/* * fs/kernfs/mount.c - kernfs mount implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> * * This file is released under the GPLv2. */ #include <linux/fs.h> #include <linux/mount.h> #include <linux/init.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/namei.h> #include <linux/seq_file.h> #include <linux/exportfs.h> #include "kernfs-internal.h" struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data) { struct kernfs_root *root = kernfs_info(sb)->root; struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->remount_fs) return scops->remount_fs(root, flags, data); return 0; } static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) { struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->show_options) return scops->show_options(sf, root); return 0; } static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) { struct kernfs_node *node = kernfs_dentry_node(dentry); struct kernfs_root *root = kernfs_root(node); struct kernfs_syscall_ops *scops = root->syscall_ops; if (scops && scops->show_path) return scops->show_path(sf, node, root); seq_dentry(sf, dentry, " \t\n\\"); return 0; } const struct super_operations kernfs_sops = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, .evict_inode = kernfs_evict_inode, .remount_fs = kernfs_sop_remount_fs, .show_options = kernfs_sop_show_options, .show_path = kernfs_sop_show_path, }; /* * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode * number and generation */ struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root, const union kernfs_node_id *id) { struct kernfs_node *kn; kn = kernfs_find_and_get_node_by_ino(root, id->ino); if (!kn) return NULL; if (kn->id.generation != id->generation) { kernfs_put(kn); return NULL; } return kn; } static struct inode *kernfs_fh_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct kernfs_super_info *info = kernfs_info(sb); struct inode *inode; struct kernfs_node *kn; if (ino == 0) return ERR_PTR(-ESTALE); kn = kernfs_find_and_get_node_by_ino(info->root, ino); if (!kn) return ERR_PTR(-ESTALE); inode = kernfs_get_inode(sb, kn); kernfs_put(kn); if (!inode) return ERR_PTR(-ESTALE); if (generation && inode->i_generation != generation) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, kernfs_fh_get_inode); } static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, kernfs_fh_get_inode); } static struct dentry *kernfs_get_parent_dentry(struct dentry *child) { struct kernfs_node *kn = kernfs_dentry_node(child); return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); } static const struct export_operations kernfs_export_ops = { .fh_to_dentry = kernfs_fh_to_dentry, .fh_to_parent = kernfs_fh_to_parent, .get_parent = kernfs_get_parent_dentry, }; /** * kernfs_root_from_sb - determine kernfs_root associated with a super_block * @sb: the super_block in question * * Return the kernfs_root associated with @sb. If @sb is not a kernfs one, * %NULL is returned. */ struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) { if (sb->s_op == &kernfs_sops) return kernfs_info(sb)->root; return NULL; } /* * find the next ancestor in the path down to @child, where @parent was the * ancestor whose descendant we want to find. * * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root * node. If @parent is b, then we return the node for c. * Passing in d as @parent is not ok. */ static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, struct kernfs_node *parent) { if (child == parent) { pr_crit_once("BUG in find_next_ancestor: called with parent == child"); return NULL; } while (child->parent != parent) { if (!child->parent) return NULL; child = child->parent; } return child; } /** * kernfs_node_dentry - get a dentry for the given kernfs_node * @kn: kernfs_node for which a dentry is needed * @sb: the kernfs super_block */ struct dentry *kernfs_node_dentry(struct kernfs_node *kn, struct super_block *sb) { struct dentry *dentry; struct kernfs_node *knparent = NULL; BUG_ON(sb->s_op != &kernfs_sops); dentry = dget(sb->s_root); /* Check if this is the root kernfs_node */ if (!kn->parent) return dentry; knparent = find_next_ancestor(kn, NULL); if (WARN_ON(!knparent)) { dput(dentry); return ERR_PTR(-EINVAL); } do { struct dentry *dtmp; struct kernfs_node *kntmp; if (kn == knparent) return dentry; kntmp = find_next_ancestor(kn, knparent); if (WARN_ON(!kntmp)) { dput(dentry); return ERR_PTR(-EINVAL); } dtmp = lookup_one_len_unlocked(kntmp->name, dentry, strlen(kntmp->name)); dput(dentry); if (IS_ERR(dtmp)) return dtmp; knparent = kntmp; dentry = dtmp; } while (true); } static int kernfs_fill_super(struct super_block *sb, unsigned long magic) { struct kernfs_super_info *info = kernfs_info(sb); struct inode *inode; struct dentry *root; info->sb = sb; /* Userspace would break if executables or devices appear on sysfs */ sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = magic; sb->s_op = &kernfs_sops; sb->s_xattr = kernfs_xattr_handlers; if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) sb->s_export_op = &kernfs_export_ops; sb->s_time_gran = 1; /* sysfs dentries and inodes don't require IO to create */ sb->s_shrink.seeks = 0; /* get root inode, initialize and unlock it */ mutex_lock(&kernfs_mutex); inode = kernfs_get_inode(sb, info->root->kn); mutex_unlock(&kernfs_mutex); if (!inode) { pr_debug("kernfs: could not get root inode\n"); return -ENOMEM; } /* instantiate and link root dentry */ root = d_make_root(inode); if (!root) { pr_debug("%s: could not get root dentry!