// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * Copyright (c) 2012 Red Hat, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_bmap_btree.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_trans_space.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_iomap.h" #include "xfs_reflink.h" /* Kernel only BMAP related definitions and functions */ /* * Convert the given file system block to a disk block. We have to treat it * differently based on whether the file is a real time file or not, because the * bmap code does. */ xfs_daddr_t xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) { if (XFS_IS_REALTIME_INODE(ip)) return XFS_FSB_TO_BB(ip->i_mount, fsb); return XFS_FSB_TO_DADDR(ip->i_mount, fsb); } /* * Routine to zero an extent on disk allocated to the specific inode. * * The VFS functions take a linearised filesystem block offset, so we have to * convert the sparse xfs fsb to the right format first. * VFS types are real funky, too. */ int xfs_zero_extent( struct xfs_inode *ip, xfs_fsblock_t start_fsb, xfs_off_t count_fsb) { struct xfs_mount *mp = ip->i_mount; struct xfs_buftarg *target = xfs_inode_buftarg(ip); xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); sector_t block = XFS_BB_TO_FSBT(mp, sector); return blkdev_issue_zeroout(target->bt_bdev, block << (mp->m_super->s_blocksize_bits - 9), count_fsb << (mp->m_super->s_blocksize_bits - 9), GFP_NOFS, 0); } #ifdef CONFIG_XFS_RT int xfs_bmap_rtalloc( struct xfs_bmalloca *ap) { struct xfs_mount *mp = ap->ip->i_mount; xfs_fileoff_t orig_offset = ap->offset; xfs_rtblock_t rtb; xfs_extlen_t prod = 0; /* product factor for allocators */ xfs_extlen_t mod = 0; /* product factor for allocators */ xfs_extlen_t ralen = 0; /* realtime allocation length */ xfs_extlen_t align; /* minimum allocation alignment */ xfs_extlen_t orig_length = ap->length; xfs_extlen_t minlen = mp->m_sb.sb_rextsize; xfs_extlen_t raminlen; bool rtlocked = false; bool ignore_locality = false; int error; align = xfs_get_extsz_hint(ap->ip); retry: prod = align / mp->m_sb.sb_rextsize; error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, align, 1, ap->eof, 0, ap->conv, &ap->offset, &ap->length); if (error) return error; ASSERT(ap->length); ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); /* * If we shifted the file offset downward to satisfy an extent size * hint, increase minlen by that amount so that the allocator won't * give us an allocation that's too short to cover at least one of the * blocks that the caller asked for. */ if (ap->offset != orig_offset) minlen += orig_offset - ap->offset; /* * If the offset & length are not perfectly aligned * then kill prod, it will just get us in trouble. */ div_u64_rem(ap->offset, align, &mod); if (mod || ap->length % align) prod = 1; /* * Set ralen to be the actual requested length in rtextents. */ ralen = ap->length / mp->m_sb.sb_rextsize; /* * If the old value was close enough to MAXEXTLEN that * we rounded up to it, cut it back so it's valid again. * Note that if it's a really large request (bigger than * MAXEXTLEN), we don't hear about that number, and can't * adjust the starting point to match it. */ if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; /* * Lock out modifications to both the RT bitmap and summary inodes */ if (!rtlocked) { xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); rtlocked = true; } /* * If it's an allocation to an empty file at offset 0, * pick an extent that will space things out in the rt area. */ if (ap->eof && ap->offset == 0) { xfs_rtblock_t rtx; /* realtime extent no */ error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); if (error) return error; ap->blkno = rtx * mp->m_sb.sb_rextsize; } else { ap->blkno = 0; } xfs_bmap_adjacent(ap); /* * Realtime allocation, done through xfs_rtallocate_extent. */ if (ignore_locality) ap->blkno = 0; else do_div(ap->blkno, mp->m_sb.sb_rextsize); rtb = ap->blkno; ap->length = ralen; raminlen = max_t(xfs_extlen_t, 1, minlen / mp->m_sb.sb_rextsize); error = xfs_rtallocate_extent(ap->tp, ap->blkno, raminlen, ap->length, &ralen, ap->wasdel, prod, &rtb); if (error) return error; if (rtb != NULLRTBLOCK) { ap->blkno = rtb * mp->m_sb.sb_rextsize; ap->length = ralen * mp->m_sb.sb_rextsize; ap->ip->i_nblocks += ap->length; xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); if (ap->wasdel) ap->ip->i_delayed_blks -= ap->length; /* * Adjust the disk quota also. This was reserved * earlier. */ xfs_trans_mod_dquot_byino(ap->tp, ap->ip, ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : XFS_TRANS_DQ_RTBCOUNT, ap->length); return 0; } if (align > mp->m_sb.sb_rextsize) { /* * We previously enlarged the request length to try to satisfy * an extent size hint. The allocator didn't return anything, * so reset the parameters to the original values and try again * without alignment criteria. */ ap->offset = orig_offset; ap->length = orig_length; minlen = align = mp->m_sb.sb_rextsize; goto retry; } if (!ignore_locality && ap->blkno != 0) { /* * If we can't allocate near a specific rt extent, try again * without locality criteria. */ ignore_locality = true; goto retry; } ap->blkno = NULLFSBLOCK; ap->length = 0; return 0; } #endif /* CONFIG_XFS_RT */ /* * Extent tree block counting routines. */ /* * Count leaf blocks given a range of extent records. Delayed allocation * extents are not counted towards the totals. */ xfs_extnum_t xfs_bmap_count_leaves( struct xfs_ifork *ifp, xfs_filblks_t *count) { struct xfs_iext_cursor icur; struct xfs_bmbt_irec got; xfs_extnum_t