/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_log.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_btree.h" #include "xfs_error.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_fsops.h" #include "xfs_itable.h" #include "xfs_trans_space.h" #include "xfs_rtalloc.h" #include "xfs_filestream.h" #include "xfs_trace.h" /* * File system operations */ int xfs_fs_geometry( xfs_mount_t *mp, xfs_fsop_geom_t *geo, int new_version) { memset(geo, 0, sizeof(*geo)); geo->blocksize = mp->m_sb.sb_blocksize; geo->rtextsize = mp->m_sb.sb_rextsize; geo->agblocks = mp->m_sb.sb_agblocks; geo->agcount = mp->m_sb.sb_agcount; geo->logblocks = mp->m_sb.sb_logblocks; geo->sectsize = mp->m_sb.sb_sectsize; geo->inodesize = mp->m_sb.sb_inodesize; geo->imaxpct = mp->m_sb.sb_imax_pct; geo->datablocks = mp->m_sb.sb_dblocks; geo->rtblocks = mp->m_sb.sb_rblocks; geo->rtextents = mp->m_sb.sb_rextents; geo->logstart = mp->m_sb.sb_logstart; ASSERT(sizeof(geo->uuid)==sizeof(mp->m_sb.sb_uuid)); memcpy(geo->uuid, &mp->m_sb.sb_uuid, sizeof(mp->m_sb.sb_uuid)); if (new_version >= 2) { geo->sunit = mp->m_sb.sb_unit; geo->swidth = mp->m_sb.sb_width; } if (new_version >= 3) { geo->version = XFS_FSOP_GEOM_VERSION; geo->flags = (xfs_sb_version_hasattr(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_ATTR : 0) | (xfs_sb_version_hasnlink(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_NLINK : 0) | (xfs_sb_version_hasquota(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_QUOTA : 0) | (xfs_sb_version_hasalign(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_IALIGN : 0) | (xfs_sb_version_hasdalign(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_DALIGN : 0) | (xfs_sb_version_hasshared(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_SHARED : 0) | (xfs_sb_version_hasextflgbit(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_EXTFLG : 0) | (xfs_sb_version_hasdirv2(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_DIRV2 : 0) | (xfs_sb_version_hassector(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_SECTOR : 0) | (xfs_sb_version_hasasciici(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_DIRV2CI : 0) | (xfs_sb_version_haslazysbcount(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_LAZYSB : 0) | (xfs_sb_version_hasattr2(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_ATTR2 : 0) | (xfs_sb_version_hasprojid32bit(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_PROJID32 : 0); geo->logsectsize = xfs_sb_version_hassector(&mp->m_sb) ? mp->m_sb.sb_logsectsize : BBSIZE; geo->rtsectsize = mp->m_sb.sb_blocksize; geo->dirblocksize = mp->m_dirblksize; } if (new_version >= 4) { geo->flags |= (xfs_sb_version_haslogv2(&mp->m_sb) ? XFS_FSOP_GEOM_FLAGS_LOGV2 : 0); geo->logsunit = mp->m_sb.sb_logsunit; } return 0; } static struct xfs_buf * xfs_growfs_get_hdr_buf( struct xfs_mount *mp, xfs_daddr_t blkno, size_t numblks, int flags) { struct xfs_buf *bp; bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags); if (!bp) return NULL; xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); bp->b_bn = blkno; bp->b_maps[0].bm_bn = blkno; return bp; } static int xfs_growfs_data_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_data_t *in) /* growfs data input struct */ { xfs_agf_t *agf; struct xfs_agfl *agfl; xfs_agi_t *agi; xfs_agnumber_t agno; xfs_extlen_t agsize; xfs_extlen_t tmpsize; xfs_alloc_rec_t *arec; xfs_buf_t *bp; int bucket; int dpct; int error; xfs_agnumber_t nagcount; xfs_agnumber_t nagimax = 0; xfs_rfsblock_t nb, nb_mod; xfs_rfsblock_t new; xfs_rfsblock_t nfree; xfs_agnumber_t oagcount; int pct; xfs_trans_t *tp; nb = in->newblocks; pct = in->imaxpct; if (nb < mp->m_sb.sb_dblocks || pct < 0 || pct > 100) return XFS_ERROR(EINVAL); if ((error = xfs_sb_validate_fsb_count(&mp->m_sb, nb))) return