// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ufs/balloc.c * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics * * UFS2 write support Evgeniy Dushistov <dushistov@mail.ru>, 2007 */ #include <linux/fs.h> #include <linux/stat.h> #include <linux/time.h> #include <linux/string.h> #include <linux/buffer_head.h> #include <linux/capability.h> #include <linux/bitops.h> #include <linux/bio.h> #include <asm/byteorder.h> #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" #define INVBLOCK ((u64)-1L) static u64 ufs_add_fragments(struct inode *, u64, unsigned, unsigned); static u64 ufs_alloc_fragments(struct inode *, unsigned, u64, unsigned, int *); static u64 ufs_alloccg_block(struct inode *, struct ufs_cg_private_info *, u64, int *); static u64 ufs_bitmap_search (struct super_block *, struct ufs_cg_private_info *, u64, unsigned); static unsigned char ufs_fragtable_8fpb[], ufs_fragtable_other[]; static void ufs_clusteracct(struct super_block *, struct ufs_cg_private_info *, unsigned, int); /* * Free 'count' fragments from fragment number 'fragment' */ void ufs_free_fragments(struct inode *inode, u64 fragment, unsigned count) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; unsigned cgno, bit, end_bit, bbase, blkmap, i; u64 blkno; sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; UFSD("ENTER, fragment %llu, count %u\n", (unsigned long long)fragment, count); if (ufs_fragnum(fragment) + count > uspi->s_fpg) ufs_error (sb, "ufs_free_fragments", "internal error"); mutex_lock(&UFS_SB(sb)->s_lock); cgno = ufs_dtog(uspi, fragment); bit = ufs_dtogd(uspi, fragment); if (cgno >= uspi->s_ncg) { ufs_panic (sb, "ufs_free_fragments", "freeing blocks are outside device"); goto failed; } ucpi = ufs_load_cylinder (sb, cgno); if (!ucpi) goto failed; ucg = ubh_get_ucg (UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) { ufs_panic (sb, "ufs_free_fragments", "internal error, bad magic number on cg %u", cgno); goto failed; } end_bit = bit + count; bbase = ufs_blknum (bit); blkmap = ubh_blkmap (UCPI_UBH(ucpi), ucpi->c_freeoff, bbase); ufs_fragacct (sb, blkmap, ucg->cg_frsum, -1); for (i = bit; i < end_bit; i++) { if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, i)) ubh_setbit (UCPI_UBH(ucpi), ucpi->c_freeoff, i); else ufs_error (sb, "ufs_free_fragments", "bit already cleared for fragment %u", i); } inode_sub_bytes(inode, count << uspi->s_fshift); fs32_add(sb, &ucg->cg_cs.cs_nffree, count); uspi->cs_total.cs_nffree += count; fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count); blkmap = ubh_blkmap (UCPI_UBH(ucpi), ucpi->c_freeoff, bbase); ufs_fragacct(sb, blkmap, ucg->cg_frsum, 1); /* * Trying to reassemble free fragments into block */ blkno = ufs_fragstoblks (bbase); if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno)) { fs32_sub(sb, &ucg->cg_cs.cs_nffree, uspi->s_fpb); uspi->cs_total.cs_nffree -= uspi->s_fpb; fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, uspi->s_fpb); if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD) ufs_clusteracct (sb, ucpi, blkno, 1); fs32_add(sb, &ucg->cg_cs.cs_nbfree, 1); uspi->cs_total.cs_nbfree++; fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nbfree, 1); if (uspi->fs_magic != UFS2_MAGIC) { unsigned cylno = ufs_cbtocylno (bbase); fs16_add(sb, &ubh_cg_blks(ucpi, cylno, ufs_cbtorpos(bbase)), 1); fs32_add(sb, &ubh_cg_blktot(ucpi, cylno), 1); } } ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & SB_SYNCHRONOUS) ubh_sync_block(UCPI_UBH(ucpi)); ufs_mark_sb_dirty(sb); mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT\n"); return; failed: mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT (FAILED)\n"); return; } /* * Free 'count' fragments from fragment number 'fragment' (free whole blocks) */ void ufs_free_blocks(struct inode *inode, u64 fragment, unsigned count) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; unsigned overflow, cgno, bit, end_bit, i; u64 blkno; sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; UFSD("ENTER, fragment %llu, count %u\n", (unsigned long long)fragment, count); if ((fragment & uspi->s_fpbmask) || (count & uspi->s_fpbmask)) { ufs_error (sb, "ufs_free_blocks", "internal error, " "fragment %llu, count %u\n", (unsigned long long)fragment, count); goto failed; } mutex_lock(&UFS_SB(sb)->s_lock); do_more: overflow = 0; cgno = ufs_dtog(uspi, fragment); bit = ufs_dtogd(uspi, fragment); if (cgno >= uspi->s_ncg) { ufs_panic (sb, "ufs_free_blocks", "freeing blocks are outside device"); goto failed_unlock; } end_bit = bit + count; if (end_bit > uspi->s_fpg) { overflow = bit + count - uspi->s_fpg; count -= overflow; end_bit -= overflow; } ucpi = ufs_load_cylinder (sb, cgno); if (!ucpi) goto failed_unlock; ucg = ubh_get_ucg (UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) { ufs_panic (sb, "ufs_free_blocks", "internal error, bad magic number on cg %u", cgno); goto failed_unlock; } for (i = bit; i < end_bit; i += uspi->s_fpb) { blkno = ufs_fragstoblks(i); if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno)) { ufs_error(sb, "ufs_free_blocks", "freeing free fragment"); } ubh_setblock(UCPI_UBH(ucpi), ucpi->c_freeoff, blkno); inode_sub_bytes(inode, uspi->s_fpb << uspi->s_fshift); if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD) ufs_clusteracct (sb, ucpi, blkno, 1); fs32_add(sb, &ucg->cg_cs.cs_nbfree, 1); uspi->cs_total.cs_nbfree++; fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nbfree, 1); if (uspi->fs_magic != UFS2_MAGIC) { unsigned cylno = ufs_cbtocylno(i); fs16_add(sb, &ubh_cg_blks(ucpi, cylno, ufs_cbtorpos(i)), 1); fs32_add(sb, &ubh_cg_blktot(ucpi, cylno), 1); } } ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & SB_SYNCHRONOUS) ubh_sync_block(UCPI_UBH(ucpi)); if (overflow) { fragment += count; count = overflow; goto do_more; } ufs_mark_sb_dirty(sb); mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT\n"); return; failed_unlock: mutex_unlock(&UFS_SB(sb)->s_lock); failed: UFSD("EXIT (FAILED)\n"); return; } /* * Modify inode page cache in such way: * have - blocks with b_blocknr equal to oldb...oldb+count-1 * get - blocks with b_blocknr equal to newb...newb+count-1 * also we suppose that oldb...oldb+count-1 blocks * situated at the end of file. * * We can come here from ufs_writepage or ufs_prepare_write, * locked_page is argument of these functions, so we already lock it. */ static void ufs_change_blocknr(struct inode *inode, sector_t beg, unsigned int count, sector_t oldb, sector_t newb, struct page *locked_page) { const unsigned blks_per_page = 1 << (PAGE_SHIFT - inode->i_blkbits); const unsigned mask = blks_per_page - 1; struct address_space * const mapping = inode->i_mapping; pgoff_t index, cur_index, last_index; unsigned pos, j, lblock; sector_t end, i; struct page *page; struct buffer_head *head, *bh; UFSD("ENTER, ino %lu, count %u, oldb %llu, newb %llu\n", inode->i_ino, count, (unsigned long long)oldb, (unsigned long long)newb); BUG_ON(!locked_page); BUG_ON(!PageLocked(locked_page)); cur_index = locked_page->index; end = count + beg; last_index = end >> (PAGE_SHIFT - inode->i_blkbits); for (i = beg; i < end; i = (i | mask) + 1) { index = i >> (PAGE_SHIFT - inode->i_blkbits); if (likely(cur_index != index)) { page = ufs_get_locked_page(mapping, index); if (!page)/* it was truncated */ continue; if (IS_ERR(page)) {/* or EIO */ ufs_error(inode->i_sb, __func__, "read of page %llu failed\n", (unsigned long long)index); continue; } } else page = locked_page; head = page_buffers(page); bh = head; pos = i & mask; for (j = 0; j < pos; ++j) bh = bh->b_this_page; if (unlikely(index == last_index)) lblock = end & mask; else lblock = blks_per_page; do { if (j >= lblock) break; pos = (i - beg) + j; if (!buffer_mapped(bh)) map_bh(bh, inode->i_sb, oldb + pos); if (bh_read(bh, 0) < 0) { ufs_error(inode->i_sb, __func__, "read of block failed\n"); break; } UFSD(" change from %llu to %llu, pos %u\n", (unsigned long long)(pos + oldb), (unsigned long long)(pos + newb), pos); bh->b_blocknr = newb + pos; clean_bdev_bh_alias(bh); mark_buffer_dirty(bh); ++j; bh = bh->b_this_page; } while (bh != head); if (likely(cur_index != index)) ufs_put_locked_page(page); } UFSD("EXIT\n"); } static void ufs_clear_frags(struct inode *inode, sector_t beg, unsigned int n, int sync) { struct buffer_head *bh; sector_t end = beg + n; for (; beg < end; ++beg) { bh = sb_getblk(inode->i_sb, beg); lock_buffer(bh); memset(bh->b_data, 0, inode->i_sb->s_blocksize); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); if (IS_SYNC(inode) || sync) sync_dirty_buffer(bh); brelse(bh); } } u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment, u64 goal, unsigned count, int *err, struct page *locked_page) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; unsigned cgno, oldcount, newcount; u64 tmp, request, result; UFSD("ENTER, ino %lu, fragment %llu, goal %llu, count %u\n", inode->i_ino, (unsigned long long)fragment, (unsigned long long)goal, count); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); *err = -ENOSPC; mutex_lock(&UFS_SB(sb)->s_lock); tmp = ufs_data_ptr_to_cpu(sb, p); if (count + ufs_fragnum(fragment) > uspi->s_fpb) { ufs_warning(sb, "ufs_new_fragments", "internal warning" " fragment %llu, count %u", (unsigned long long)fragment, count); count = uspi->s_fpb - ufs_fragnum(fragment); } oldcount = ufs_fragnum (fragment); newcount = oldcount + count; /* * Somebody else has just allocated our fragments */ if (oldcount) { if (!tmp) { ufs_error(sb, "ufs_new_fragments", "internal error, " "fragment %llu, tmp %llu\n", (unsigned long long)fragment, (unsigned long long)tmp); mutex_unlock(&UFS_SB(sb)->s_lock); return INVBLOCK; } if (fragment < UFS_I(inode)->i_lastfrag) { UFSD("EXIT (ALREADY ALLOCATED)\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } } else { if (tmp) { UFSD("EXIT (ALREADY ALLOCATED)\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } } /* * There is not enough space for user on the device */ if (unlikely(ufs_freefrags(uspi) <= uspi->s_root_blocks)) { if (!capable(CAP_SYS_RESOURCE)) { mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT (FAILED)\n"); return 0; } } if (goal >= uspi->s_size) goal = 0; if (goal == 0) cgno = ufs_inotocg (inode->i_ino); else cgno = ufs_dtog(uspi, goal); /* * allocate new fragment */ if (oldcount == 0) { result = ufs_alloc_fragments (inode, cgno, goal, count, err); if (result) { ufs_clear_frags(inode, result + oldcount, newcount - oldcount, locked_page != NULL); *err = 0; write_seqlock(&UFS_I(inode)->meta_lock); ufs_cpu_to_data_ptr(sb, p, result); UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag, fragment + count); write_sequnlock(&UFS_I(inode)->meta_lock); } mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT, result %llu\n", (unsigned long long)result); return result; } /* * resize block */ result = ufs_add_fragments(inode, tmp, oldcount, newcount); if (result) { *err = 0; read_seqlock_excl(&UFS_I(inode)->meta_lock); UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag, fragment + count); read_sequnlock_excl(&UFS_I(inode)->meta_lock); ufs_clear_frags(inode, result + oldcount, newcount - oldcount, locked_page != NULL); mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT, result %llu\n", (unsigned long long)result); return result; } /* * allocate new block and move data */ if (fs32_to_cpu(sb, usb1->fs_optim) == UFS_OPTSPACE) { request = newcount; if (uspi->cs_total.cs_nffree < uspi->s_space_to_time) usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME); } else { request = uspi->s_fpb; if (uspi->cs_total.cs_nffree > uspi->s_time_to_space) usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTSPACE); } result = ufs_alloc_fragments (inode, cgno, goal, request, err); if (result) { ufs_clear_frags(inode, result + oldcount, newcount - oldcount, locked_page != NULL); mutex_unlock(&UFS_SB(sb)->s_lock); ufs_change_blocknr(inode, fragment - oldcount, oldcount, uspi->s_sbbase + tmp, uspi->s_sbbase + result, locked_page); *err = 0; write_seqlock(&UFS_I(inode)->meta_lock); ufs_cpu_to_data_ptr(sb, p, result); UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag, fragment + count); write_sequnlock(&UFS_I(inode)->meta_lock); if (newcount < request) ufs_free_fragments (inode, result + newcount, request - newcount); ufs_free_fragments (inode, tmp, oldcount); UFSD("EXIT, result %llu\n", (unsigned long long)result); return result; } mutex_unlock(&UFS_SB(sb)->s_lock); UFSD("EXIT (FAILED)\n"); return 0; } static bool try_add_frags(struct inode *inode, unsigned frags) { unsigned size = frags * i_blocksize(inode); spin_lock(&inode->i_lock); __inode_add_bytes(inode, size); if (unlikely((u32)inode->i_blocks != inode->i_blocks)) { __inode_sub_bytes(inode, size); spin_unlock(&inode->i_lock); return false; } spin_unlock(&inode->i_lock); return true; } static u64 ufs_add_fragments(struct inode *inode, u64 fragment, unsigned oldcount, unsigned newcount) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; unsigned cgno, fragno, fragoff, count, fragsize, i; UFSD("ENTER, fragment %llu, oldcount %u, newcount %u\n", (unsigned long long)fragment, oldcount, newcount); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; count = newcount - oldcount; cgno = ufs_dtog(uspi, fragment); if (fs32_to_cpu(sb, UFS_SB(sb)->fs_cs(cgno).cs_nffree) < count) return 0; if ((ufs_fragnum (fragment) + newcount) > uspi->s_fpb) return 0; ucpi = ufs_load_cylinder (sb, cgno); if (!ucpi) return 0; ucg = ubh_get_ucg (UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) { ufs_panic (sb, "ufs_add_fragments", "internal error, bad magic number on cg %u", cgno); return 0; } fragno = ufs_dtogd(uspi, fragment); fragoff = ufs_fragnum (fragno); for (i = oldcount; i < newcount; i++) if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i)) return 0; if (!try_add_frags(inode, count)) return 0; /* * Block can be extended */ ucg->cg_time = ufs_get_seconds(sb); for (i = newcount; i < (uspi->s_fpb - fragoff); i++) if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i)) break; fragsize = i - oldcount; if (!fs32_to_cpu(sb, ucg->cg_frsum[fragsize])) ufs_panic (sb, "ufs_add_fragments", "internal error or corrupted bitmap on cg %u", cgno); fs32_sub(sb, &ucg->cg_frsum[fragsize], 1); if (fragsize != count) fs32_add(sb, &ucg->cg_frsum[fragsize - count], 1); for (i = oldcount; i < newcount; i++) ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i); fs32_sub(sb, &ucg->cg_cs.cs_nffree, count); fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count); uspi->cs_total.cs_nffree -= count; ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & SB_SYNCHRONOUS) ubh_sync_block(UCPI_UBH(ucpi)); ufs_mark_sb_dirty(sb); UFSD("EXIT, fragment %llu\n", (unsigned long long)fragment); return fragment; } #define UFS_TEST_FREE_SPACE_CG \ ucg = (struct ufs_cylinder_group *) UFS_SB(sb)->s_ucg[cgno]->b_data; \ if (fs32_to_cpu(sb, ucg->cg_cs.cs_nbfree)) \ goto cg_found; \ for (k = count; k < uspi->s_fpb; k++) \ if (fs32_to_cpu(sb, ucg->cg_frsum[k])) \ goto cg_found; static u64 ufs_alloc_fragments(struct inode *inode, unsigned cgno, u64 goal, unsigned count, int *err) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; unsigned oldcg, i, j, k, allocsize; u64 result; UFSD("ENTER, ino %lu, cgno %u, goal %llu, count %u\n", inode->i_ino, cgno, (unsigned long long)goal, count); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; oldcg = cgno; /* * 1. searching on preferred cylinder group */ UFS_TEST_FREE_SPACE_CG /* * 2. quadratic rehash */ for (j = 1; j < uspi->s_ncg; j *= 2) { cgno += j; if (cgno >= uspi->s_ncg) cgno -= uspi->s_ncg; UFS_TEST_FREE_SPACE_CG } /* * 3. brute force search * We start at i = 2 ( 0 is checked at 1.step, 1 at 2.step ) */ cgno = (oldcg + 1) % uspi->s_ncg; for (j = 2; j < uspi->s_ncg; j++) { cgno++; if (cgno >= uspi->s_ncg) cgno = 0; UFS_TEST_FREE_SPACE_CG } UFSD("EXIT (FAILED)\n"); return 0; cg_found: ucpi = ufs_load_cylinder (sb, cgno); if (!ucpi) return 0; ucg = ubh_get_ucg (UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) ufs_panic (sb, "ufs_alloc_fragments", "internal error, bad magic number on cg %u", cgno); ucg->cg_time = ufs_get_seconds(sb); if (count == uspi->s_fpb) { result = ufs_alloccg_block (inode, ucpi, goal, err); if (result == INVBLOCK) return 0; goto succed; } for (allocsize = count; allocsize < uspi->s_fpb; allocsize++) if (fs32_to_cpu(sb, ucg->cg_frsum[allocsize]) != 0) break; if (allocsize == uspi->s_fpb) { result = ufs_alloccg_block (inode, ucpi, goal, err); if (result == INVBLOCK) return 0; goal = ufs_dtogd(uspi, result); for (i = count; i < uspi->s_fpb; i++) ubh_setbit (UCPI_UBH(ucpi), ucpi->c_freeoff, goal + i); i = uspi->s_fpb - count; inode_sub_bytes(inode, i << uspi->s_fshift); fs32_add(sb, &ucg->cg_cs.cs_nffree, i); uspi->cs_total.cs_nffree += i; fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, i); fs32_add(sb, &ucg->cg_frsum[i], 1); goto succed; } result = ufs_bitmap_search (sb, ucpi, goal, allocsize); if (result == INVBLOCK) return 0; if (!try_add_frags(inode, count)) return 0; for (i = 0; i < count; i++) ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, result + i); fs32_sub(sb, &ucg->cg_cs.cs_nffree, count); uspi->cs_total.cs_nffree -= count; fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count); fs32_sub(sb, &ucg->cg_frsum[allocsize], 1); if (count != allocsize) fs32_add(sb, &ucg->cg_frsum[allocsize - count], 1); succed: ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & SB_SYNCHRONOUS) ubh_sync_block(UCPI_UBH(ucpi)); ufs_mark_sb_dirty(sb); result += cgno * uspi->s_fpg; UFSD("EXIT3, result %llu\n", (unsigned long long)result); return result; } static u64 ufs_alloccg_block(struct inode *inode, struct ufs_cg_private_info *ucpi, u64 goal, int *err) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_cylinder_group * ucg; u64 result, blkno; UFSD("ENTER, goal %llu\n", (unsigned long long)goal); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; ucg = ubh_get_ucg(UCPI_UBH(ucpi)); if (goal == 0) { goal = ucpi->c_rotor; goto norot; } goal = ufs_blknum (goal); goal = ufs_dtogd(uspi, goal); /* * If the requested block is available, use it. */ if (ubh_isblockset(UCPI_UBH(ucpi), ucpi->c_freeoff, ufs_fragstoblks(goal))) { result = goal; goto gotit; } norot: result = ufs_bitmap_search (sb, ucpi, goal, uspi->s_fpb); if (result == INVBLOCK) return INVBLOCK; ucpi->c_rotor = result; gotit: if (!try_add_frags(inode, uspi->s_fpb)) return 0; blkno = ufs_fragstoblks(result); ubh_clrblock (UCPI_UBH(ucpi), ucpi->c_freeoff, blkno); if ((UFS_SB(sb)->s_flags & UFS_CG_MASK) == UFS_CG_44BSD) ufs_clusteracct (sb, ucpi, blkno, -1); fs32_sub(sb, &ucg->cg_cs.cs_nbfree, 1); uspi->cs_total.cs_nbfree--; fs32_sub(sb, &UFS_SB(sb)->fs_cs(ucpi->c_cgx).cs_nbfree, 1); if (uspi->fs_magic != UFS2_MAGIC) { unsigned cylno = ufs_cbtocylno((unsigned)result); fs16_sub(sb, &ubh_cg_blks(ucpi, cylno, ufs_cbtorpos((unsigned)result)), 1); fs32_sub(sb, &ubh_cg_blktot(ucpi, cylno), 1); } UFSD("EXIT, result %llu\n", (unsigned long long)result); return result; } static unsigned ubh_scanc(struct ufs_sb_private_info *uspi, struct ufs_buffer_head *ubh, unsigned begin, unsigned size, unsigned char *table, unsigned char mask) { unsigned rest, offset; unsigned char *cp; offset = begin & ~uspi->s_fmask; begin >>= uspi->s_fshift; for (;;) { if ((offset + size) < uspi->s_fsize) rest = size; else rest = uspi->s_fsize - offset; size -= rest; cp = ubh->bh[begin]->b_data + offset; while ((table[*cp++] & mask) == 0 && --rest) ; if (rest || !size) break; begin++; offset = 0; } return (size + rest); } /* * Find a block of the specified size in the specified cylinder group. * @sp: pointer to super block * @ucpi: pointer to cylinder group info * @goal: near which block we want find new one * @count: specified size */ static u64 ufs_bitmap_search(struct super_block *sb, struct ufs_cg_private_info *ucpi, u64 goal, unsigned count) { /* * Bit patterns for identifying fragments in the block map * used as ((map & mask_arr) == want_arr) */ static const int mask_arr[9] = { 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff }; static const int want_arr[9] = { 0x0, 0x2, 0x6, 0xe, 0x1e, 0x3e, 0x7e, 0xfe, 0x1fe }; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned start, length, loc; unsigned pos, want, blockmap, mask, end; u64 result; UFSD("ENTER, cg %u, goal %llu, count %u\n", ucpi->c_cgx, (unsigned long long)goal, count); if (goal) start = ufs_dtogd(uspi, goal) >> 3; else start = ucpi->c_frotor >> 3; length = ((uspi->s_fpg + 7) >> 3) - start; loc = ubh_scanc(uspi, UCPI_UBH(ucpi), ucpi->c_freeoff + start, length, (uspi->s_fpb == 8) ? ufs_fragtable_8fpb : ufs_fragtable_other, 1 << (count - 1 + (uspi->s_fpb & 7))); if (loc == 0) { length = start + 1; loc = ubh_scanc(uspi, UCPI_UBH(ucpi), ucpi->c_freeoff, length, (uspi->s_fpb == 8) ? ufs_fragtable_8fpb : ufs_fragtable_other, 1 << (count - 1 + (uspi->s_fpb & 7))); if (loc == 0) { ufs_error(sb, "ufs_bitmap_search", "bitmap corrupted on cg %u, start %u," " length %u, count %u, freeoff %u\n", ucpi->c_cgx, start, length, count, ucpi->c_freeoff); return INVBLOCK; } start = 0; } result = (start + length - loc) << 3; ucpi->c_frotor = result; /* * found the byte in the map */ for (end = result + 8; result < end; result += uspi->s_fpb) { blockmap = ubh_blkmap(UCPI_UBH(ucpi), ucpi->c_freeoff, result); blockmap <<= 1; mask = mask_arr[count]; want = want_arr[count]; for (pos = 0; pos <= uspi->s_fpb - count; pos++) { if ((blockmap & mask) == want) { UFSD("EXIT, result %llu\n", (unsigned long long)result); return result + pos; } mask <<= 1; want <<= 1; } } ufs_error(sb, "ufs_bitmap_search", "block not in map on cg %u\n", ucpi->c_cgx); UFSD("EXIT (FAILED)\n"); return INVBLOCK; } static void ufs_clusteracct(struct super_block * sb, struct ufs_cg_private_info * ucpi, unsigned blkno, int cnt) { struct ufs_sb_private_info * uspi; int i, start, end, forw, back; uspi = UFS_SB(sb)->s_uspi; if (uspi->s_contigsumsize <= 0) return; if (cnt > 0) ubh_setbit(UCPI_UBH(ucpi), ucpi->c_clusteroff, blkno); else ubh_clrbit(UCPI_UBH(ucpi), ucpi->c_clusteroff, blkno); /* * Find the size of the cluster going forward. */ start = blkno + 1; end = start + uspi->s_contigsumsize; if ( end >= ucpi->c_nclusterblks) end = ucpi->c_nclusterblks; i = ubh_find_next_zero_bit (UCPI_UBH(ucpi), ucpi->c_clusteroff, end, start); if (i > end) i = end; forw = i - start; /* * Find the size of the cluster going backward. */ start = blkno - 1; end = start - uspi->s_contigsumsize; if (end < 0 ) end = -1; i = ubh_find_last_zero_bit (UCPI_UBH(ucpi), ucpi->c_clusteroff, start, end); if ( i < end) i = end; back = start - i; /* * Account for old cluster and the possibly new forward and * back clusters. */ i = back + forw + 1; if (i > uspi->s_contigsumsize) i = uspi->s_contigsumsize; fs32_add(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (i << 2)), cnt); if (back > 0) fs32_sub(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (back << 2)), cnt); if (forw > 0) fs32_sub(sb, (__fs32*)ubh_get_addr(UCPI_UBH(ucpi), ucpi->c_clustersumoff + (forw << 2)), cnt); } static unsigned char ufs_fragtable_8fpb[] = { 0x00, 0x01, 0x01, 0x02, 0x01, 0x01, 0x02, 0x04, 0x01, 0x01, 0x01, 0x03, 0x02, 0x03, 0x04, 0x08, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x02, 0x03, 0x03, 0x02, 0x04, 0x05, 0x08, 0x10, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09, 0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x04, 0x05, 0x05, 0x06, 0x08, 0x09, 0x10, 0x20, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x03, 0x03, 0x03, 0x03, 0x05, 0x05, 0x09, 0x11, 0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x03, 0x03, 0x03, 0x03, 0x02, 0x03, 0x06, 0x0A, 0x04, 0x05, 0x05, 0x06, 0x05, 0x05, 0x06, 0x04, 0x08, 0x09, 0x09, 0x0A, 0x10, 0x11, 0x20, 0x40, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x03, 0x03, 0x03, 0x03, 0x05, 0x05, 0x09, 0x11, 0x01, 0x01, 0x01, 0x03, 0x01, 0x01, 0x03, 0x05, 0x01, 0x01, 0x01, 0x03, 0x03, 0x03, 0x05, 0x09, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x07, 0x05, 0x05, 0x05, 0x07, 0x09, 0x09, 0x11, 0x21, 0x02, 0x03, 0x03, 0x02, 0x03, 0x03, 0x02, 0x06, 0x03, 0x03, 0x03, 0x03, 0x02, 0x03, 0x06, 0x0A, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x07, 0x02, 0x03, 0x03, 0x02, 0x06, 0x07, 0x0A, 0x12, 0x04, 0x05, 0x05, 0x06, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x05, 0x07, 0x06, 0x07, 0x04, 0x0C, 0x08, 0x09, 0x09, 0x0A, 0x09, 0x09, 0x0A, 0x0C, 0x10, 0x11, 0x11, 0x12, 0x20, 0x21, 0x40, 0x80, }; static unsigned char ufs_fragtable_other[] = { 0x00, 0x16, 0x16, 0x2A, 0x16, 0x16, 0x26, 0x4E, 0x16, 0x16, 0x16, 0x3E, 0x2A, 0x3E, 0x4E, 0x8A, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x2A, 0x3E, 0x3E, 0x2A, 0x3E, 0x3E, 0x2E, 0x6E, 0x3E, 0x3E, 0x3E, 0x3E, 0x2A, 0x3E, 0x6E, 0xAA, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x26, 0x36, 0x36, 0x2E, 0x36, 0x36, 0x26, 0x6E, 0x36, 0x36, 0x36, 0x3E, 0x2E, 0x3E, 0x6E, 0xAE, 0x4E, 0x5E, 0x5E, 0x6E, 0x5E, 0x5E, 0x6E, 0x4E, 0x5E, 0x5E, 0x5E, 0x7E, 0x6E, 0x7E, 0x4E, 0xCE, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x16, 0x16, 0x16, 0x3E, 0x16, 0x16, 0x36, 0x5E, 0x16, 0x16, 0x16, 0x3E, 0x3E, 0x3E, 0x5E, 0x9E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0xBE, 0x2A, 0x3E, 0x3E, 0x2A, 0x3E, 0x3E, 0x2E, 0x6E, 0x3E, 0x3E, 0x3E, 0x3E, 0x2A, 0x3E, 0x6E, 0xAA, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x3E, 0x7E, 0xBE, 0x4E, 0x5E, 0x5E, 0x6E, 0x5E, 0x5E, 0x6E, 0x4E, 0x5E, 0x5E, 0x5E, 0x7E, 0x6E, 0x7E, 0x4E, 0xCE, 0x8A, 0x9E, 0x9E, 0xAA, 0x9E, 0x9E, 0xAE, 0xCE, 0x9E, 0x9E, 0x9E, 0xBE, 0xAA, 0xBE, 0xCE, 0x8A, };