/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/time.h> #include <linux/reiserfs_fs.h> // this contains item handlers for old item types: sd, direct, // indirect, directory /* and where are the comments? how about saying where we can find an explanation of each item handler method? -Hans */ ////////////////////////////////////////////////////////////////////////////// // stat data functions // static int sd_bytes_number(struct item_head *ih, int block_size) { return 0; } static void sd_decrement_key(struct cpu_key *key) { key->on_disk_key.k_objectid--; set_cpu_key_k_type(key, TYPE_ANY); set_cpu_key_k_offset(key, (loff_t) (-1)); } static int sd_is_left_mergeable(struct reiserfs_key *key, unsigned long bsize) { return 0; } static char *print_time(time_t t) { static char timebuf[256]; sprintf(timebuf, "%ld", t); return timebuf; } static void sd_print_item(struct item_head *ih, char *item) { printk("\tmode | size | nlinks | first direct | mtime\n"); if (stat_data_v1(ih)) { struct stat_data_v1 *sd = (struct stat_data_v1 *)item; printk("\t0%-6o | %6u | %2u | %d | %s\n", sd_v1_mode(sd), sd_v1_size(sd), sd_v1_nlink(sd), sd_v1_first_direct_byte(sd), print_time(sd_v1_mtime(sd))); } else { struct stat_data *sd = (struct stat_data *)item; printk("\t0%-6o | %6Lu | %2u | %d | %s\n", sd_v2_mode(sd), (unsigned long long)sd_v2_size(sd), sd_v2_nlink(sd), sd_v2_rdev(sd), print_time(sd_v2_mtime(sd))); } } static void sd_check_item(struct item_head *ih, char *item) { // FIXME: type something here! } static int sd_create_vi(struct virtual_node *vn, struct virtual_item *vi, int is_affected, int insert_size) { vi->vi_index = TYPE_STAT_DATA; //vi->vi_type |= VI_TYPE_STAT_DATA;// not needed? return 0; } static int sd_check_left(struct virtual_item *vi, int free, int start_skip, int end_skip) { BUG_ON(start_skip || end_skip); return -1; } static int sd_check_right(struct virtual_item *vi, int free) { return -1; } static int sd_part_size(struct virtual_item *vi, int first, int count) { BUG_ON(count); return 0; } static int sd_unit_num(struct virtual_item *vi) { return vi->vi_item_len - IH_SIZE; } static void sd_print_vi(struct virtual_item *vi) { reiserfs_warning(NULL, "STATDATA, index %d, type 0x%x, %h", vi->vi_index, vi->vi_type, vi->vi_ih); } static struct item_operations stat_data_ops = { .bytes_number = sd_bytes_number, .decrement_key = sd_decrement_key, .is_left_mergeable = sd_is_left_mergeable, .print_item = sd_print_item, .check_item = sd_check_item, .create_vi = sd_create_vi, .check_left = sd_check_left, .check_right = sd_check_right, .part_size = sd_part_size, .unit_num = sd_unit_num, .print_vi = sd_print_vi }; ////////////////////////////////////////////////////////////////////////////// // direct item functions // static int direct_bytes_number(struct item_head *ih, int block_size) { return ih_item_len(ih); } // FIXME: this should probably switch to indirect as well static void direct_decrement_key(struct cpu_key *key) { cpu_key_k_offset_dec(key); if (cpu_key_k_offset(key) == 0) set_cpu_key_k_type(key, TYPE_STAT_DATA); } static int direct_is_left_mergeable(struct reiserfs_key *key, unsigned long bsize) { int version = le_key_version(key); return ((le_key_k_offset(version, key) & (bsize - 1)) != 1); } static void direct_print_item(struct item_head *ih, char *item) { int j = 0; // return; printk("\""); while (j < ih_item_len(ih)) printk("%c", item[j++]); printk("\"\n"); } static void direct_check_item(struct item_head *ih, char *item) { // FIXME: type something here! } static int direct_create_vi(struct virtual_node *vn, struct virtual_item *vi, int is_affected, int insert_size) { vi->vi_index = TYPE_DIRECT; //vi->vi_type |= VI_TYPE_DIRECT; return 0; } static int direct_check_left(struct virtual_item *vi, int free, int start_skip, int end_skip) { int bytes; bytes = free - free % 8; return bytes ? : -1; } static int direct_check_right(struct virtual_item *vi, int free) { return direct_check_left(vi, free, 0, 0); } static int direct_part_size(struct virtual_item *vi, int first, int count) { return count; } static int direct_unit_num(struct virtual_item *vi) { return vi->vi_item_len - IH_SIZE; } static void direct_print_vi(struct virtual_item *vi) { reiserfs_warning(NULL, "DIRECT, index %d, type 0x%x, %h", vi->vi_index, vi->vi_type, vi->vi_ih); } static struct item_operations direct_ops = { .bytes_number = direct_bytes_number, .decrement_key = direct_decrement_key, .is_left_mergeable = direct_is_left_mergeable, .print_item = direct_print_item, .check_item = direct_check_item, .create_vi = direct_create_vi, .check_left = direct_check_left, .check_right = direct_check_right, .part_size = direct_part_size, .unit_num = direct_unit_num, .print_vi = direct_print_vi }; ////////////////////////////////////////////////////////////////////////////// // indirect item functions // static int indirect_bytes_number(struct item_head *ih, int block_size) { return ih_item_len(ih) / UNFM_P_SIZE * block_size; //- get_ih_free_space (ih); } // decrease offset, if it becomes 0, change type to stat data static void indirect_decrement_key(struct cpu_key *key) { cpu_key_k_offset_dec(key); if (cpu_key_k_offset(key) == 0) set_cpu_key_k_type(key, TYPE_STAT_DATA); } // if it is not first item of the body, then it is mergeable static int indirect_is_left_mergeable(struct reiserfs_key *key, unsigned long bsize) { int version = le_key_version(key); return (le_key_k_offset(version, key) != 1); } // printing of indirect item static void start_new_sequence(__u32 * start, int *len, __u32 new) { *start = new; *len = 1; } static int sequence_finished(__u32 start, int *len, __u32 new) { if (start == INT_MAX) return 1; if (start == 0 && new == 0) { (*len)++; return 0; } if (start != 0 && (start + *len) == new) { (*len)++; return 0; } return 1; } static void print_sequence(__u32 start, int len) { if (start == INT_MAX) return; if (len == 1) printk(" %d", start); else printk(" %d(%d)", start, len); } static void indirect_print_item(struct item_head *ih, char *item) { int j; __le32 *unp; __u32 prev = INT_MAX; int num = 0; unp = (__le32 *) item; if (ih_item_len(ih) % UNFM_P_SIZE) reiserfs_warning(NULL, "indirect_print_item: invalid item len"); printk("%d pointers\n[ ", (int)I_UNFM_NUM(ih)); for (j = 0; j < I_UNFM_NUM(ih); j++) { if (sequence_finished(prev, &num, get_block_num(unp, j))) { print_sequence(prev, num); start_new_sequence(&prev, &num, get_block_num(unp, j)); } } print_sequence(prev, num); printk("]\n"); } static void indirect_check_item(struct item_head *ih, char *item) { // FIXME: type something here! } static int indirect_create_vi(struct virtual_node *vn, struct virtual_item *vi, int is_affected, int insert_size) { vi->vi_index = TYPE_INDIRECT; //vi->vi_type |= VI_TYPE_INDIRECT; return 0; } static int indirect_check_left(struct virtual_item *vi, int free, int start_skip, int end_skip) { int bytes; bytes = free - free % UNFM_P_SIZE; return bytes ? : -1; } static int indirect_check_right(struct virtual_item *vi, int free) { return indirect_check_left(vi, free, 0, 0); } // return size in bytes of 'units' units. If first == 0 - calculate from the head (left), otherwise - from tail (right) static int