\n", __func__); return -ENOMEM; } sb->s_root = root; sb->s_d_op = &kernfs_dops; return 0; } static int kernfs_test_super(struct super_block *sb, void *data) { struct kernfs_super_info *sb_info = kernfs_info(sb); struct kernfs_super_info *info = data; return sb_info->root == info->root && sb_info->ns == info->ns; } static int kernfs_set_super(struct super_block *sb, void *data) { int error; error = set_anon_super(sb, data); if (!error) sb->s_fs_info = data; return error; } /** * kernfs_super_ns - determine the namespace tag of a kernfs super_block * @sb: super_block of interest * * Return the namespace tag associated with kernfs super_block @sb. */ const void *kernfs_super_ns(struct super_block *sb) { struct kernfs_super_info *info = kernfs_info(sb); return info->ns; } /** * kernfs_mount_ns - kernfs mount helper * @fs_type: file_system_type of the fs being mounted * @flags: mount flags specified for the mount * @root: kernfs_root of the hierarchy being mounted * @magic: file system specific magic number * @new_sb_created: tell the caller if we allocated a new superblock * @ns: optional namespace tag of the mount * * This is to be called from each kernfs user's file_system_type->mount() * implementation, which should pass through the specified @fs_type and * @flags, and specify the hierarchy and namespace tag to mount via @root * and @ns, respectively. * * The return value can be passed to the vfs layer verbatim. */ struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags, struct kernfs_root *root, unsigned long magic, bool *new_sb_created, const void *ns) { struct super_block *sb; struct kernfs_super_info *info; int error; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); info->root = root; info->ns = ns; INIT_LIST_HEAD(&info->node); sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags, &init_user_ns, info); if (IS_ERR(sb) || sb->s_fs_info != info) kfree(info); if (IS_ERR(sb)) return ERR_CAST(sb); if (new_sb_created) *new_sb_created = !sb->s_root; if (!sb->s_root) { struct kernfs_super_info *info = kernfs_info(sb); error = kernfs_fill_super(sb, magic); if (error) { deactivate_locked_super(sb); return ERR_PTR(error); } sb->s_flags |= SB_ACTIVE; mutex_lock(&kernfs_mutex); list_add(&info->node, &root->supers); mutex_unlock(&kernfs_mutex); } return dget(sb->s_root); } /** * kernfs_kill_sb - kill_sb for kernfs * @sb: super_block being killed * * This can be used directly for file_system_type->kill_sb(). If a kernfs * user needs extra cleanup, it can implement its own kill_sb() and call * this function at the end. */ void kernfs_kill_sb(struct super_block *sb) { struct kernfs_super_info *info = kernfs_info(sb); mutex_lock(&kernfs_mutex); list_del(&info->node); mutex_unlock(&kernfs_mutex); /* * Remove the superblock from fs_supers/s_instances * so we can't find it, before freeing kernfs_super_info. */ kill_anon_super(sb); kfree(info); } /** * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root * @kernfs_root: the kernfs_root in question * @ns: the namespace tag * * Pin the superblock so the superblock won't be destroyed in subsequent * operations. This can be used to block ->kill_sb() which may be useful * for kernfs users which dynamically manage superblocks. * * Returns NULL if there's no superblock associated to this kernfs_root, or * -EINVAL if the superblock is being freed. */ struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns) { struct kernfs_super_info *info; struct super_block *sb = NULL; mutex_lock(&kernfs_mutex); list_for_each_entry(info, &root->supers, node) { if (info->ns == ns) { sb = info->sb; if (!atomic_inc_not_zero(&info->sb->s_active)) sb = ERR_PTR(-EINVAL); break; } } mutex_unlock(&kernfs_mutex); return sb; } void __init kernfs_init(void) { /* * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino * can access the slab lock free. This could introduce stale nodes, * please see how kernfs_find_and_get_node_by_ino filters out stale * nodes. */ kernfs_node_cache = kmem_cache_create("kernfs_node_cache", sizeof(struct kernfs_node), 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); /* Creates slab cache for kernfs inode attributes */ kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", sizeof(struct kernfs_iattrs), 0, SLAB_PANIC, NULL); }