sock->sk; struct sk_buff_head list, *head = &sock->sk_receive_queue; struct sk_buff *skb; int i; if (!io_file_need_scm(file)) { fput(file); return; } __skb_queue_head_init(&list); /* * Find the skb that holds this file in its SCM_RIGHTS. When found, * remove this entry and rearrange the file array. */ skb = skb_dequeue(head); while (skb) { struct scm_fp_list *fp; fp = UNIXCB(skb).fp; for (i = 0; i < fp->count; i++) { int left; if (fp->fp[i] != file) continue; unix_notinflight(fp->user, fp->fp[i]); left = fp->count - 1 - i; if (left) { memmove(&fp->fp[i], &fp->fp[i + 1], left * sizeof(struct file *)); } fp->count--; if (!fp->count) { kfree_skb(skb); skb = NULL; } else { __skb_queue_tail(&list, skb); } fput(file); file = NULL; break; } if (!file) break; __skb_queue_tail(&list, skb); skb = skb_dequeue(head); } if (skb_peek(&list)) { spin_lock_irq(&head->lock); while ((skb = __skb_dequeue(&list)) != NULL) __skb_queue_tail(head, skb); spin_unlock_irq(&head->lock); } #else fput(file); #endif } int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args, u64 __user *tags) { __s32 __user *fds = (__s32 __user *) arg; struct file *file; int fd, ret; unsigned i; if (ctx->file_data) return -EBUSY; if (!nr_args) return -EINVAL; if (nr_args > IORING_MAX_FIXED_FILES) return -EMFILE; if (nr_args > rlimit(RLIMIT_NOFILE)) return -EMFILE; ret = io_rsrc_node_switch_start(ctx); if (ret) return ret; ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args, &ctx->file_data); if (ret) return ret; if (!io_alloc_file_tables(&ctx->file_table, nr_args)) { io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; return -ENOMEM; } for (i = 0; i < nr_args; i++, ctx->nr_user_files++) { struct io_fixed_file *file_slot; if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) { ret = -EFAULT; goto fail; } /* allow sparse sets */ if (!fds || fd == -1) { ret = -EINVAL; if (unlikely(*io_get_tag_slot(ctx->file_data, i))) goto fail; continue; } file = fget(fd); ret = -EBADF; if (unlikely(!file)) goto fail; /* * Don't allow io_uring instances to be registered. If UNIX * isn't enabled, then this causes a reference cycle and this * instance can never get freed. If UNIX is enabled we'll * handle it just fine, but there's still no point in allowing * a ring fd as it doesn't support regular read/write anyway. */ if (io_is_uring_fops(file)) { fput(file); goto fail; } ret = io_scm_file_account(ctx, file); if (ret) { fput(file); goto fail; } file_slot = io_fixed_file_slot(&ctx->file_table, i); io_fixed_file_set(file_slot, file); io_file_bitmap_set(&ctx->file_table, i); } /* default it to the whole table */ io_file_table_set_alloc_range(ctx, 0, ctx->nr_user_files); io_rsrc_node_switch(ctx, NULL); return 0; fail: __io_sqe_files_unregister(ctx); return ret; } static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc) { io_buffer_unmap(ctx, &prsrc->buf); prsrc->buf = NULL; } void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned int i; for (i = 0; i < ctx->nr_user_bufs; i++) io_buffer_unmap(ctx, &ctx->user_bufs[i]); kfree(ctx->user_bufs); io_rsrc_data_free(ctx->buf_data); ctx->user_bufs = NULL; ctx->buf_data = NULL; ctx->nr_user_bufs = 0; } int io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_bufs; int ret; if (!ctx->buf_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_bufs = 0; ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx); ctx->nr_user_bufs = nr; if (!ret) __io_sqe_buffers_unregister(ctx); return ret; } /* * Not super efficient, but this is just a registration time. And we do cache * the last compound head, so generally we'll only do a full search if we don't * match that one. * * We check if the given compound head page has already been accounted, to * avoid double accounting it. This allows us to account the full size of the * page, not just the constituent pages of a huge page. */ static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct page *hpage) { int i, j; /* check current page array */ for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) continue; if (compound_head(pages[i]) == hpage) return true; } /* check previously registered pages */ for (i = 0; i < ctx->nr_user_bufs; i++) { struct io_mapped_ubuf *imu = ctx->user_bufs[i]; for (j = 0; j < imu->nr_bvecs; j++) { if (!PageCompound(imu->bvec[j].bv_page)) continue; if (compound_head(imu->bvec[j].bv_page) == hpage) return true; } } return false; } static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct io_mapped_ubuf *imu, struct page **last_hpage) { int i, ret; imu->acct_pages = 0; for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) { imu->acct_pages++; } else { struct page *hpage; hpage = compound_head(pages[i]); if (hpage == *last_hpage) continue; *last_hpage = hpage; if (headpage_already_acct(ctx, pages, i, hpage)) continue; imu->acct_pages += page_size(hpage) >> PAGE_SHIFT; } } if (!imu->acct_pages) return 0; ret = io_account_mem(ctx, imu->acct_pages); if (ret) imu->acct_pages = 0; return ret; } struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages) { unsigned