/* * linux/fs/pnode.c * * (C) Copyright IBM Corporation 2005. * Released under GPL v2. * Author : Ram Pai (linuxram@us.ibm.com) * */ #include <linux/mnt_namespace.h> #include <linux/mount.h> #include <linux/fs.h> #include <linux/nsproxy.h> #include "internal.h" #include "pnode.h" /* return the next shared peer mount of @p */ static inline struct mount *next_peer(struct mount *p) { return list_entry(p->mnt_share.next, struct mount, mnt_share); } static inline struct mount *first_slave(struct mount *p) { return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); } static inline struct mount *next_slave(struct mount *p) { return list_entry(p->mnt_slave.next, struct mount, mnt_slave); } static struct mount *get_peer_under_root(struct mount *mnt, struct mnt_namespace *ns, const struct path *root) { struct mount *m = mnt; do { /* Check the namespace first for optimization */ if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) return m; m = next_peer(m); } while (m != mnt); return NULL; } /* * Get ID of closest dominating peer group having a representative * under the given root. * * Caller must hold namespace_sem */ int get_dominating_id(struct mount *mnt, const struct path *root) { struct mount *m; for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); if (d) return d->mnt_group_id; } return 0; } static int do_make_slave(struct mount *mnt) { struct mount *peer_mnt = mnt, *master = mnt->mnt_master; struct mount *slave_mnt; /* * slave 'mnt' to a peer mount that has the * same root dentry. If none is available then * slave it to anything that is available. */ while ((peer_mnt = next_peer(peer_mnt)) != mnt && peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ; if (peer_mnt == mnt) { peer_mnt = next_peer(mnt); if (peer_mnt == mnt) peer_mnt = NULL; } if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share)) mnt_release_group_id(mnt); list_del_init(&mnt->mnt_share); mnt->mnt_group_id = 0; if (peer_mnt) master = peer_mnt; if (master) { list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) slave_mnt->mnt_master = master; list_move(&mnt->mnt_slave, &master->mnt_slave_list); list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev); INIT_LIST_HEAD(&mnt->mnt_slave_list); } else { struct list_head *p = &mnt->mnt_slave_list; while (!list_empty(p)) { slave_mnt = list_first_entry(p, struct mount, mnt_slave); list_del_init(&slave_mnt->mnt_slave); slave_mnt->mnt_master = NULL; } } mnt->mnt_master = master; CLEAR_MNT_SHARED(mnt); return 0; } /* * vfsmount lock must be held for write */ void change_mnt_propagation(struct mount *mnt, int type) { if (type == MS_SHARED) { set_mnt_shared(mnt); return; } do_make_slave(mnt); if (type != MS_SLAVE) { list_del_init(&mnt->mnt_slave); mnt->mnt_master = NULL; if (type == MS_UNBINDABLE) mnt->mnt.mnt_flags |= MNT_UNBINDABLE; else mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; } } /* * get the next mount in the propagation tree. * @m: the mount seen last * @origin: the original mount from where the tree walk initiated * * Note that peer groups form contiguous segments of slave lists. * We rely on that in get_source() to be able to find out if * vfsmount found while iterating with propagation_next() is * a peer of one we'd found earlier. */ static struct mount *propagation_next(struct mount *m, struct mount *origin) { /* are there any slaves of this mount? */ if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) return first_slave(m); while (1) { struct mount *master = m->mnt_master; if (master == origin->mnt_master) { struct mount *next = next_peer(m); return (next == origin) ? NULL : next; } else if (m->mnt_slave.next != &master->mnt_slave_list) return next_slave(m); /* back at master */ m = master; } } static struct mount *next_group(struct mount *m, struct mount *origin) { while (1) { while (1) { struct mount *next; if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list)) return first_slave(m); next = next_peer(m); if (m->mnt_group_id == origin->mnt_group_id) { if (next == origin) return NULL; } else if (m->mnt_slave.next != &next->mnt_slave) break; m = next; } /* m is the last peer */ while (1) { struct mount *master = m->mnt_master; if (m->mnt_slave.next != &master->mnt_slave_list) return next_slave(m); m = next_peer(master); if (master->mnt_group_id == origin->mnt_group_id) break; if (master->mnt_slave.next == &m->mnt_slave) break; m = master; } if (m == origin) return NULL; } } /* all accesses are serialized by namespace_sem */ static struct user_namespace *user_ns; static struct mount *last_dest, *last_source, *dest_master; static struct mountpoint *mp; static struct hlist_head *list; static int propagate_one(struct mount *m) { struct mount *child; int type; /* skip ones added by this propagate_mnt() */ if (IS_MNT_NEW(m)) return 0; /* skip