indirect_part_size(struct virtual_item *vi, int first, int units) { // unit of indirect item is byte (yet) return units; } static int indirect_unit_num(struct virtual_item *vi) { // unit of indirect item is byte (yet) return vi->vi_item_len - IH_SIZE; } static void indirect_print_vi(struct virtual_item *vi) { reiserfs_warning(NULL, "INDIRECT, index %d, type 0x%x, %h", vi->vi_index, vi->vi_type, vi->vi_ih); } static struct item_operations indirect_ops = { .bytes_number = indirect_bytes_number, .decrement_key = indirect_decrement_key, .is_left_mergeable = indirect_is_left_mergeable, .print_item = indirect_print_item, .check_item = indirect_check_item, .create_vi = indirect_create_vi, .check_left = indirect_check_left, .check_right = indirect_check_right, .part_size = indirect_part_size, .unit_num = indirect_unit_num, .print_vi = indirect_print_vi }; ////////////////////////////////////////////////////////////////////////////// // direntry functions // static int direntry_bytes_number(struct item_head *ih, int block_size) { reiserfs_warning(NULL, "vs-16090: direntry_bytes_number: " "bytes number is asked for direntry"); return 0; } static void direntry_decrement_key(struct cpu_key *key) { cpu_key_k_offset_dec(key); if (cpu_key_k_offset(key) == 0) set_cpu_key_k_type(key, TYPE_STAT_DATA); } static int direntry_is_left_mergeable(struct reiserfs_key *key, unsigned long bsize) { if (le32_to_cpu(key->u.k_offset_v1.k_offset) == DOT_OFFSET) return 0; return 1; } static void direntry_print_item(struct item_head *ih, char *item) { int i; int namelen; struct reiserfs_de_head *deh; char *name; static char namebuf[80]; printk("\n # %-15s%-30s%-15s%-15s%-15s\n", "Name", "Key of pointed object", "Hash", "Gen number", "Status"); deh = (struct reiserfs_de_head *)item; for (i = 0; i < I_ENTRY_COUNT(ih); i++, deh++) { namelen = (i ? (deh_location(deh - 1)) : ih_item_len(ih)) - deh_location(deh); name = item + deh_location(deh); if (name[namelen - 1] == 0) namelen = strlen(name); namebuf[0] = '"'; if (namelen > sizeof(namebuf) - 3) { strncpy(namebuf + 1, name, sizeof(namebuf) - 3); namebuf[sizeof(namebuf) - 2] = '"'; namebuf[sizeof(namebuf) - 1] = 0; } else { memcpy(namebuf + 1, name, namelen); namebuf[namelen + 1] = '"'; namebuf[namelen + 2] = 0; } printk("%d: %-15s%-15d%-15d%-15Ld%-15Ld(%s)\n", i, namebuf, deh_dir_id(deh), deh_objectid(deh), GET_HASH_VALUE(deh_offset(deh)), GET_GENERATION_NUMBER((deh_offset(deh))), (de_hidden(deh)) ? "HIDDEN" : "VISIBLE"); } } static void direntry_check_item(struct item_head *ih, char *item) { int i; struct reiserfs_de_head *deh; // FIXME: type something here! deh = (struct reiserfs_de_head *)item; for (i = 0; i < I_ENTRY_COUNT(ih); i++, deh++) { ; } } #define DIRENTRY_VI_FIRST_DIRENTRY_ITEM 1 /* * function returns old entry number in directory item in real node * using new entry number in virtual item in virtual node */ static inline int old_entry_num(int is_affected, int virtual_entry_num, int pos_in_item, int mode) { if (mode == M_INSERT || mode == M_DELETE) return virtual_entry_num; if (!is_affected) /* cut or paste is applied to another item */ return virtual_entry_num; if (virtual_entry_num < pos_in_item) return virtual_entry_num; if (mode == M_CUT) return virtual_entry_num + 1; RFALSE(mode != M_PASTE || virtual_entry_num == 0, "vs-8015: old_entry_num: mode must be M_PASTE (mode = \'%c\'", mode); return virtual_entry_num - 1; } /* Create an array of sizes of directory entries for virtual item. Return space used by an item. FIXME: no control over consuming of space used by this item handler */ static int direntry_create_vi(struct virtual_node *vn, struct virtual_item *vi, int is_affected, int insert_size) { struct direntry_uarea *dir_u = vi->vi_uarea; int i, j; int size = sizeof(struct direntry_uarea); struct reiserfs_de_head *deh; vi->vi_index = TYPE_DIRENTRY; BUG_ON(!