long start, end, nr_pages; struct vm_area_struct **vmas = NULL; struct page **pages = NULL; int i, pret, ret = -ENOMEM; end = (ubuf + len + PAGE_SIZE - 1) >> PAGE_SHIFT; start = ubuf >> PAGE_SHIFT; nr_pages = end - start; pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) goto done; vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *), GFP_KERNEL); if (!vmas) goto done; ret = 0; mmap_read_lock(current->mm); pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM, pages, vmas); if (pret == nr_pages) { /* don't support file backed memory */ for (i = 0; i < nr_pages; i++) { struct vm_area_struct *vma = vmas[i]; if (vma_is_shmem(vma)) continue; if (vma->vm_file && !is_file_hugepages(vma->vm_file)) { ret = -EOPNOTSUPP; break; } } *npages = nr_pages; } else { ret = pret < 0 ? pret : -EFAULT; } mmap_read_unlock(current->mm); if (ret) { /* * if we did partial map, or found file backed vmas, * release any pages we did get */ if (pret > 0) unpin_user_pages(pages, pret); goto done; } ret = 0; done: kvfree(vmas); if (ret < 0) { kvfree(pages); pages = ERR_PTR(ret); } return pages; } static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage) { struct io_mapped_ubuf *imu = NULL; struct page **pages = NULL; unsigned long off; size_t size; int ret, nr_pages, i; *pimu = ctx->dummy_ubuf; if (!iov->iov_base) return 0; ret = -ENOMEM; pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len, &nr_pages); if (IS_ERR(pages)) { ret = PTR_ERR(pages); pages = NULL; goto done; } imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL); if (!imu) goto done; ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage); if (ret) { unpin_user_pages(pages, nr_pages); goto done; } off = (unsigned long) iov->iov_base & ~PAGE_MASK; size = iov->iov_len; for (i = 0; i < nr_pages; i++) { size_t vec_len; vec_len = min_t(size_t, size, PAGE_SIZE - off); imu->bvec[i].bv_page = pages[i]; imu->bvec[i].bv_len = vec_len; imu->bvec[i].bv_offset = off; off = 0; size -= vec_len; } /* store original address for later verification */ imu->ubuf = (unsigned long) iov->iov_base; imu->ubuf_end = imu->ubuf + iov->iov_len; imu->nr_bvecs = nr_pages; *pimu = imu; ret = 0; done: if (ret) kvfree(imu); kvfree(pages); return ret; } static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args) { ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL); return ctx->user_bufs ? 0 : -ENOMEM; } int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args, u64 __user *tags) { struct page *last_hpage = NULL; struct io_rsrc_data *data; int i, ret; struct iovec iov; BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16)); if (ctx->user_bufs) return -EBUSY; if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS) return -EINVAL; ret = io_rsrc_node_switch_start(ctx); if (ret) return ret; ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data); if (ret) return ret; ret = io_buffers_map_alloc(ctx, nr_args); if (ret) { io_rsrc_data_free(data); return ret; } for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) { if (arg) { ret = io_copy_iov(ctx, &iov, arg, i); if (ret) break; ret = io_buffer_validate(&iov); if (ret) break; } else { memset(&iov, 0, sizeof(iov)); } if (!iov.iov_base && *io_get_tag_slot(data, i)) { ret = -EINVAL; break; } ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i], &last_hpage); if (ret) break; } WARN_ON_ONCE(ctx->buf_data); ctx->buf_data = data; if (ret) __io_sqe_buffers_unregister(ctx); else io_rsrc_node_switch(ctx, NULL); return ret; } int io_import_fixed(int ddir, struct iov_iter *iter, struct io_mapped_ubuf *imu, u64 buf_addr, size_t len) { u64 buf_end; size_t offset; if (WARN_ON_ONCE(!imu)) return -EFAULT; if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end))) return -EFAULT; /* not inside the mapped region */ if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end)) return -EFAULT; /* * May not be a start of buffer, set size appropriately * and advance us to the beginning. */ offset = buf_addr - imu->ubuf; iov_iter_bvec(iter, ddir, imu->bvec, imu->nr_bvecs, offset + len); if (offset) { /* * Don't use iov_iter_advance() here, as it's really slow for * using the latter parts of a big fixed buffer - it iterates * over each segment manually. We can cheat a bit here, because * we know that: * * 1) it's a BVEC iter, we set it up * 2) all bvecs are PAGE_SIZE in size, except potentially the * first and last bvec * * So just find our index, and adjust the iterator afterwards. * If the offset is within the first bvec (or the whole first * bvec, just use iov_iter_advance(). This makes it easier * since we can just skip the first segment, which may not * be PAGE_SIZE aligned. */ const struct bio_vec *bvec = imu->bvec; if (offset <= bvec->bv_len) { iov_iter_advance(iter, offset); } else { unsigned long seg_skip; /* skip first vec */ offset -= bvec->bv_len; seg_skip = 1 + (offset >> PAGE_SHIFT); iter->bvec = bvec + seg_skip; iter->nr_segs -= seg_skip; iter->count -= bvec->bv_len + offset; iter->iov_offset = offset & ~PAGE_MASK; } } return 0; }