if mountpoint isn't covered by it */ if (!is_subdir(mp->m_dentry, m->mnt.mnt_root)) return 0; if (m->mnt_group_id == last_dest->mnt_group_id) { type = CL_MAKE_SHARED; } else { struct mount *n, *p; for (n = m; ; n = p) { p = n->mnt_master; if (p == dest_master || IS_MNT_MARKED(p)) { while (last_dest->mnt_master != p) { last_source = last_source->mnt_master; last_dest = last_source->mnt_parent; } if (n->mnt_group_id != last_dest->mnt_group_id) { last_source = last_source->mnt_master; last_dest = last_source->mnt_parent; } break; } } type = CL_SLAVE; /* beginning of peer group among the slaves? */ if (IS_MNT_SHARED(m)) type |= CL_MAKE_SHARED; } /* Notice when we are propagating across user namespaces */ if (m->mnt_ns->user_ns != user_ns) type |= CL_UNPRIVILEGED; child = copy_tree(last_source, last_source->mnt.mnt_root, type); if (IS_ERR(child)) return PTR_ERR(child); mnt_set_mountpoint(m, mp, child); last_dest = m; last_source = child; if (m->mnt_master != dest_master) { read_seqlock_excl(&mount_lock); SET_MNT_MARK(m->mnt_master); read_sequnlock_excl(&mount_lock); } hlist_add_head(&child->mnt_hash, list); return 0; } /* * mount 'source_mnt' under the destination 'dest_mnt' at * dentry 'dest_dentry'. And propagate that mount to * all the peer and slave mounts of 'dest_mnt'. * Link all the new mounts into a propagation tree headed at * source_mnt. Also link all the new mounts using ->mnt_list * headed at source_mnt's ->mnt_list * * @dest_mnt: destination mount. * @dest_dentry: destination dentry. * @source_mnt: source mount. * @tree_list : list of heads of trees to be attached. */ int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, struct mount *source_mnt, struct hlist_head *tree_list) { struct mount *m, *n; int ret = 0; /* * we don't want to bother passing tons of arguments to * propagate_one(); everything is serialized by namespace_sem, * so globals will do just fine. */ user_ns = current->nsproxy->mnt_ns->user_ns; last_dest = dest_mnt; last_source = source_mnt; mp = dest_mp; list = tree_list; dest_master = dest_mnt->mnt_master; /* all peers of dest_mnt, except dest_mnt itself */ for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) { ret = propagate_one(n); if (ret) goto out; } /* all slave groups */ for (m = next_group(dest_mnt, dest_mnt); m; m = next_group(m, dest_mnt)) { /* everything in that slave group */ n = m; do { ret = propagate_one(n); if (ret) goto out; n = next_peer(n); } while (n != m); } out: read_seqlock_excl(&mount_lock); hlist_for_each_entry(n, tree_list, mnt_hash) { m = n->mnt_parent; if (m->mnt_master != dest_mnt->mnt_master) CLEAR_MNT_MARK(m->mnt_master); } read_sequnlock_excl(&mount_lock); return ret; } /* * return true if the refcount is greater than count */ static inline int do_refcount_check(struct mount *mnt, int count) { return mnt_get_count(mnt) > count; } /* * check if the mount 'mnt' can be unmounted successfully. * @mnt: the mount to be checked for unmount * NOTE: unmounting 'mnt' would naturally propagate to all * other mounts its parent propagates to. * Check if any of these mounts that **do not have submounts** * have more references than 'refcnt'. If so return busy. * * vfsmount lock must be held for write */ int propagate_mount_busy(struct mount *mnt, int refcnt) { struct mount *m, *child; struct mount *parent = mnt->mnt_parent; int ret = 0; if (mnt == parent) return do_refcount_check(mnt, refcnt); /* * quickly check if the current mount can be unmounted. * If not, we don't have to go checking for all other * mounts */ if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) return 1; for (m = propagation_next(parent, parent); m; m = propagation_next(m, parent)) { child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint); if (child && list_empty(&child->mnt_mounts) && (ret = do_refcount_check(child, 1))) break; } return ret; } /* * NOTE: unmounting 'mnt' naturally propagates to all other mounts its * parent propagates to. */ static void __propagate_umount(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; BUG_ON(parent == mnt); for (m = propagation_next(parent, parent); m; m = propagation_next(m, parent)) { struct mount *child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint); /* * umount the child only if the child has no * other children */ if (child && list_empty(&child->mnt_mounts)) { hlist_del_init_rcu(&child->mnt_hash); hlist_add_before_rcu(&child->mnt_hash, &mnt->mnt_hash); } } } /* * collect all mounts that receive propagation from the mount in @list, * and return these additional mounts in the same list. * @list: the list of mounts to be unmounted. * * vfsmount lock must be held for write */ int propagate_umount(struct hlist_head *list) { struct mount *mnt; hlist_for_each_entry(mnt, list, mnt_hash) __propagate_umount(mnt); return 0; }