numrecs = 0; for_each_xfs_iext(ifp, &icur, &got) { if (!isnullstartblock(got.br_startblock)) { *count += got.br_blockcount; numrecs++; } } return numrecs; } /* * Count fsblocks of the given fork. Delayed allocation extents are * not counted towards the totals. */ int xfs_bmap_count_blocks( struct xfs_trans *tp, struct xfs_inode *ip, int whichfork, xfs_extnum_t *nextents, xfs_filblks_t *count) { struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); struct xfs_btree_cur *cur; xfs_extlen_t btblocks = 0; int error; *nextents = 0; *count = 0; if (!ifp) return 0; switch (ifp->if_format) { case XFS_DINODE_FMT_BTREE: error = xfs_iread_extents(tp, ip, whichfork); if (error) return error; cur = xfs_bmbt_init_cursor(mp, tp, ip, whichfork); error = xfs_btree_count_blocks(cur, &btblocks); xfs_btree_del_cursor(cur, error); if (error) return error; /* * xfs_btree_count_blocks includes the root block contained in * the inode fork in @btblocks, so subtract one because we're * only interested in allocated disk blocks. */ *count += btblocks - 1; /* fall through */ case XFS_DINODE_FMT_EXTENTS: *nextents = xfs_bmap_count_leaves(ifp, count); break; } return 0; } static int xfs_getbmap_report_one( struct xfs_inode *ip, struct getbmapx *bmv, struct kgetbmap *out, int64_t bmv_end, struct xfs_bmbt_irec *got) { struct kgetbmap *p = out + bmv->bmv_entries; bool shared = false; int error; error = xfs_reflink_trim_around_shared(ip, got, &shared); if (error) return error; if (isnullstartblock(got->br_startblock) || got->br_startblock == DELAYSTARTBLOCK) { /* * Delalloc extents that start beyond EOF can occur due to * speculative EOF allocation when the delalloc extent is larger * than the largest freespace extent at conversion time. These * extents cannot be converted by data writeback, so can exist * here even if we are not supposed to be finding delalloc * extents. */ if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip))) ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0); p->bmv_oflags |= BMV_OF_DELALLOC; p->bmv_block = -2; } else { p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock); } if (got->br_state == XFS_EXT_UNWRITTEN && (bmv->bmv_iflags & BMV_IF_PREALLOC)) p->bmv_oflags |= BMV_OF_PREALLOC; if (shared) p->bmv_oflags |= BMV_OF_SHARED; p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff); p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount); bmv->bmv_offset = p->bmv_offset + p->bmv_length; bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); bmv->bmv_entries++; return 0; } static void xfs_getbmap_report_hole( struct xfs_inode *ip, struct getbmapx *bmv, struct kgetbmap *out, int64_t bmv_end, xfs_fileoff_t bno, xfs_fileoff_t end) { struct kgetbmap *p = out + bmv->bmv_entries; if (bmv->bmv_iflags & BMV_IF_NO_HOLES) return; p->bmv_block = -1; p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno); p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno); bmv->bmv_offset = p->bmv_offset + p->bmv_length; bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); bmv->bmv_entries++; } static inline bool xfs_getbmap_full( struct getbmapx *bmv) { return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1; } static bool xfs_getbmap_next_rec( struct xfs_bmbt_irec *rec, xfs_fileoff_t total_end) { xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount; if (end == total_end) return false; rec->br_startoff += rec->br_blockcount; if (!isnullstartblock(rec->br_startblock) && rec->br_startblock != DELAYSTARTBLOCK) rec->br_startblock += rec->br_blockcount; rec->br_blockcount = total_end - end; return true; } /* * Get inode's extents as described in bmv, and format for output. * Calls formatter to fill the user's buffer until all extents * are mapped, until the passed-in bmv->bmv_count slots have * been filled, or until the formatter short-circuits the loop, * if it is tracking filled-in extents on its own. */ int /* error code */ xfs_getbmap( struct xfs_inode *ip, struct getbmapx *bmv, /* user bmap structure */ struct kgetbmap *out) { struct xfs_mount *mp = ip->i_mount; int iflags = bmv->bmv_iflags; int whichfork, lock, error = 0; int64_t bmv_end, max_len; xfs_fileoff_t bno, first_bno; struct xfs_ifork *ifp; struct xfs_bmbt_irec got, rec; xfs_filblks_t len; struct xfs_iext_cursor icur; if (bmv->bmv_iflags & ~BMV_IF_VALID) return -EINVAL; #ifndef DEBUG /* Only allow CoW fork queries if we're debugging. */ if (iflags & BMV_IF_COWFORK) return -EINVAL; #endif if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) return -EINVAL; if (bmv->bmv_length < -1) return -EINVAL; bmv->bmv_entries = 0; if (bmv->bmv_length == 0) return 0; if (iflags & BMV_IF_ATTRFORK) whichfork = XFS_ATTR_FORK; else if (iflags & BMV_IF_COWFORK) whichfork = XFS_COW_FORK; else whichfork = XFS_DATA_FORK; ifp = XFS_IFORK_PTR(ip, whichfork); xfs_ilock(ip, XFS_IOLOCK_SHARED); switch (whichfork) { case XFS_ATTR_FORK: if (!XFS_IFORK_Q(ip)) goto out_unlock_iolock; max_len = 1LL << 32; lock = xfs_ilock_attr_map_shared(ip); break; case XFS_COW_FORK: /* No CoW fork? Just return */ if (!ifp) goto out_unlock_iolock; if (xfs_get_cowextsz_hint(ip)) max_len = mp->m_super->s_maxbytes; else max_len = XFS_ISIZE(ip); lock = XFS_ILOCK_SHARED; xfs_ilock(ip, lock); break; case XFS_DATA_FORK: if (!