(vi->vi_ih) || !vi->vi_item); dir_u->flags = 0; if (le_ih_k_offset(vi->vi_ih) == DOT_OFFSET) dir_u->flags |= DIRENTRY_VI_FIRST_DIRENTRY_ITEM; deh = (struct reiserfs_de_head *)(vi->vi_item); /* virtual directory item have this amount of entry after */ dir_u->entry_count = ih_entry_count(vi->vi_ih) + ((is_affected) ? ((vn->vn_mode == M_CUT) ? -1 : (vn->vn_mode == M_PASTE ? 1 : 0)) : 0); for (i = 0; i < dir_u->entry_count; i++) { j = old_entry_num(is_affected, i, vn->vn_pos_in_item, vn->vn_mode); dir_u->entry_sizes[i] = (j ? deh_location(&(deh[j - 1])) : ih_item_len(vi->vi_ih)) - deh_location(&(deh[j])) + DEH_SIZE; } size += (dir_u->entry_count * sizeof(short)); /* set size of pasted entry */ if (is_affected && vn->vn_mode == M_PASTE) dir_u->entry_sizes[vn->vn_pos_in_item] = insert_size; #ifdef CONFIG_REISERFS_CHECK /* compare total size of entries with item length */ { int k, l; l = 0; for (k = 0; k < dir_u->entry_count; k++) l += dir_u->entry_sizes[k]; if (l + IH_SIZE != vi->vi_item_len + ((is_affected && (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT)) ? insert_size : 0)) { reiserfs_panic(NULL, "vs-8025: set_entry_sizes: (mode==%c, insert_size==%d), invalid length of directory item", vn->vn_mode, insert_size); } } #endif return size; } // // return number of entries which may fit into specified amount of // free space, or -1 if free space is not enough even for 1 entry // static int direntry_check_left(struct virtual_item *vi, int free, int start_skip, int end_skip) { int i; int entries = 0; struct direntry_uarea *dir_u = vi->vi_uarea; for (i = start_skip; i < dir_u->entry_count - end_skip; i++) { if (dir_u->entry_sizes[i] > free) /* i-th entry doesn't fit into the remaining free space */ break; free -= dir_u->entry_sizes[i]; entries++; } if (entries == dir_u->entry_count) { reiserfs_panic(NULL, "free space %d, entry_count %d\n", free, dir_u->entry_count); } /* "." and ".." can not be separated from each other */ if (start_skip == 0 && (dir_u->flags & DIRENTRY_VI_FIRST_DIRENTRY_ITEM) && entries < 2) entries = 0; return entries ? : -1; } static int direntry_check_right(struct virtual_item *vi, int free) { int i; int entries = 0; struct direntry_uarea *dir_u = vi->vi_uarea; for (i = dir_u->entry_count - 1; i >= 0; i--) { if (dir_u->entry_sizes[i] > free) /* i-th entry doesn't fit into the remaining free space */ break; free -= dir_u->entry_sizes[i]; entries++; } BUG_ON(entries == dir_u->entry_count); /* "." and ".." can not be separated from each other */ if ((dir_u->flags & DIRENTRY_VI_FIRST_DIRENTRY_ITEM) && entries > dir_u->entry_count - 2) entries = dir_u->entry_count - 2; return entries ? : -1; } /* sum of entry sizes between from-th and to-th entries including both edges */ static int direntry_part_size(struct virtual_item *vi, int first, int count) { int i, retval; int from, to; struct direntry_uarea *dir_u = vi->vi_uarea; retval = 0; if (first == 0) from = 0; else from = dir_u->entry_count - count; to = from + count - 1; for (i = from; i <= to; i++) retval += dir_u->entry_sizes[i]; return retval; } static int direntry_unit_num(struct virtual_item *vi) { struct direntry_uarea *dir_u = vi->vi_uarea; return dir_u->entry_count; } static void direntry_print_vi(struct virtual_item *vi) { int i; struct direntry_uarea *dir_u = vi->vi_uarea; reiserfs_warning(NULL, "DIRENTRY, index %d, type 0x%x, %h, flags 0x%x", vi->vi_index, vi->vi_type, vi->vi_ih, dir_u->flags); printk("%d entries: ", dir_u->entry_count); for (i = 0; i < dir_u->entry_count; i++) printk("%d ", dir_u->entry_sizes[i]); printk("\n"); } static struct item_operations direntry_ops = { .bytes_number = direntry_bytes_number, .decrement_key = direntry_decrement_key, .is_left_mergeable = direntry_is_left_mergeable, .print_item = direntry_print_item, .check_item = direntry_check_item, .create_vi = direntry_create_vi, .check_left = direntry_check_left, .check_right = direntry_check_right, .part_size = direntry_part_size, .unit_num = direntry_unit_num, .print_vi = direntry_print_vi }; ////////////////////////////////////////////////////////////////////////////// // Error catching functions to catch errors caused by incorrect item types. // static int errcatch_bytes_number(struct item_head *ih, int block_size) { reiserfs_warning(NULL, "green-16001: Invalid item type observed, run fsck ASAP"); return 0; } static void errcatch_decrement_key(struct cpu_key *key) { reiserfs_warning(NULL, "green-16002: Invalid item type observed, run fsck ASAP"); } static int errcatch_is_left_mergeable(struct reiserfs_key *key, unsigned long bsize) { reiserfs_warning(NULL, "green-16003: Invalid item type observed, run fsck ASAP"); return 0; } static void errcatch_print_item(struct item_head *ih, char *item) { reiserfs_warning(NULL, "green-16004: Invalid item type observed, run fsck ASAP"); } static void errcatch_check_item(struct item_head *ih, char *item) { reiserfs_warning(NULL, "green-16005: Invalid item type observed, run fsck ASAP"); } static int errcatch_create_vi(struct virtual_node *vn, struct virtual_item *vi, int is_affected, int insert_size) { reiserfs_warning(NULL, "green-16006: Invalid item type observed, run fsck ASAP"); return 0; // We might return -1 here as well, but it won't help as create_virtual_node() from where // this operation is called from is of return type void. } static int errcatch_check_left(struct virtual_item *vi, int free, int start_skip, int end_skip) { reiserfs_warning(NULL, "green-16007: Invalid item type observed, run fsck ASAP"); return -1; } static int errcatch_check_right(struct virtual_item *vi, int free) { reiserfs_warning(NULL, "green-16008: Invalid item type observed, run fsck ASAP"); return -1; } static int errcatch_part_size(struct virtual_item *vi, int first, int count) { reiserfs_warning(NULL, "green-16009: Invalid item type observed, run fsck ASAP"); return 0; } static int errcatch_unit_num(struct virtual_item *vi) { reiserfs_warning(NULL, "green-16010: Invalid item type observed, run fsck ASAP"); return 0; } static void errcatch_print_vi(struct virtual_item *vi) { reiserfs_warning(NULL, "green-16011: Invalid item type observed, run fsck ASAP"); } static struct item_operations errcatch_ops = { errcatch_bytes_number, errcatch_decrement_key, errcatch_is_left_mergeable, errcatch_print_item, errcatch_check_item, errcatch_create_vi, errcatch_check_left, errcatch_check_right, errcatch_part_size, errcatch_unit_num, errcatch_print_vi }; ////////////////////////////////////////////////////////////////////////////// // // #if ! (TYPE_STAT_DATA == 0 && TYPE_INDIRECT == 1 && TYPE_DIRECT == 2 && TYPE_DIRENTRY == 3) #error Item types must use disk-format assigned values. #endif struct item_operations *item_ops[TYPE_ANY + 1] = { &stat_data_ops, &indirect_ops, &direct_ops, &direntry_ops, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &errcatch_ops /* This is to catch errors with invalid type (15th entry for TYPE_ANY) */ };