error; dpct = pct - mp->m_sb.sb_imax_pct; bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1), XFS_FSS_TO_BB(mp, 1), 0, NULL); if (!bp) return EIO; if (bp->b_error) { int error = bp->b_error; xfs_buf_relse(bp); return error; } xfs_buf_relse(bp); new = nb; /* use new as a temporary here */ nb_mod = do_div(new, mp->m_sb.sb_agblocks); nagcount = new + (nb_mod != 0); if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) { nagcount--; nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks; if (nb < mp->m_sb.sb_dblocks) return XFS_ERROR(EINVAL); } new = nb - mp->m_sb.sb_dblocks; oagcount = mp->m_sb.sb_agcount; /* allocate the new per-ag structures */ if (nagcount > oagcount) { error = xfs_initialize_perag(mp, nagcount, &nagimax); if (error) return error; } tp = xfs_trans_alloc(mp, XFS_TRANS_GROWFS); tp->t_flags |= XFS_TRANS_RESERVE; if ((error = xfs_trans_reserve(tp, XFS_GROWFS_SPACE_RES(mp), XFS_GROWDATA_LOG_RES(mp), 0, 0, 0))) { xfs_trans_cancel(tp, 0); return error; } /* * Write new AG headers to disk. Non-transactional, but written * synchronously so they are completed prior to the growfs transaction * being logged. */ nfree = 0; for (agno = nagcount - 1; agno >= oagcount; agno--, new -= agsize) { /* * AG freespace header block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0); if (!bp) { error = ENOMEM; goto error0; } agf = XFS_BUF_TO_AGF(bp); agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(agno); if (agno == nagcount - 1) agsize = nb - (agno * (xfs_rfsblock_t)mp->m_sb.sb_agblocks); else agsize = mp->m_sb.sb_agblocks; agf->agf_length = cpu_to_be32(agsize); agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); agf->agf_flfirst = 0; agf->agf_fllast = cpu_to_be32(XFS_AGFL_SIZE(mp) - 1); agf->agf_flcount = 0; tmpsize = agsize - XFS_PREALLOC_BLOCKS(mp); agf->agf_freeblks = cpu_to_be32(tmpsize); agf->agf_longest = cpu_to_be32(tmpsize); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; /* * AG freelist header block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0); if (!bp) { error = ENOMEM; goto error0; } agfl = XFS_BUF_TO_AGFL(bp); for (bucket = 0; bucket < XFS_AGFL_SIZE(mp); bucket++) agfl->agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; /* * AG inode header block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0); if (!bp) { error = ENOMEM; goto error0; } agi = XFS_BUF_TO_AGI(bp); agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); agi->agi_seqno = cpu_to_be32(agno); agi->agi_length = cpu_to_be32(agsize); agi->agi_count = 0; agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); agi->agi_level = cpu_to_be32(1); agi->agi_freecount = 0; agi->agi_newino = cpu_to_be32(NULLAGINO); agi->agi_dirino = cpu_to_be32(NULLAGINO); for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; /* * BNO btree root block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AGB_TO_DADDR(mp, agno, XFS_BNO_BLOCK(mp)), BTOBB(mp->m_sb.sb_blocksize), 0); if (!bp) { error = ENOMEM; goto error0; } xfs_btree_init_block(mp, bp, XFS_ABTB_MAGIC, 0, 1, 0); arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); arec->ar_startblock = cpu_to_be32(XFS_PREALLOC_BLOCKS(mp)); arec->ar_blockcount = cpu_to_be32( agsize - be32_to_cpu(arec->ar_startblock)); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; /* * CNT btree root block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AGB_TO_DADDR(mp, agno, XFS_CNT_BLOCK(mp)), BTOBB(mp->m_sb.sb_blocksize), 0); if (!bp) { error = ENOMEM; goto error0; } xfs_btree_init_block(mp, bp, XFS_ABTC_MAGIC, 0, 1, 0); arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); arec->ar_startblock = cpu_to_be32(XFS_PREALLOC_BLOCKS(mp)); arec->ar_blockcount = cpu_to_be32( agsize - be32_to_cpu(arec->ar_startblock)); nfree += be32_to_cpu(arec->ar_blockcount); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; /* * INO btree root block */ bp = xfs_growfs_get_hdr_buf(mp, XFS_AGB_TO_DADDR(mp, agno, XFS_IBT_BLOCK(mp)), BTOBB(mp->m_sb.sb_blocksize), 0); if (!bp) { error = ENOMEM; goto error0; } xfs_btree_init_block(mp, bp, XFS_IBT_MAGIC, 0, 0, 0); error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) goto error0; } xfs_trans_agblocks_delta(tp, nfree); /* * There are new blocks in the old last a.g. */ if (new) { /* * Change the agi length. */ error = xfs_ialloc_read_agi(mp, tp, agno, &bp); if (error) { goto error0; } ASSERT(bp); agi = XFS_BUF_TO_AGI(bp); be32_add_cpu(&agi->agi_length, new); ASSERT(nagcount == oagcount || be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); /* * Change agf length. */ error = xfs_alloc_read_agf(mp, tp, agno, 0, &bp); if (error) { goto error0; } ASSERT(bp); agf = XFS_BUF_TO_AGF(bp); be32_add_cpu(&agf->agf_length, new); ASSERT(be32_to_cpu(agf->agf_length) == be32_to_cpu(agi->agi_length)); xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); /* * Free the new space. */ error = xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, agno, be32_to_cpu(agf->agf_length) - new), new); if (error) { goto error0; } } /* * Update changed superblock fields transactionally. These are not * seen by the rest of the world until the transaction commit applies * them atomically to the superblock. */ if (nagcount > oagcount) xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount); if (nb > mp->m_sb.sb_dblocks) xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, nb - mp->m_sb.sb_dblocks); if (nfree) xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, nfree); if (dpct) xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct); error = xfs_trans_commit(tp, 0); if (error) return error; /* New allocation groups fully initialized, so update mount struct */ if (nagimax) mp->m_maxagi = nagimax; if (mp->m_sb.sb_imax_pct) { __uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct; do_div(icount, 100); mp->m_maxicount = icount << mp->m_sb.sb_inopblog; } else mp->m_maxicount = 0; xfs_set_low_space_thresholds(mp); /* update secondary superblocks. */ for (agno = 1; agno < nagcount; agno++) { error = 0; /* * new secondary superblocks need to be zeroed, not read from * disk as the contents of the new area we are growing into is * completely unknown. */ if (agno < oagcount) { error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, XFS_AGB_TO_DADDR(mp, agno, XFS_SB_BLOCK(mp)), XFS_FSS_TO_BB(mp, 1), 0, &bp, xfs_sb_read_verify); } else { bp = xfs_trans_get_buf(NULL, mp->m_ddev_targp, XFS_AGB_TO_DADDR(mp, agno, XFS_SB_BLOCK(mp)), XFS_FSS_TO_BB(mp, 1), 0); if (bp) xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); else error = ENOMEM; } if (error) { xfs_warn(mp, "error %d reading secondary superblock for ag %d", error, agno); break; } xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, XFS_SB_ALL_BITS); /* * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. */ error = xfs_bwrite(bp); xfs_buf_relse(bp); if (error) { xfs_warn(mp, "write error %d updating secondary superblock for ag %d", error, agno); break; /* no point in continuing */ } } return error; error0: xfs_trans_cancel(tp, XFS_TRANS_ABORT); return error; } static int xfs_growfs_log_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_log_t *in) /* growfs log input struct */ { xfs_extlen_t nb; nb = in->newblocks; if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES)) return XFS_ERROR(EINVAL); if (nb == mp->m_sb.sb_logblocks && in->isint == (mp->m_sb.sb_logstart != 0)) return XFS_ERROR(EINVAL); /* * Moving the log is hard, need new interfaces to sync * the log first, hold off all activity while moving it. * Can have shorter or longer log in the same space, * or