// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/segment.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/sched/mm.h> #include <linux/prefetch.h> #include <linux/kthread.h> #include <linux/swap.h> #include <linux/timer.h> #include <linux/freezer.h> #include <linux/sched/signal.h> #include <linux/random.h> #include "f2fs.h" #include "segment.h" #include "node.h" #include "gc.h" #include "iostat.h" #include <trace/events/f2fs.h> #define __reverse_ffz(x) __reverse_ffs(~(x)) static struct kmem_cache *discard_entry_slab; static struct kmem_cache *discard_cmd_slab; static struct kmem_cache *sit_entry_set_slab; static struct kmem_cache *inmem_entry_slab; static unsigned long __reverse_ulong(unsigned char *str) { unsigned long tmp = 0; int shift = 24, idx = 0; #if BITS_PER_LONG == 64 shift = 56; #endif while (shift >= 0) { tmp |= (unsigned long)str[idx++] << shift; shift -= BITS_PER_BYTE; } return tmp; } /* * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since * MSB and LSB are reversed in a byte by f2fs_set_bit. */ static inline unsigned long __reverse_ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff00000000UL) == 0) num += 32; else word >>= 32; #endif if ((word & 0xffff0000) == 0) num += 16; else word >>= 16; if ((word & 0xff00) == 0) num += 8; else word >>= 8; if ((word & 0xf0) == 0) num += 4; else word >>= 4; if ((word & 0xc) == 0) num += 2; else word >>= 2; if ((word & 0x2) == 0) num += 1; return num; } /* * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because * f2fs_set_bit makes MSB and LSB reversed in a byte. * @size must be integral times of unsigned long. * Example: * MSB <--> LSB * f2fs_set_bit(0, bitmap) => 1000 0000 * f2fs_set_bit(7, bitmap) => 0000 0001 */ static unsigned long __find_rev_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == 0) goto pass; tmp = __reverse_ulong((unsigned char *)p); tmp &= ~0UL >> offset; if (size < BITS_PER_LONG) tmp &= (~0UL << (BITS_PER_LONG - size)); if (tmp) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffs(tmp); } static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BIT_WORD(offset); unsigned long result = size; unsigned long tmp; if (offset >= size) return size; size -= (offset & ~(BITS_PER_LONG - 1)); offset %= BITS_PER_LONG; while (1) { if (*p == ~0UL) goto pass; tmp = __reverse_ulong((unsigned char *)p); if (offset) tmp |= ~0UL << (BITS_PER_LONG - offset); if (size < BITS_PER_LONG) tmp |= ~0UL >> size; if (tmp != ~0UL) goto found; pass: if (size <= BITS_PER_LONG) break; size -= BITS_PER_LONG; offset = 0; p++; } return result; found: return result - size + __reverse_ffz(tmp); } bool f2fs_need_SSR(struct f2fs_sb_info *sbi) { int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); if (f2fs_lfs_mode(sbi)) return false; if (sbi->gc_mode == GC_URGENT_HIGH) return true; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return true; return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); } void f2fs_register_inmem_page(struct inode *inode, struct page *page) { struct inmem_pages *new; set_page_private_atomic(page); new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS, true, NULL); /* add atomic page indices to the list */ new->page = page; INIT_LIST_HEAD(&new->list); /* increase reference count with clean state */ get_page(page); mutex_lock(&F2FS_I(inode)->inmem_lock); list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); mutex_unlock(&F2FS_I(inode)->inmem_lock); trace_f2fs_register_inmem_page(page, INMEM); } static int __revoke_inmem_pages(struct inode *inode, struct list_head *head, bool drop, bool recover, bool trylock) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct inmem_pages *cur, *tmp; int err = 0; list_for_each_entry_safe(cur, tmp, head, list) { struct page *page = cur->page; if (drop) trace_f2fs_commit_inmem_page(page, INMEM_DROP); if (trylock) { /* * to avoid deadlock in between page lock and * inmem_lock. */ if (!trylock_page(page)) continue; } else { lock_page(page); } f2fs_wait_on_page_writeback(page, DATA, true, true); if (recover) { struct dnode_of_data dn; struct node_info ni; trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); retry: set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); if (err) { if (err == -ENOMEM) { memalloc_retry_wait(GFP_NOFS); goto retry; } err = -EAGAIN; goto next; } err = f2fs_get_node_info(sbi, dn.nid, &ni, false); if (err) { f2fs_put_dnode(&dn); return err; } if (cur->old_addr == NEW_ADDR) { f2fs_invalidate_blocks(sbi, dn.data_blkaddr); f2fs_update_data_blkaddr(&dn, NEW_ADDR); } else f2fs_replace_block(sbi, &dn, dn.data_blkaddr, cur->old_addr, ni.version, true, true); f2fs_put_dnode(&dn); } next: /* we don't need to invalidate this in the sccessful status */ if (drop || recover) { ClearPageUptodate(page); clear_page_private_gcing(page); } detach_page_private(page); set_page_private(page, 0); f2fs_put_page(page, 1); list_del(&cur->list); kmem_cache_free(inmem_entry_slab, cur); dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); } return