/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/time.h> #include <linux/fs.h> #include "reiserfs.h" #include <linux/string.h> #include <linux/buffer_head.h> #include <linux/stdarg.h> static char error_buf[1024]; static char fmt_buf[1024]; static char off_buf[80]; static char *reiserfs_cpu_offset(struct cpu_key *key) { if (cpu_key_k_type(key) == TYPE_DIRENTRY) sprintf(off_buf, "%llu(%llu)", (unsigned long long) GET_HASH_VALUE(cpu_key_k_offset(key)), (unsigned long long) GET_GENERATION_NUMBER(cpu_key_k_offset(key))); else sprintf(off_buf, "0x%Lx", (unsigned long long)cpu_key_k_offset(key)); return off_buf; } static char *le_offset(struct reiserfs_key *key) { int version; version = le_key_version(key); if (le_key_k_type(version, key) == TYPE_DIRENTRY) sprintf(off_buf, "%llu(%llu)", (unsigned long long) GET_HASH_VALUE(le_key_k_offset(version, key)), (unsigned long long) GET_GENERATION_NUMBER(le_key_k_offset(version, key))); else sprintf(off_buf, "0x%Lx", (unsigned long long)le_key_k_offset(version, key)); return off_buf; } static char *cpu_type(struct cpu_key *key) { if (cpu_key_k_type(key) == TYPE_STAT_DATA) return "SD"; if (cpu_key_k_type(key) == TYPE_DIRENTRY) return "DIR"; if (cpu_key_k_type(key) == TYPE_DIRECT) return "DIRECT"; if (cpu_key_k_type(key) == TYPE_INDIRECT) return "IND"; return "UNKNOWN"; } static char *le_type(struct reiserfs_key *key) { int version; version = le_key_version(key); if (le_key_k_type(version, key) == TYPE_STAT_DATA) return "SD"; if (le_key_k_type(version, key) == TYPE_DIRENTRY) return "DIR"; if (le_key_k_type(version, key) == TYPE_DIRECT) return "DIRECT"; if (le_key_k_type(version, key) == TYPE_INDIRECT) return "IND"; return "UNKNOWN"; } /* %k */ static int scnprintf_le_key(char *buf, size_t size, struct reiserfs_key *key) { if (key) return scnprintf(buf, size, "[%d %d %s %s]", le32_to_cpu(key->k_dir_id), le32_to_cpu(key->k_objectid), le_offset(key), le_type(key)); else return scnprintf(buf, size, "[NULL]"); } /* %K */ static int scnprintf_cpu_key(char *buf, size_t size, struct cpu_key *key) { if (key) return scnprintf(buf, size, "[%d %d %s %s]", key->on_disk_key.k_dir_id, key->on_disk_key.k_objectid, reiserfs_cpu_offset(key), cpu_type(key)); else return scnprintf(buf, size, "[NULL]"); } static int scnprintf_de_head(char *buf, size_t size, struct reiserfs_de_head *deh) { if (deh) return scnprintf(buf, size, "[offset=%d dir_id=%d objectid=%d location=%d state=%04x]", deh_offset(deh), deh_dir_id(deh), deh_objectid(deh), deh_location(deh), deh_state(deh)); else return scnprintf(buf, size, "[NULL]"); } static int scnprintf_item_head(char *buf, size_t size, struct item_head *ih) { if (ih) { char *p = buf; char * const end = buf + size; p += scnprintf(p, end - p, "%s", (ih_version(ih) == KEY_FORMAT_3_6) ? "*3.6* " : "*3.5*"); p += scnprintf_le_key(p, end - p, &ih->ih_key); p += scnprintf(p, end - p, ", item_len %d, item_location %d, free_space(entry_count) %d", ih_item_len(ih), ih_location(ih), ih_free_space(ih)); return p - buf; } else return scnprintf(buf, size, "[NULL]"); } static int scnprintf_direntry(char *buf, size_t size, struct reiserfs_dir_entry *de) { char name[20]; memcpy(name, de->de_name, de->de_namelen > 19 ? 19 : de->de_namelen); name[de->de_namelen > 19 ? 