transform internal to external log or vice versa. */ return XFS_ERROR(ENOSYS); } /* * protected versions of growfs function acquire and release locks on the mount * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG, * XFS_IOC_FSGROWFSRT */ int xfs_growfs_data( xfs_mount_t *mp, xfs_growfs_data_t *in) { int error; if (!capable(CAP_SYS_ADMIN)) return XFS_ERROR(EPERM); if (!mutex_trylock(&mp->m_growlock)) return XFS_ERROR(EWOULDBLOCK); error = xfs_growfs_data_private(mp, in); mutex_unlock(&mp->m_growlock); return error; } int xfs_growfs_log( xfs_mount_t *mp, xfs_growfs_log_t *in) { int error; if (!capable(CAP_SYS_ADMIN)) return XFS_ERROR(EPERM); if (!mutex_trylock(&mp->m_growlock)) return XFS_ERROR(EWOULDBLOCK); error = xfs_growfs_log_private(mp, in); mutex_unlock(&mp->m_growlock); return error; } /* * exported through ioctl XFS_IOC_FSCOUNTS */ int xfs_fs_counts( xfs_mount_t *mp, xfs_fsop_counts_t *cnt) { xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT); spin_lock(&mp->m_sb_lock); cnt->freedata = mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); cnt->freertx = mp->m_sb.sb_frextents; cnt->freeino = mp->m_sb.sb_ifree; cnt->allocino = mp->m_sb.sb_icount; spin_unlock(&mp->m_sb_lock); return 0; } /* * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS * * xfs_reserve_blocks is called to set m_resblks * in the in-core mount table. The number of unused reserved blocks * is kept in m_resblks_avail. * * Reserve the requested number of blocks if available. Otherwise return * as many as possible to satisfy the request. The actual number * reserved are returned in outval * * A null inval pointer indicates that only the current reserved blocks * available should be returned no settings are changed. */ int xfs_reserve_blocks( xfs_mount_t *mp, __uint64_t *inval, xfs_fsop_resblks_t *outval) { __int64_t lcounter, delta, fdblks_delta; __uint64_t request; /* If inval is null, report current values and return */ if (inval == (__uint64_t *)NULL) { if (!outval) return EINVAL; outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; return 0; } request = *inval; /* * With per-cpu counters, this becomes an interesting * problem. we needto work out if we are freeing or allocation * blocks first, then we can do the modification as necessary. * * We do this under the m_sb_lock so that if we are near * ENOSPC, we will hold out any changes while we work out * what to do. This means that the amount of free space can * change while we do this, so we need to retry if we end up * trying to reserve more space than is available. * * We also use the xfs_mod_incore_sb() interface so that we * don't have to care about whether per cpu counter are * enabled, disabled or even compiled in.... */ retry: spin_lock(&mp->m_sb_lock); xfs_icsb_sync_counters_locked(mp, 0); /* * If our previous reservation was larger than the current value, * then move any unused blocks back to the free pool. */ fdblks_delta = 0; if (mp->m_resblks > request) { lcounter = mp->m_resblks_avail - request; if (lcounter > 0) { /* release unused blocks */ fdblks_delta = lcounter; mp->m_resblks_avail -= lcounter; } mp->m_resblks = request; } else { __int64_t free; free = mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); if (!free) goto out; /* ENOSPC and fdblks_delta = 0 */ delta = request - mp->m_resblks; lcounter = free - delta; if (lcounter < 0) { /* We can't satisfy the request, just get what we can */ mp->m_resblks += free; mp->m_resblks_avail += free; fdblks_delta = -free; } else { fdblks_delta = -delta; mp->m_resblks = request; mp->m_resblks_avail += delta; } } out: if (outval) { outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; } spin_unlock(&mp->m_sb_lock); if (fdblks_delta) { /* * If we are putting blocks back here, m_resblks_avail is * already