(iflags & BMV_IF_DELALLOC) && (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_disk_size)) { error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) goto out_unlock_iolock; /* * Even after flushing the inode, there can still be * delalloc blocks on the inode beyond EOF due to * speculative preallocation. These are not removed * until the release function is called or the inode * is inactivated. Hence we cannot assert here that * ip->i_delayed_blks == 0. */ } if (xfs_get_extsz_hint(ip) || (ip->i_diflags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))) max_len = mp->m_super->s_maxbytes; else max_len = XFS_ISIZE(ip); lock = xfs_ilock_data_map_shared(ip); break; } switch (ifp->if_format) { case XFS_DINODE_FMT_EXTENTS: case XFS_DINODE_FMT_BTREE: break; case XFS_DINODE_FMT_LOCAL: /* Local format inode forks report no extents. */ goto out_unlock_ilock; default: error = -EINVAL; goto out_unlock_ilock; } if (bmv->bmv_length == -1) { max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len)); bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset); } bmv_end = bmv->bmv_offset + bmv->bmv_length; first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset); len = XFS_BB_TO_FSB(mp, bmv->bmv_length); error = xfs_iread_extents(NULL, ip, whichfork); if (error) goto out_unlock_ilock; if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) { /* * Report a whole-file hole if the delalloc flag is set to * stay compatible with the old implementation. */ if (iflags & BMV_IF_DELALLOC) xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); goto out_unlock_ilock; } while (!xfs_getbmap_full(bmv)) { xfs_trim_extent(&got, first_bno, len); /* * Report an entry for a hole if this extent doesn't directly * follow the previous one. */ if (got.br_startoff > bno) { xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, got.br_startoff); if (xfs_getbmap_full(bmv)) break; } /* * In order to report shared extents accurately, we report each * distinct shared / unshared part of a single bmbt record with * an individual getbmapx record. */ bno = got.br_startoff + got.br_blockcount; rec = got; do { error = xfs_getbmap_report_one(ip, bmv, out, bmv_end, &rec); if (error || xfs_getbmap_full(bmv)) goto out_unlock_ilock; } while (xfs_getbmap_next_rec(&rec, bno)); if (!xfs_iext_next_extent(ifp, &icur, &got)) { xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST; if (whichfork != XFS_ATTR_FORK && bno < end && !xfs_getbmap_full(bmv)) { xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, end); } break; } if (bno >= first_bno + len) break; } out_unlock_ilock: xfs_iunlock(ip, lock); out_unlock_iolock: xfs_iunlock(ip, XFS_IOLOCK_SHARED); return error; } /* * Dead simple method of punching delalyed allocation blocks from a range in * the inode. This will always punch out both the start and end blocks, even * if the ranges only partially overlap them, so it is up to the caller to * ensure that partial blocks are not passed in. */ int xfs_bmap_punch_delalloc_range( struct xfs_inode *ip, xfs_fileoff_t start_fsb, xfs_fileoff_t length) { struct xfs_ifork *ifp = &ip->i_df; xfs_fileoff_t end_fsb = start_fsb + length; struct xfs_bmbt_irec got, del; struct xfs_iext_cursor icur; int error = 0; ASSERT(!xfs_need_iread_extents(ifp)); xfs_ilock(ip, XFS_ILOCK_EXCL); if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) goto out_unlock; while (got.br_startoff + got.br_blockcount > start_fsb) { del = got; xfs_trim_extent(&del, start_fsb, length); /* * A delete can push the cursor forward. Step back to the * previous extent on non-delalloc or extents outside the * target range. */ if (!del.br_blockcount || !isnullstartblock(del.br_startblock)) { if (!xfs_iext_prev_extent(ifp, &icur, &got)) break; continue; } error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur, &got, &del); if (error || !xfs_iext_get_extent(ifp, &icur, &got)) break; } out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * Test whether it is appropriate to check an inode for and free post EOF * blocks. The 'force' parameter determines whether we should also consider * regular files that are marked preallocated or append-only. */ bool xfs_can_free_eofblocks( struct xfs_inode *ip, bool force) { struct xfs_bmbt_irec imap; struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t end_fsb; xfs_fileoff_t last_fsb; int nimaps = 1; int error; /* * Caller must either hold the exclusive io lock; or be inactivating * the inode, which guarantees there are no other users of the inode. */ ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL) || (VFS_I(ip)->i_state & I_FREEING)); /* prealloc/delalloc exists only on regular files */ if (!S_ISREG(VFS_I(ip)->i_mode)) return false; /* * Zero sized files with no cached pages and delalloc blocks will not * have speculative prealloc/delalloc blocks to remove. */ if (VFS_I(ip)->i_size == 0 && VFS_I(ip)->i_mapping->nrpages == 0 && ip->i_delayed_blks == 0) return false; /* If we haven't read in the extent list, then don't do it now. */ if (xfs_need_iread_extents(&ip->i_df)) return false; /* * Do not free real preallocated or append-only files unless the file * has delalloc blocks and we are forced to remove them. */ if (ip->i_diflags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) if (!force || ip->i_delayed_blks == 0) return false; /* * Do not try to free post-EOF blocks if EOF is beyond the end of the * range supported by the page cache, because the truncation will loop * forever. */ end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); if (last_fsb <= end_fsb) return false; /* * Look up the mapping for the first block past EOF. If we can't find * it, there's nothing to free. */ xfs_ilock(ip, XFS_ILOCK_SHARED); error = xfs_bmapi_read(ip, end_fsb, last_fsb - end_fsb, &imap, &nimaps, 0); xfs_iunlock(ip, XFS_ILOCK_SHARED); if (error || nimaps == 0) return false; /* * If there's a real mapping there or there are delayed allocation * reservations, then we have post-EOF blocks to try to free. */ return imap.br_startblock != HOLESTARTBLOCK || ip->i_delayed_blks; } /* * This is called to free any blocks beyond eof. The caller must hold * IOLOCK_EXCL unless we are in the inode reclaim path and have the only * reference to the inode. */ int xfs_free_eofblocks( struct xfs_inode *ip) { struct xfs_trans *tp; struct xfs_mount *mp = ip->i_mount; int error; /* Attach the dquots to the inode up front. */ error = xfs_qm_dqattach(ip); if (error) return error; /* Wait on dio to ensure i_size has settled. */ inode_dio_wait(VFS_I(ip)); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) { ASSERT(XFS_FORCED_SHUTDOWN(mp)); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Do not update the on-disk file size. If we update the on-disk file * size and then the system crashes before the contents of the file are * flushed to disk then the files may be full of holes (ie NULL files * bug). */ error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK, XFS_ISIZE(ip), XFS_BMAPI_NODISCARD); if (error) goto err_cancel; error = xfs_trans_commit(tp); if (error) goto out_unlock; xfs_inode_clear_eofblocks_tag(ip); goto out_unlock; err_cancel: /* * If we get an error at this point we simply don't * bother truncating the file. */ xfs_trans_cancel(tp); out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } int xfs_alloc_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len, int alloc_type) { xfs_mount_t *mp = ip->i_mount; xfs_off_t count; xfs_filblks_t allocated_fsb; xfs_filblks_t allocatesize_fsb; xfs_extlen_t extsz, temp; xfs_fileoff_t startoffset_fsb; xfs_fileoff_t endoffset_fsb; int nimaps; int rt; xfs_trans_t *tp; xfs_bmbt_irec_t imaps[1], *imapp; int error; trace_xfs_alloc_file_space(ip); if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; error = xfs_qm_dqattach(ip); if (error) return error; if (len <= 0) return -EINVAL; rt = XFS_IS_REALTIME_INODE(ip); extsz = xfs_get_extsz_hint(ip); count = len; imapp = &imaps[0]; nimaps = 1; startoffset_fsb = XFS_B_TO_FSBT(mp, offset); endoffset_fsb = XFS_B_TO_FSB(mp, offset + count); allocatesize_fsb = endoffset_fsb - startoffset_fsb; /* * Allocate file space until done or until there is an error */ while (allocatesize_fsb && !error) { xfs_fileoff_t s, e; unsigned int dblocks, rblocks, resblks; /* * Determine space reservations for data/realtime. */ if (unlikely(extsz)) { s = startoffset_fsb; do_div(s, extsz); s *= extsz; e = startoffset_fsb + allocatesize_fsb; div_u64_rem(startoffset_fsb, extsz, &temp); if (temp) e += temp; div_u64_rem(e, extsz, &temp); if (temp) e += extsz - temp; } else { s = 0; e = allocatesize_fsb; } /* * The transaction reservation is limited to a 32-bit block * count, hence we need to limit the number of blocks we are * trying to reserve to avoid an overflow. We can't allocate * more than @nimaps extents, and an extent is limited on disk * to MAXEXTLEN (21 bits), so use that to enforce the limit. */ resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); if (unlikely(rt)) { dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0); rblocks = resblks; } else { dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); rblocks = 0; } /* * Allocate and setup the transaction. */ error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks, rblocks, false, &tp); if (error) break; error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, XFS_IEXT_ADD_NOSPLIT_CNT); if (error) goto error; error = xfs_bmapi_write(tp, ip, startoffset_fsb, allocatesize_fsb, alloc_type, 0, imapp, &nimaps); if (error) goto error; /* * Complete the transaction */ error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); if (error) break; allocated_fsb = imapp->br_blockcount; if (nimaps == 0) { error = -ENOSPC; break; } startoffset_fsb += allocated_fsb; allocatesize_fsb -= allocated_fsb; } return error; error: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } static int xfs_unmap_extent( struct xfs_inode *ip, xfs_fileoff_t startoffset_fsb, xfs_filblks_t len_fsb, int *done) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); int error; error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, false, &tp); if (error) return error; error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, XFS_IEXT_PUNCH_HOLE_CNT); if (error) goto out_trans_cancel; error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done); if (error) goto out_trans_cancel; error = xfs_trans_commit(tp); out_unlock: xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; out_trans_cancel: xfs_trans_cancel(tp); goto out_unlock; } /* Caller must first wait for the completion of any pending DIOs if required. */ int xfs_flush_unmap_range( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; struct inode *inode = VFS_I(ip); xfs_off_t rounding, start, end; int error; rounding = max_t(xfs_off_t, mp->m_sb.sb_blocksize, PAGE_SIZE); start = round_down(offset, rounding); end = round_up(offset + len, rounding) - 1; error = filemap_write_and_wait_range(inode->i_mapping, start, end); if (error) return error; truncate_pagecache_range(inode, start, end); return 0; } int xfs_free_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t startoffset_fsb; xfs_fileoff_t endoffset_fsb; int done = 0, error; trace_xfs_free_file_space(ip); error = xfs_qm_dqattach(ip); if (error) return error; if (len <= 0) /* if nothing being freed */ return 0; startoffset_fsb = XFS_B_TO_FSB(mp, offset); endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); /* We can only free complete realtime extents. */ if (XFS_IS_REALTIME_INODE(ip) && mp->m_sb.sb_rextsize > 1) { startoffset_fsb = roundup_64(startoffset_fsb, mp->m_sb.sb_rextsize); endoffset_fsb = rounddown_64(endoffset_fsb, mp->m_sb.sb_rextsize); } /* * Need to zero the stuff we're not freeing, on disk. */ if (endoffset_fsb > startoffset_fsb) { while (!done) { error = xfs_unmap_extent(ip, startoffset_fsb, endoffset_fsb - startoffset_fsb, &done); if (error) return error; } } /* * Now that we've unmap all full blocks we'll have to zero out any * partial block at the beginning and/or end. iomap_zero_range is smart * enough to skip any holes, including those we just created, but we * must take care not to zero beyond EOF and enlarge i_size. */ if (offset >= XFS_ISIZE(ip)) return 0; if (offset + len > XFS_ISIZE(ip)) len = XFS_ISIZE(ip) - offset; error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_buffered_write_iomap_ops); if (error) return error; /* * If we zeroed right up to EOF and EOF straddles a page boundary we * must make sure that the post-EOF area is also zeroed because the * page could be mmap'd and iomap_zero_range doesn't do that for us. * Writeback of the eof page will do this, albeit clumsily. */ if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) { error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, round_down(offset + len, PAGE_SIZE), LLONG_MAX); } return error; } static int xfs_prepare_shift( struct xfs_inode *ip, loff_t offset) { struct xfs_mount *mp = ip->i_mount; int error; /* * Trim eofblocks to avoid shifting uninitialized post-eof preallocation * into the accessible region of the file. */ if (xfs_can_free_eofblocks(ip, true)) { error = xfs_free_eofblocks(ip); if (error) return error; } /* * Shift operations must stabilize the start block offset boundary along * with the full range of the operation. If we don't, a COW writeback * completion could race with an insert, front merge with the start * extent (after split) during the shift and corrupt the file. Start * with the block just prior to the start to stabilize the boundary. */ offset = round_down(offset, mp->m_sb.sb_blocksize); if (offset) offset -= mp->m_sb.sb_blocksize; /* * Writeback and invalidate cache for the remainder of the file as we're * about to shift down every extent from offset to EOF. */ error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip)); if (error) return error; /* * Clean out anything hanging around in the cow fork now that * we've flushed all the dirty data out to disk to avoid having * CoW extents at the wrong offsets. */ if (xfs_inode_has_cow_data(ip)) { error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF, true); if (error) return error; } return 0; } /* * xfs_collapse_file_space() * This routine frees disk space and shift extent for the given file. * The first thing we do is to free data blocks in the specified range * by calling xfs_free_file_space(). It would also sync dirty data * and invalidate page cache over the region on which collapse range * is working. And Shift extent records to the left to cover a hole. * RETURNS: * 0 on success * errno on error * */ int xfs_collapse_file_space( struct xfs_inode *ip, xfs_off_t offset, xfs_off_t len) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len); xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); bool done = false; ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); trace_xfs_collapse_file_space(ip); error = xfs_free_file_space(ip, offset, len); if (error) return error; error = xfs_prepare_shift(ip, offset); if (error) return error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); while (!done) { error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb, &done); if (error) goto out_trans_cancel; if (done) break; /* finish any deferred frees and roll the transaction */ error = xfs_defer_finish(&tp); if (error) goto out_trans_cancel; } error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; out_trans_cancel: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * xfs_insert_file_space() * This routine create hole space by shifting extents for the given file. * The first thing we do is to sync dirty data and invalidate page cache * over the region on which insert range is working. And split an extent * to two extents at given offset by calling xfs_bmap_split_extent. * And shift all extent records which are laying between [offset, * last allocated extent] to the right to reserve hole range. * RETURNS: * 0 on success * errno on error */ int xfs_insert_file_space( struct xfs_inode *ip, loff_t offset, loff_t len) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset); xfs_fileoff_t next_fsb = NULLFSBLOCK; xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); bool done = false; ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); trace_xfs_insert_file_space(ip); error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb); if (error) return error; error = xfs_prepare_shift(ip, offset); if (error) return error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, XFS_IEXT_PUNCH_HOLE_CNT); if (error) goto out_trans_cancel; /* * The extent shifting code works on extent granularity. So, if stop_fsb * is not the starting block of extent, we need to split the extent at * stop_fsb. */ error = xfs_bmap_split_extent(tp, ip, stop_fsb); if (error) goto out_trans_cancel; do { error = xfs_defer_finish(&tp); if (error) goto