19 : de->de_namelen] = 0; return scnprintf(buf, size, "\"%s\"==>[%d %d]", name, de->de_dir_id, de->de_objectid); } static int scnprintf_block_head(char *buf, size_t size, struct buffer_head *bh) { return scnprintf(buf, size, "level=%d, nr_items=%d, free_space=%d rdkey ", B_LEVEL(bh), B_NR_ITEMS(bh), B_FREE_SPACE(bh)); } static int scnprintf_buffer_head(char *buf, size_t size, struct buffer_head *bh) { return scnprintf(buf, size, "dev %pg, size %zd, blocknr %llu, count %d, state 0x%lx, page %p, (%s, %s, %s)", bh->b_bdev, bh->b_size, (unsigned long long)bh->b_blocknr, atomic_read(&(bh->b_count)), bh->b_state, bh->b_page, buffer_uptodate(bh) ? "UPTODATE" : "!UPTODATE", buffer_dirty(bh) ? "DIRTY" : "CLEAN", buffer_locked(bh) ? "LOCKED" : "UNLOCKED"); } static int scnprintf_disk_child(char *buf, size_t size, struct disk_child *dc) { return scnprintf(buf, size, "[dc_number=%d, dc_size=%u]", dc_block_number(dc), dc_size(dc)); } static char *is_there_reiserfs_struct(char *fmt, int *what) { char *k = fmt; while ((k = strchr(k, '%')) != NULL) { if (k[1] == 'k' || k[1] == 'K' || k[1] == 'h' || k[1] == 't' || k[1] == 'z' || k[1] == 'b' || k[1] == 'y' || k[1] == 'a') { *what = k[1]; break; } k++; } return k; } /* * debugging reiserfs we used to print out a lot of different * variables, like keys, item headers, buffer heads etc. Values of * most fields matter. So it took a long time just to write * appropriative printk. With this reiserfs_warning you can use format * specification for complex structures like you used to do with * printfs for integers, doubles and pointers. For instance, to print * out key structure you have to write just: * reiserfs_warning ("bad key %k", key); * instead of * printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid, * key->k_offset, key->k_uniqueness); */ static DEFINE_SPINLOCK(error_lock); static void prepare_error_buf(const char *fmt, va_list args) { char *fmt1 = fmt_buf; char *k; char *p = error_buf; char * const end = &error_buf[sizeof(error_buf)]; int what; spin_lock(&error_lock); if (WARN_ON(strscpy(fmt_buf, fmt, sizeof(fmt_buf)) < 0)) { strscpy(error_buf, "format string too long", end - error_buf); goto out_unlock; } while ((k = is_there_reiserfs_struct(fmt1, &what)) != NULL) { *k = 0; p += vscnprintf(p, end - p, fmt1, args); switch (what) { case 'k': p += scnprintf_le_key(p, end - p, va_arg(args, struct reiserfs_key *)); break; case 'K': p += scnprintf_cpu_key(p, end - p, va_arg(args, struct cpu_key *)); break; case 'h': p += scnprintf_item_head(p, end - p, va_arg(args, struct item_head *)); break; case 't': p += scnprintf_direntry(p, end - p, va_arg(args, struct reiserfs_dir_entry *)); break; case 'y': p += scnprintf_disk_child(p, end - p, va_arg(args, struct disk_child *)); break; case 'z': p += scnprintf_block_head(p, end - p, va_arg(args, struct buffer_head *)); break; case 'b': p += scnprintf_buffer_head(p, end - p, va_arg(args, struct buffer_head *)); break; case 'a': p += scnprintf_de_head(p, end - p, va_arg(args, struct reiserfs_de_head *)); break; } fmt1 = k + 2; } p += vscnprintf(p, end - p, fmt1, args); out_unlock: spin_unlock(&error_lock); } /* * in addition to usual conversion specifiers this accepts reiserfs * specific conversion specifiers: * %k to print little endian key, * %K to print cpu key, * %h to print item_head, * %t to print directory entry * %z to print block head (arg must be struct buffer_head * * %b to print buffer_head */ #define do_reiserfs_warning(fmt)\ {\ va_list args;\ va_start( args, fmt );\ prepare_error_buf( fmt, args );\ va_end( args );\ } void __reiserfs_warning(struct super_block *sb, const char *id, const char *function, const char *fmt, ...) { do_reiserfs_warning(fmt); if (sb) printk(KERN_WARNING "REISERFS warning (device %s): %s%s%s: " "%s\n", sb->s_id, id ? id : "", id ? " " : "", function, error_buf); else printk(KERN_WARNING "REISERFS warning: %s%s%s: %s\n", id ? id : "", id ? " " : "", function, error_buf); } /* No newline.. reiserfs_info calls can be followed by printk's */ void reiserfs_info(struct super_block *sb, const char *fmt, ...) { do_reiserfs_warning(fmt); if (sb) printk(KERN_NOTICE "REISERFS (device %s): %s", sb->s_id, error_buf); else printk(KERN_NOTICE "REISERFS %s:", error_buf); } /* No newline.. reiserfs_printk calls can be followed by printk's */ static void reiserfs_printk(const char *fmt, ...) { do_reiserfs_warning(fmt); printk(error_buf); } void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...) { #ifdef CONFIG_REISERFS_CHECK do_reiserfs_warning(fmt); if (s) printk(KERN_DEBUG "REISERFS debug (device %s): %s\n", s->s_id, error_buf); else printk(KERN_DEBUG "REISERFS debug: %s\n", error_buf); #endif } /* * The format: * * maintainer-errorid: [function-name:] message * * where errorid is unique to the maintainer and function-name is * optional, is recommended, so that anyone can easily find the bug * with a simple grep for the short to type string * maintainer-errorid. Don't bother with reusing errorids, there are * lots of numbers out there. * * Example: * * reiserfs_panic( * p_sb, "reiser-29: reiserfs_new_blocknrs: " * "one of search_start or rn(%d) is equal to MAX_B_NUM," * "which means that we are optimizing location based on the " * "bogus location of a temp buffer (%p).", * rn, bh * ); * * Regular panic()s sometimes clear the screen before the message can * be read, thus the need for the while loop. * * Numbering scheme for panic used by Vladimir and Anatoly( Hans completely * ignores this scheme, and considers it pointless complexity): * * panics in reiserfs_fs.h have numbers from 1000 to 1999 * super.c 2000 to 2999 * preserve.c (unused) 3000 to 3999 * bitmap.c 4000 to 4999 * stree.c 5000 to 5999 * prints.c 6000 to 6999 * namei.c 7000 to 7999 * fix_nodes.c 8000 to 8999 * dir.c 9000 to 9999 * lbalance.c 10000 to 10999 * ibalance.c 11000 to 11999 not ready * do_balan.c 12000 to 12999 * inode.c 13000 to 13999 * file.c 14000 to 14999 * objectid.c 15000 - 15999 * buffer.c 16000 - 16999 * symlink.c 17000 - 17999 * * . */ void __reiserfs_panic(struct super_block *sb, const char *id, const char *function, const char *fmt, ...) { do_reiserfs_warning(fmt); #ifdef CONFIG_REISERFS_CHECK dump_stack(); #endif if (sb) printk(KERN_WARNING "REISERFS panic (device %s): %s%s%s: %s\n", sb->s_id, id ? id : "", id ? " " : "", function, error_buf); else printk(KERN_WARNING "REISERFS panic: %s%s%s: %s\n", id ? id : "", id ? " " : "", function, error_buf); BUG(); } void __reiserfs_error(struct super_block *sb, const char *id, const char *function, const char *fmt, ...) { do_reiserfs_warning(fmt); BUG_ON(sb == NULL); if (reiserfs_error_panic(sb)) __reiserfs_panic(sb, id, function, error_buf); if (id && id[0]) printk(KERN_CRIT "REISERFS error (device %s): %s %s: %s\n", sb->s_id, id, function, error_buf); else