at its max so this will put it in the free pool. * * If we need space, we'll either succeed in getting it * from the free block count or we'll get an enospc. If * we get a ENOSPC, it means things changed while we were * calculating fdblks_delta and so we should try again to * see if there is anything left to reserve. * * Don't set the reserved flag here - we don't want to reserve * the extra reserve blocks from the reserve..... */ int error; error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, fdblks_delta, 0); if (error == ENOSPC) goto retry; } return 0; } /* * Dump a transaction into the log that contains no real change. This is needed * to be able to make the log dirty or stamp the current tail LSN into the log * during the covering operation. * * We cannot use an inode here for this - that will push dirty state back up * into the VFS and then periodic inode flushing will prevent log covering from * making progress. Hence we log a field in the superblock instead and use a * synchronous transaction to ensure the superblock is immediately unpinned * and can be written back. */ int xfs_fs_log_dummy( xfs_mount_t *mp) { xfs_trans_t *tp; int error; tp = _xfs_trans_alloc(mp, XFS_TRANS_DUMMY1, KM_SLEEP); error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, XFS_DEFAULT_LOG_COUNT); if (error) { xfs_trans_cancel(tp, 0); return error; } /* log the UUID because it is an unchanging field */ xfs_mod_sb(tp, XFS_SB_UUID); xfs_trans_set_sync(tp); return xfs_trans_commit(tp, 0); } int xfs_fs_goingdown( xfs_mount_t *mp, __uint32_t inflags) { switch (inflags) { case XFS_FSOP_GOING_FLAGS_DEFAULT: { struct super_block *sb = freeze_bdev(mp->m_super->s_bdev); if (sb && !IS_ERR(sb)) { xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); thaw_bdev(sb->s_bdev, sb); } break; } case XFS_FSOP_GOING_FLAGS_LOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); break; case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR); break; default: return XFS_ERROR(EINVAL); } return 0; } /* * Force a shutdown of the filesystem instantly while keeping the filesystem * consistent. We don't do an unmount here; just shutdown the shop, make sure * that absolutely nothing persistent happens to this filesystem after this * point. */ void xfs_do_force_shutdown( xfs_mount_t *mp, int flags, char *fname, int lnnum) { int logerror; logerror = flags & SHUTDOWN_LOG_IO_ERROR; if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { xfs_notice(mp, "%s(0x%x) called from line %d of file %s. Return address = 0x%p", __func__, flags, lnnum, fname, __return_address); } /* * No need to duplicate efforts. */ if (XFS_FORCED_SHUTDOWN(mp) && !logerror) return; /* * This flags XFS_MOUNT_FS_SHUTDOWN, makes sure that we don't * queue up anybody new on the log reservations, and wakes up * everybody who's sleeping on log reservations to tell them * the bad news. */ if (xfs_log_force_umount(mp, logerror)) return; if (flags & SHUTDOWN_CORRUPT_INCORE) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_CORRUPT, "Corruption of in-memory data detected. Shutting down filesystem"); if (XFS_ERRLEVEL_HIGH <= xfs_error_level) xfs_stack_trace(); } else if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { if (logerror) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_LOGERROR, "Log I/O Error Detected. Shutting down filesystem"); } else if (flags & SHUTDOWN_DEVICE_REQ) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR, "All device paths lost. Shutting down filesystem"); } else if (!(flags & SHUTDOWN_REMOTE_REQ)) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR, "I/O Error Detected. Shutting down filesystem"); } } if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { xfs_alert(mp, "Please umount the filesystem and rectify the problem(s)"); } }