out_trans_cancel; error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb, &done, stop_fsb); if (error) goto out_trans_cancel; } while (!done); error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; out_trans_cancel: xfs_trans_cancel(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } /* * We need to check that the format of the data fork in the temporary inode is * valid for the target inode before doing the swap. This is not a problem with * attr1 because of the fixed fork offset, but attr2 has a dynamically sized * data fork depending on the space the attribute fork is taking so we can get * invalid formats on the target inode. * * E.g. target has space for 7 extents in extent format, temp inode only has * space for 6. If we defragment down to 7 extents, then the tmp format is a * btree, but when swapped it needs to be in extent format. Hence we can't just * blindly swap data forks on attr2 filesystems. * * Note that we check the swap in both directions so that we don't end up with * a corrupt temporary inode, either. * * Note that fixing the way xfs_fsr sets up the attribute fork in the source * inode will prevent this situation from occurring, so all we do here is * reject and log the attempt. basically we are putting the responsibility on * userspace to get this right. */ static int xfs_swap_extents_check_format( struct xfs_inode *ip, /* target inode */ struct xfs_inode *tip) /* tmp inode */ { struct xfs_ifork *ifp = &ip->i_df; struct xfs_ifork *tifp = &tip->i_df; /* User/group/project quota ids must match if quotas are enforced. */ if (XFS_IS_QUOTA_ON(ip->i_mount) && (!uid_eq(VFS_I(ip)->i_uid, VFS_I(tip)->i_uid) || !gid_eq(VFS_I(ip)->i_gid, VFS_I(tip)->i_gid) || ip->i_projid != tip->i_projid)) return -EINVAL; /* Should never get a local format */ if (ifp->if_format == XFS_DINODE_FMT_LOCAL || tifp->if_format == XFS_DINODE_FMT_LOCAL) return -EINVAL; /* * if the target inode has less extents that then temporary inode then * why did userspace call us? */ if (ifp->if_nextents < tifp->if_nextents) return -EINVAL; /* * If we have to use the (expensive) rmap swap method, we can * handle any number of extents and any format. */ if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) return 0; /* * if the target inode is in extent form and the temp inode is in btree * form then we will end up with the target inode in the wrong format * as we already know there are less extents in the temp inode. */ if (ifp->if_format == XFS_DINODE_FMT_EXTENTS && tifp->if_format == XFS_DINODE_FMT_BTREE) return -EINVAL; /* Check temp in extent form to max in target */ if (tifp->if_format == XFS_DINODE_FMT_EXTENTS && tifp->if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; /* Check target in extent form to max in temp */ if (ifp->if_format == XFS_DINODE_FMT_EXTENTS && ifp->if_nextents > XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; /* * If we are in a btree format, check that the temp root block will fit * in the target and that it has enough extents to be in btree format * in the target. * * Note that we have to be careful to allow btree->extent conversions * (a common defrag case) which will occur when the temp inode is in * extent format... */ if (tifp->if_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_Q(ip) && XFS_BMAP_BMDR_SPACE(tifp->if_broot) > XFS_IFORK_BOFF(ip)) return -EINVAL; if (tifp->if_nextents <= XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) return -EINVAL; } /* Reciprocal target->temp btree format checks */ if (ifp->if_format == XFS_DINODE_FMT_BTREE) { if (XFS_IFORK_Q(tip) && XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) return -EINVAL; if (ifp->if_nextents <= XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) return -EINVAL; } return 0; } static int xfs_swap_extent_flush( struct xfs_inode *ip) { int error; error = filemap_write_and_wait(VFS_I(ip)->i_mapping); if (error) return error; truncate_pagecache_range(VFS_I(ip), 0, -1); /* Verify O_DIRECT for ftmp */ if (VFS_I(ip)->i_mapping->nrpages) return -EINVAL; return 0; } /* * Move extents from one file to another, when rmap is enabled. */ STATIC int xfs_swap_extent_rmap( struct xfs_trans **tpp, struct xfs_inode *ip, struct xfs_inode *tip) { struct xfs_trans *tp = *tpp; struct xfs_bmbt_irec irec; struct xfs_bmbt_irec uirec; struct xfs_bmbt_irec tirec; xfs_fileoff_t offset_fsb; xfs_fileoff_t end_fsb; xfs_filblks_t count_fsb; int error; xfs_filblks_t ilen; xfs_filblks_t rlen; int nimaps; uint64_t tip_flags2; /* * If the source file has shared blocks, we must flag the donor * file as having shared blocks so that we get the shared-block * rmap functions when we go to fix up the rmaps. The flags * will be switch for reals later. */ tip_flags2 = tip->i_diflags2; if (ip->i_diflags2 & XFS_DIFLAG2_REFLINK) tip->i_diflags2 |= XFS_DIFLAG2_REFLINK; offset_fsb = 0; end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); while (count_fsb) { /* Read extent from the donor file */ nimaps = 1; error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, &nimaps, 0); if (error) goto out; ASSERT(nimaps == 1); ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); trace_xfs_swap_extent_rmap_remap(tip, &tirec); ilen = tirec.br_blockcount; /* Unmap the old blocks in the source file. */ while (tirec.br_blockcount) { ASSERT(tp->t_firstblock == NULLFSBLOCK); trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); /* Read extent from the source file */ nimaps = 1; error = xfs_bmapi_read(ip, tirec.br_startoff, tirec.br_blockcount, &irec, &nimaps, 0); if (error) goto out; ASSERT(nimaps == 