printk(KERN_CRIT "REISERFS error (device %s): %s: %s\n", sb->s_id, function, error_buf); if (sb_rdonly(sb)) return; reiserfs_info(sb, "Remounting filesystem read-only\n"); sb->s_flags |= SB_RDONLY; reiserfs_abort_journal(sb, -EIO); } void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...) { do_reiserfs_warning(fmt); if (reiserfs_error_panic(sb)) { panic(KERN_CRIT "REISERFS panic (device %s): %s\n", sb->s_id, error_buf); } if (reiserfs_is_journal_aborted(SB_JOURNAL(sb))) return; printk(KERN_CRIT "REISERFS abort (device %s): %s\n", sb->s_id, error_buf); sb->s_flags |= SB_RDONLY; reiserfs_abort_journal(sb, errno); } /* * this prints internal nodes (4 keys/items in line) (dc_number, * dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number, * dc_size)... */ static int print_internal(struct buffer_head *bh, int first, int last) { struct reiserfs_key *key; struct disk_child *dc; int i; int from, to; if (!B_IS_KEYS_LEVEL(bh)) return 1; check_internal(bh); if (first == -1) { from = 0; to = B_NR_ITEMS(bh); } else { from = first; to = min_t(int, last, B_NR_ITEMS(bh)); } reiserfs_printk("INTERNAL NODE (%ld) contains %z\n", bh->b_blocknr, bh); dc = B_N_CHILD(bh, from); reiserfs_printk("PTR %d: %y ", from, dc); for (i = from, key = internal_key(bh, from), dc++; i < to; i++, key++, dc++) { reiserfs_printk("KEY %d: %k PTR %d: %y ", i, key, i + 1, dc); if (i && i % 4 == 0) printk("\n"); } printk("\n"); return 0; } static int print_leaf(struct buffer_head *bh, int print_mode, int first, int last) { struct block_head *blkh; struct item_head *ih; int i, nr; int from, to; if (!B_IS_ITEMS_LEVEL(bh)) return 1; check_leaf(bh); blkh = B_BLK_HEAD(bh); ih = item_head(bh, 0); nr = blkh_nr_item(blkh); printk ("\n===================================================================\n"); reiserfs_printk("LEAF NODE (%ld) contains %z\n", bh->b_blocknr, bh); if (!(print_mode & PRINT_LEAF_ITEMS)) { reiserfs_printk("FIRST ITEM_KEY: %k, LAST ITEM KEY: %k\n", &(ih->ih_key), &((ih + nr - 1)->ih_key)); return 0; } if (first < 0 || first > nr - 1) from = 0; else from = first; if (last < 0 || last > nr) to = nr; else to = last; ih += from; printk ("-------------------------------------------------------------------------------\n"); printk ("|##| type | key | ilen | free_space | version | loc |\n"); for (i = from; i < to; i++, ih++) { printk ("-------------------------------------------------------------------------------\n"); reiserfs_printk("|%2d| %h |\n", i, ih); if (print_mode & PRINT_LEAF_ITEMS) op_print_item(ih, ih_item_body(bh, ih)); } printk ("===================================================================\n"); return 0; } char *reiserfs_hashname(int code) { if (code == YURA_HASH) return "rupasov"; if (code == TEA_HASH) return "tea"; if (code == R5_HASH) return "r5"; return "unknown"; } /* return 1 if this is not super block */ static int print_super_block(struct buffer_head *bh) { struct reiserfs_super_block *rs = (struct reiserfs_super_block *)(bh->b_data); int skipped, data_blocks; char *version; if (is_reiserfs_3_5(rs)) { version = "3.5"; } else if (is_reiserfs_3_6(rs)) { version = "3.6"; } else if (is_reiserfs_jr(rs)) { version = ((sb_version(rs) == REISERFS_VERSION_2) ? "3.6" : "3.5"); } else { return 1; } printk("%pg\'s super block is in block %llu\n", bh->b_bdev, (unsigned long long)bh->b_blocknr); printk("Reiserfs version %s\n", version); printk("Block count %u\n", sb_block_count(rs)); printk("Blocksize %d\n", sb_blocksize(rs)); printk("Free blocks %u\n", sb_free_blocks(rs)); /* * FIXME: this would be confusing if * someone stores reiserfs super block in some data block ;) // skipped = (bh->b_blocknr * bh->b_size) / sb_blocksize(rs); */ skipped = bh->b_blocknr; data_blocks = sb_block_count(rs) - skipped - 1 - sb_bmap_nr(rs) - (!is_reiserfs_jr(rs) ? sb_jp_journal_size(rs) + 1 : sb_reserved_for_journal(rs)) - sb_free_blocks(rs); printk ("Busy blocks (skipped %d, bitmaps - %d, journal (or reserved) blocks - %d\n" "1 super block, %d data blocks\n", skipped, sb_bmap_nr(rs), (!is_reiserfs_jr(rs) ? (sb_jp_journal_size(rs) + 1) : sb_reserved_for_journal(rs)), data_blocks); printk("Root block %u\n", sb_root_block(rs)); printk("Journal block (first) %d\n", sb_jp_journal_1st_block(rs)); printk("Journal dev %d\n", sb_jp_journal_dev(rs)); printk("Journal orig size %d\n", sb_jp_journal_size(rs)); printk("FS state %d\n", sb_fs_state(rs)); printk("Hash function \"%s\"\n", reiserfs_hashname(sb_hash_function_code(rs))); printk("Tree height %d\n", sb_tree_height(rs)); return 0; } static int print_desc_block(struct buffer_head *bh) { struct reiserfs_journal_desc *desc; if (memcmp(get_journal_desc_magic(bh), JOURNAL_DESC_MAGIC, 8)) return 1; desc = (struct reiserfs_journal_desc *)(bh->b_data); printk("Desc block %llu (j_trans_id %d, j_mount_id %d, j_len %d)", (unsigned long long)bh->b_blocknr, get_desc_trans_id(desc), get_desc_mount_id(desc), get_desc_trans_len(desc)); return 0; } /* ..., int print_mode, int first, int last) */ void print_block(struct buffer_head *bh, ...) { va_list args; int mode, first, last; if (!bh) { printk("print_block: buffer is NULL\n"); return; } va_start(args, bh); mode = va_arg(args, int); first = va_arg(args, int); last = va_arg(args, int); if (print_leaf(bh, mode, first, last)) if (print_internal(bh, first, last)) if (print_super_block(bh)) if (print_desc_block(bh)) printk ("Block %llu contains unformatted data\n", (unsigned long long)bh->b_blocknr); va_end(args); } static char print_tb_buf[2048]; /* this stores initial state of tree balance in the print_tb_buf */ void store_print_tb(struct tree_balance *tb) { int h = 0; int i; struct buffer_head *tbSh, *tbFh; if (!tb) return; sprintf(print_tb_buf, "\n" "BALANCING %d\n" "MODE=%c, ITEM_POS=%d POS_IN_ITEM=%d\n" "=====================================================================\n" "* h * S * L * R * F * FL * FR * CFL * CFR *\n", REISERFS_SB(tb->tb_sb)->s_do_balance, tb->tb_mode, PATH_LAST_POSITION(tb->tb_path), tb->tb_path->pos_in_item); for (h = 0; h < ARRAY_SIZE(tb->insert_size); h++) { if (PATH_H_PATH_OFFSET(tb->tb_path, h) <= tb->tb_path->path_length && PATH_H_PATH_OFFSET(tb->tb_path, h) > ILLEGAL_PATH_ELEMENT_OFFSET) { tbSh = PATH_H_PBUFFER(tb->tb_path, h); tbFh = PATH_H_PPARENT(tb->tb_path, h); } else { tbSh = NULL; tbFh = NULL; } sprintf(print_tb_buf + strlen(print_tb_buf), "* %d * %3lld(%2d) * %3lld(%2d) * %3lld(%2d) * %5lld * %5lld * %5lld * %5lld * %5lld *\n", h, (tbSh) ? (long long)(tbSh->b_blocknr) : (-1LL), (tbSh) ? atomic_read(&tbSh->b_count) : -1, (tb->L[h]) ? (long long)(tb->L[h]->b_blocknr) : (-1LL), (tb->L[h]) ? atomic_read(&tb->L[h]->b_count) : -1, (tb->R[h]) ? (long