1); ASSERT(tirec.br_startoff == irec.br_startoff); trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); /* Trim the extent. */ uirec = tirec; uirec.br_blockcount = rlen = min_t(xfs_filblks_t, tirec.br_blockcount, irec.br_blockcount); trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); if (xfs_bmap_is_real_extent(&uirec)) { error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, XFS_IEXT_SWAP_RMAP_CNT); if (error) goto out; } if (xfs_bmap_is_real_extent(&irec)) { error = xfs_iext_count_may_overflow(tip, XFS_DATA_FORK, XFS_IEXT_SWAP_RMAP_CNT); if (error) goto out; } /* Remove the mapping from the donor file. */ xfs_bmap_unmap_extent(tp, tip, &uirec); /* Remove the mapping from the source file. */ xfs_bmap_unmap_extent(tp, ip, &irec); /* Map the donor file's blocks into the source file. */ xfs_bmap_map_extent(tp, ip, &uirec); /* Map the source file's blocks into the donor file. */ xfs_bmap_map_extent(tp, tip, &irec); error = xfs_defer_finish(tpp); tp = *tpp; if (error) goto out; tirec.br_startoff += rlen; if (tirec.br_startblock != HOLESTARTBLOCK && tirec.br_startblock != DELAYSTARTBLOCK) tirec.br_startblock += rlen; tirec.br_blockcount -= rlen; } /* Roll on... */ count_fsb -= ilen; offset_fsb += ilen; } tip->i_diflags2 = tip_flags2; return 0; out: trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); tip->i_diflags2 = tip_flags2; return error; } /* Swap the extents of two files by swapping data forks. */ STATIC int xfs_swap_extent_forks( struct xfs_trans *tp, struct xfs_inode *ip, struct xfs_inode *tip, int *src_log_flags, int *target_log_flags) { xfs_filblks_t aforkblks = 0; xfs_filblks_t taforkblks = 0; xfs_extnum_t junk; uint64_t tmp; int error; /* * Count the number of extended attribute blocks */ if (XFS_IFORK_Q(ip) && ip->i_afp->if_nextents > 0 && ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL) { error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, &aforkblks); if (error) return error; } if (XFS_IFORK_Q(tip) && tip->i_afp->if_nextents > 0 && tip->i_afp->if_format != XFS_DINODE_FMT_LOCAL) { error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, &taforkblks); if (error) return error; } /* * Btree format (v3) inodes have the inode number stamped in the bmbt * block headers. We can't start changing the bmbt blocks until the * inode owner change is logged so recovery does the right thing in the * event of a crash. Set the owner change log flags now and leave the * bmbt scan as the last step. */ if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE) (*target_log_flags) |= XFS_ILOG_DOWNER; if (tip->i_df.if_format == XFS_DINODE_FMT_BTREE) (*src_log_flags) |= XFS_ILOG_DOWNER; } /* * Swap the data forks of the inodes */ swap(ip->i_df, tip->i_df); /* * Fix the on-disk inode values */ tmp = (uint64_t)ip->i_nblocks; ip->i_nblocks = tip->i_nblocks - taforkblks + aforkblks; tip->i_nblocks = tmp + taforkblks - aforkblks; /* * The extents in the source inode could still contain speculative * preallocation beyond EOF (e.g. the file is open but not modified * while defrag is in progress). In that case, we need to copy over the * number of delalloc blocks the data fork in the source inode is * tracking beyond EOF so that when the fork is truncated away when the * temporary inode is unlinked we don't underrun the i_delayed_blks * counter on that inode. */ ASSERT(tip->i_delayed_blks == 0); tip->i_delayed_blks = ip->i_delayed_blks; ip->i_delayed_blks = 0; switch (ip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: (*src_log_flags) |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: ASSERT(!xfs_sb_version_has_v3inode(&ip->i_mount->m_sb) || (*src_log_flags & XFS_ILOG_DOWNER)); (*src_log_flags) |= XFS_ILOG_DBROOT; break; } switch (tip->i_df.if_format) { case XFS_DINODE_FMT_EXTENTS: (*target_log_flags) |= XFS_ILOG_DEXT; break; case XFS_DINODE_FMT_BTREE: (*target_log_flags) |= XFS_ILOG_DBROOT; ASSERT(!xfs_sb_version_has_v3inode(&ip->i_mount->m_sb) || (*target_log_flags & XFS_ILOG_DOWNER)); break; } return 0; } /* * Fix up the owners of the bmbt blocks to refer to the current inode. The * change owner scan attempts to order all modified buffers in the current * transaction. In the event of ordered buffer failure, the offending buffer is * physically logged as a fallback and the scan returns -EAGAIN. We must roll * the transaction in this case to replenish the fallback log reservation and * restart the scan. This process repeats until the scan completes. */ static int xfs_swap_change_owner( struct xfs_trans **tpp, struct xfs_inode *ip, struct xfs_inode *tmpip) { int error; struct xfs_trans *tp = *tpp; do { error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, NULL); /* success or fatal error */ if (error != -EAGAIN) break; error = xfs_trans_roll(tpp); if (error) break; tp = *tpp; /* * Redirty both inodes so they can relog and keep the log tail * moving forward. */ xfs_trans_ijoin(tp, ip, 0); xfs_trans_ijoin(tp, tmpip, 0); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE); } while (true); return error; } int xfs_swap_extents( struct xfs_inode *ip, /* target inode */ struct xfs_inode *tip, /* tmp inode */ struct xfs_swapext *sxp) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; struct xfs_bstat *sbp = &sxp->sx_stat; int src_log_flags, target_log_flags; int error = 0; int lock_flags; uint64_t f; int resblks = 0; unsigned int flags = 0; /* * Lock the inodes against other IO, page faults and truncate to * begin with. Then we can ensure the inodes are flushed and have no * page cache