long)(tb->R[h]->b_blocknr) : (-1LL), (tb->R[h]) ? atomic_read(&tb->R[h]->b_count) : -1, (tbFh) ? (long long)(tbFh->b_blocknr) : (-1LL), (tb->FL[h]) ? (long long)(tb->FL[h]-> b_blocknr) : (-1LL), (tb->FR[h]) ? (long long)(tb->FR[h]-> b_blocknr) : (-1LL), (tb->CFL[h]) ? (long long)(tb->CFL[h]-> b_blocknr) : (-1LL), (tb->CFR[h]) ? (long long)(tb->CFR[h]-> b_blocknr) : (-1LL)); } sprintf(print_tb_buf + strlen(print_tb_buf), "=====================================================================\n" "* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n" "* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n", tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0], tb->rbytes, tb->blknum[0], tb->s0num, tb->snum[0], tb->sbytes[0], tb->snum[1], tb->sbytes[1], tb->cur_blknum, tb->lkey[0], tb->rkey[0]); /* this prints balance parameters for non-leaf levels */ h = 0; do { h++; sprintf(print_tb_buf + strlen(print_tb_buf), "* %d * %4d * %2d * * %2d * * %2d *\n", h, tb->insert_size[h], tb->lnum[h], tb->rnum[h], tb->blknum[h]); } while (tb->insert_size[h]); sprintf(print_tb_buf + strlen(print_tb_buf), "=====================================================================\n" "FEB list: "); /* print FEB list (list of buffers in form (bh (b_blocknr, b_count), that will be used for new nodes) */ h = 0; for (i = 0; i < ARRAY_SIZE(tb->FEB); i++) sprintf(print_tb_buf + strlen(print_tb_buf), "%p (%llu %d)%s", tb->FEB[i], tb->FEB[i] ? (unsigned long long)tb->FEB[i]-> b_blocknr : 0ULL, tb->FEB[i] ? atomic_read(&tb->FEB[i]->b_count) : 0, (i == ARRAY_SIZE(tb->FEB) - 1) ? "\n" : ", "); sprintf(print_tb_buf + strlen(print_tb_buf), "======================== the end ====================================\n"); } void print_cur_tb(char *mes) { printk("%s\n%s", mes, print_tb_buf); } static void check_leaf_block_head(struct buffer_head *bh) { struct block_head *blkh; int nr; blkh = B_BLK_HEAD(bh); nr = blkh_nr_item(blkh); if (nr > (bh->b_size - BLKH_SIZE) / IH_SIZE) reiserfs_panic(NULL, "vs-6010", "invalid item number %z", bh); if (blkh_free_space(blkh) > bh->b_size - BLKH_SIZE - IH_SIZE * nr) reiserfs_panic(NULL, "vs-6020", "invalid free space %z", bh); } static void check_internal_block_head(struct buffer_head *bh) { if (!(B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL && B_LEVEL(bh) <= MAX_HEIGHT)) reiserfs_panic(NULL, "vs-6025", "invalid level %z", bh); if (B_NR_ITEMS(bh) > (bh->b_size - BLKH_SIZE) / IH_SIZE) reiserfs_panic(NULL, "vs-6030", "invalid item number %z", bh); if (B_FREE_SPACE(bh) != bh->b_size - BLKH_SIZE - KEY_SIZE * B_NR_ITEMS(bh) - DC_SIZE * (B_NR_ITEMS(bh) + 1)) reiserfs_panic(NULL, "vs-6040", "invalid free space %z", bh); } void check_leaf(struct buffer_head *bh) { int i; struct item_head *ih; if (!bh) return; check_leaf_block_head(bh); for (i = 0, ih = item_head(bh, 0); i < B_NR_ITEMS(bh); i++, ih++) op_check_item(ih, ih_item_body(bh, ih)); } void check_internal(struct buffer_head *bh) { if (!bh) return; check_internal_block_head(bh); } void print_statistics(struct super_block *s) { /* printk ("reiserfs_put_super: session statistics: balances %d, fix_nodes %d, \ bmap with search %d, without %d, dir2ind %d, ind2dir %d\n", REISERFS_SB(s)->s_do_balance, REISERFS_SB(s)->s_fix_nodes, REISERFS_SB(s)->s_bmaps, REISERFS_SB(s)->s_bmaps_without_search, REISERFS_SB(s)->s_direct2indirect, REISERFS_SB(s)->s_indirect2direct); */ }