safely. Once we have done this we can take the ilocks and * do the rest of the checks. */ lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); lock_flags = XFS_MMAPLOCK_EXCL; xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL); /* Verify that both files have the same format */ if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { error = -EINVAL; goto out_unlock; } /* Verify both files are either real-time or non-realtime */ if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { error = -EINVAL; goto out_unlock; } error = xfs_qm_dqattach(ip); if (error) goto out_unlock; error = xfs_qm_dqattach(tip); if (error) goto out_unlock; error = xfs_swap_extent_flush(ip); if (error) goto out_unlock; error = xfs_swap_extent_flush(tip); if (error) goto out_unlock; if (xfs_inode_has_cow_data(tip)) { error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true); if (error) goto out_unlock; } /* * Extent "swapping" with rmap requires a permanent reservation and * a block reservation because it's really just a remap operation * performed with log redo items! */ if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { int w = XFS_DATA_FORK; uint32_t ipnext = ip->i_df.if_nextents; uint32_t tipnext = tip->i_df.if_nextents; /* * Conceptually this shouldn't affect the shape of either bmbt, * but since we atomically move extents one by one, we reserve * enough space to rebuild both trees. */ resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w); resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w); /* * If either inode straddles a bmapbt block allocation boundary, * the rmapbt algorithm triggers repeated allocs and frees as * extents are remapped. This can exhaust the block reservation * prematurely and cause shutdown. Return freed blocks to the * transaction reservation to counter this behavior. */ flags |= XFS_TRANS_RES_FDBLKS; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, flags, &tp); if (error) goto out_unlock; /* * Lock and join the inodes to the tansaction so that transaction commit * or cancel will unlock the inodes from this point onwards. */ xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL); lock_flags |= XFS_ILOCK_EXCL; xfs_trans_ijoin(tp, ip, 0); xfs_trans_ijoin(tp, tip, 0); /* Verify all data are being swapped */ if (sxp->sx_offset != 0 || sxp->sx_length != ip->i_disk_size || sxp->sx_length != tip->i_disk_size) { error = -EFAULT; goto out_trans_cancel; } trace_xfs_swap_extent_before(ip, 0); trace_xfs_swap_extent_before(tip, 1); /* check inode formats now that data is flushed */ error = xfs_swap_extents_check_format(ip, tip); if (error) { xfs_notice(mp, "%s: inode 0x%llx format is incompatible for exchanging.", __func__, ip->i_ino); goto out_trans_cancel; } /* * Compare the current change & modify times with that * passed in. If they differ, we abort this swap. * This is the mechanism used to ensure the calling * process that the file was not changed out from * under it. */ if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { error = -EBUSY; goto out_trans_cancel; } /* * Note the trickiness in setting the log flags - we set the owner log * flag on the opposite inode (i.e. the inode we are setting the new * owner to be) because once we swap the forks and log that, log * recovery is going to see the fork as owned by the swapped inode, * not the pre-swapped inodes. */ src_log_flags = XFS_ILOG_CORE; target_log_flags = XFS_ILOG_CORE; if (xfs_sb_version_hasrmapbt(&mp->m_sb)) error = xfs_swap_extent_rmap(&tp, ip, tip); else error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, &target_log_flags); if (error) goto out_trans_cancel; /* Do we have to swap reflink flags? */ if ((ip->i_diflags2 & XFS_DIFLAG2_REFLINK) ^ (tip->i_diflags2 & XFS_DIFLAG2_REFLINK)) { f = ip->i_diflags2 & XFS_DIFLAG2_REFLINK; ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; ip->i_diflags2 |= tip->i_diflags2 & XFS_DIFLAG2_REFLINK; tip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; tip->i_diflags2 |= f & XFS_DIFLAG2_REFLINK; } /* Swap the cow forks. */ if (xfs_sb_version_hasreflink(&mp->m_sb)) { ASSERT(!ip->i_cowfp || ip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS); ASSERT(!tip->i_cowfp || tip->i_cowfp->if_format == XFS_DINODE_FMT_EXTENTS); swap(ip->i_cowfp, tip->i_cowfp); if (ip->i_cowfp && ip->i_cowfp->if_bytes) xfs_inode_set_cowblocks_tag(ip); else xfs_inode_clear_cowblocks_tag(ip); if (tip->i_cowfp && tip->i_cowfp->if_bytes) xfs_inode_set_cowblocks_tag(tip); else xfs_inode_clear_cowblocks_tag(tip); } xfs_trans_log_inode(tp, ip, src_log_flags); xfs_trans_log_inode(tp, tip, target_log_flags); /* * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems * have inode number owner values in the bmbt blocks that still refer to * the old inode. Scan each bmbt to fix up the owner values with the * inode number of the current inode. */ if (src_log_flags & XFS_ILOG_DOWNER) { error = xfs_swap_change_owner(&tp, ip, tip); if (error) goto out_trans_cancel; } if (target_log_flags & XFS_ILOG_DOWNER) { error = xfs_swap_change_owner(&tp, tip, ip); if (error) goto out_trans_cancel; } /* * If this is a synchronous mount, make sure that the * transaction goes to disk before returning to the user. */ if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); trace_xfs_swap_extent_after(ip, 0); trace_xfs_swap_extent_after(tip, 1); out_unlock: xfs_iunlock(ip, lock_flags); xfs_iunlock(tip, lock_flags); unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); return error; out_trans_cancel: xfs_trans_cancel(tp); goto out_unlock; }