err; } void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) { struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; struct inode *inode; struct f2fs_inode_info *fi; unsigned int count = sbi->atomic_files; unsigned int looped = 0; next: spin_lock(&sbi->inode_lock[ATOMIC_FILE]); if (list_empty(head)) { spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); return; } fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); inode = igrab(&fi->vfs_inode); if (inode) list_move_tail(&fi->inmem_ilist, head); spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); if (inode) { if (gc_failure) { if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) goto skip; } set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); f2fs_drop_inmem_pages(inode); skip: iput(inode); } f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); if (gc_failure) { if (++looped >= count) return; } goto next; } void f2fs_drop_inmem_pages(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); do { mutex_lock(&fi->inmem_lock); if (list_empty(&fi->inmem_pages)) { fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; spin_lock(&sbi->inode_lock[ATOMIC_FILE]); if (!list_empty(&fi->inmem_ilist)) list_del_init(&fi->inmem_ilist); if (f2fs_is_atomic_file(inode)) { clear_inode_flag(inode, FI_ATOMIC_FILE); sbi->atomic_files--; } spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); mutex_unlock(&fi->inmem_lock); break; } __revoke_inmem_pages(inode, &fi->inmem_pages, true, false, true); mutex_unlock(&fi->inmem_lock); } while (1); } void f2fs_drop_inmem_page(struct inode *inode, struct page *page) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct list_head *head = &fi->inmem_pages; struct inmem_pages *cur = NULL; f2fs_bug_on(sbi, !page_private_atomic(page)); mutex_lock(&fi->inmem_lock); list_for_each_entry(cur, head, list) { if (cur->page == page) break; } f2fs_bug_on(sbi, list_empty(head) || cur->page != page); list_del(&cur->list); mutex_unlock(&fi->inmem_lock); dec_page_count(sbi, F2FS_INMEM_PAGES); kmem_cache_free(inmem_entry_slab, cur); ClearPageUptodate(page); clear_page_private_atomic(page); f2fs_put_page(page, 0); detach_page_private(page); set_page_private(page, 0); trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); } static int __f2fs_commit_inmem_pages(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct inmem_pages *cur, *tmp; struct f2fs_io_info fio = { .sbi = sbi, .ino = inode->i_ino, .type = DATA, .op = REQ_OP_WRITE, .op_flags = REQ_SYNC | REQ_PRIO, .io_type = FS_DATA_IO, }; struct list_head revoke_list; bool submit_bio = false; int err = 0; INIT_LIST_HEAD(&revoke_list); list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { struct page *page = cur->page; lock_page(page); if (page->mapping == inode->i_mapping) { trace_f2fs_commit_inmem_page(page, INMEM); f2fs_wait_on_page_writeback(page, DATA, true, true); set_page_dirty(page); if (clear_page_dirty_for_io(page)) { inode_dec_dirty_pages(inode); f2fs_remove_dirty_inode(inode); } retry: fio.page = page; fio.old_blkaddr = NULL_ADDR; fio.encrypted_page = NULL; fio.need_lock = LOCK_DONE; err = f2fs_do_write_data_page(&fio); if (err) { if (err == -ENOMEM) { memalloc_retry_wait(GFP_NOFS); goto retry; } unlock_page(page); break; } /* record old blkaddr for revoking */ cur->old_addr = fio.old_blkaddr; submit_bio = true; } unlock_page(page); list_move_tail(&cur->list, &revoke_list); } if (submit_bio) f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); if (err) { /* * try to revoke all committed pages, but still we could fail * due to no memory or other reason, if that happened, EAGAIN * will be returned, which means in such case, transaction is * already not integrity, caller should use journal to do the * recovery or rewrite & commit last transaction. For other * error number, revoking was done by filesystem itself. */ err = __revoke_inmem_pages(inode, &revoke_list, false, true, false); /* drop all uncommitted pages */ __revoke_inmem_pages(inode, &fi->inmem_pages, true, false, false); } else { __revoke_inmem_pages(inode, &revoke_list, false, false, false); } return err; } int f2fs_commit_inmem_pages(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); int err; f2fs_balance_fs(sbi, true); f2fs_down_write(&fi->i_gc_rwsem[WRITE]); f2fs_lock_op(sbi); set_inode_flag(inode, FI_ATOMIC_COMMIT); mutex_lock(&fi->inmem_lock); err = __f2fs_commit_inmem_pages(inode); mutex_unlock(&fi->inmem_lock); clear_inode_flag(inode, FI_ATOMIC_COMMIT); f2fs_unlock_op(sbi); f2fs_up_write(&fi->i_gc_rwsem[WRITE]); return err; } /* * This function balances dirty node and dentry pages. * In addition, it controls garbage collection. */ void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) { if (time_to_inject(sbi, FAULT_CHECKPOINT)) { f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); f2fs_stop_checkpoint(sbi, false); } /* balance_fs_bg is able to be pending */ if (need && excess_cached_nats(sbi)) f2fs_balance_fs_bg(sbi, false); if (!f2fs_is_checkpoint_ready(sbi)) return; /* * We should do GC or end up with checkpoint, if there are so many dirty * dir/node pages without enough free segments. */ if (has_not_enough_free_secs(sbi, 0, 0)) { if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && sbi->gc_thread->f2fs_gc_task) { DEFINE_WAIT(wait); prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, TASK_UNINTERRUPTIBLE); wake_up(&sbi->gc_thread->gc_wait_queue_head); io_schedule(); finish_wait(&sbi->gc_thread->fggc_wq, &wait); } else { f2fs_down_write(&sbi->gc_lock); f2fs_gc(sbi, false, false, false, NULL_SEGNO); } } } static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) { int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); unsigned int threshold = sbi->blocks_per_seg * factor * DEFAULT_DIRTY_THRESHOLD; unsigned int global_threshold = threshold * 3 / 2; if (dents >= threshold || qdata >= threshold || nodes >= threshold || meta >= threshold || imeta >= threshold) return true; return dents + qdata + nodes + meta + imeta > global_threshold; } void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) { if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) return; /* try to shrink extent cache when there is no enough memory */ if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); /* check the # of cached NAT entries */ if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); if (!f2fs_available_free_memory(sbi, FREE_NIDS)) f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); else f2fs_build_free_nids(sbi, false, false); if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) goto do_sync; /* there is background inflight IO or foreground operation recently */ if (is_inflight_io(sbi, REQ_TIME) || (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) return; /* exceed periodical checkpoint timeout threshold */ if (f2fs_time_over(sbi, CP_TIME)) goto do_sync; /* checkpoint is the only way to shrink partial cached entries */ if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && f2fs_available_free_memory(sbi, INO_ENTRIES)) return; do_sync: if (test_opt(sbi, DATA_FLUSH) && from_bg) { struct blk_plug plug; mutex_lock(&sbi->flush_lock); blk_start_plug(&plug); f2fs_sync_dirty_inodes(sbi, FILE_INODE); blk_finish_plug(&plug); mutex_unlock(&sbi->flush_lock); } f2fs_sync_fs(sbi->sb, true); stat_inc_bg_cp_count(sbi->stat_info); } static int __submit_flush_wait(struct f2fs_sb_info *sbi, struct block_device *bdev) { int ret = blkdev_issue_flush(bdev); trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), test_opt(sbi, FLUSH_MERGE), ret); return ret; } static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) { int ret = 0; int i; if (!f2fs_is_multi_device(sbi)) return __submit_flush_wait(sbi, sbi->sb->s_bdev); for (i = 0; i < sbi->s_ndevs; i++) { if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) continue; ret = __submit_flush_wait(sbi, FDEV(i).bdev); if (ret) break; } return ret; } static int issue_flush_thread(void *data) { struct f2fs_sb_info *sbi = data; struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; wait_queue_head_t *q = &fcc->flush_wait_queue; repeat: if (kthread_should_stop()) return 0; if (!llist_empty(&fcc->issue_list)) { struct flush_cmd *cmd, *next; int ret; fcc->dispatch_list = llist_del_all(&fcc->issue_list); fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); ret = submit_flush_wait(sbi, cmd->ino); atomic_inc(&fcc->issued_flush); llist_for_each_entry_safe(cmd, next, fcc->dispatch_list, llnode) { cmd->ret = ret; complete(&cmd->wait); } fcc->dispatch_list = NULL; } wait_event_interruptible(*q, kthread_should_stop() || !llist_empty(&fcc->issue_list)); goto repeat; } int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) { struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; struct flush_cmd cmd; int ret; if (test_opt(sbi, NOBARRIER)) return 0; if (!test_opt(sbi, FLUSH_MERGE)) { atomic_inc(&fcc->queued_flush); ret = submit_flush_wait(sbi, ino); atomic_dec(&fcc->queued_flush); atomic_inc(&fcc->issued_flush); return ret; } if (atomic_inc_return(&fcc->queued_flush) == 1 || f2fs_is_multi_device(sbi)) { ret = submit_flush_wait(sbi, ino); atomic_dec(&fcc->queued_flush); atomic_inc(&fcc->issued_flush); return ret; } cmd.ino = ino; init_completion(&cmd.wait); llist_add(&cmd.llnode, &fcc->issue_list); /* * update issue_list before we wake up issue_flush thread, this * smp_mb() pairs with another barrier in ___wait_event(), see * more details in comments of waitqueue_active(). */ smp_mb(); if (waitqueue_active(&fcc->flush_wait_queue)) wake_up(&fcc->flush_wait_queue); if (fcc->f2fs_issue_flush) { wait_for_completion(&cmd.wait); atomic_dec(&fcc->queued_flush); } else { struct llist_node *list; list = llist_del_all(&fcc->issue_list); if (!list) { wait_for_completion(&cmd.wait); atomic_dec(&fcc->queued_flush); } else { struct flush_cmd *tmp, *next; ret = submit_flush_wait(sbi, ino); llist_for_each_entry_safe(tmp, next, list, llnode) { if (tmp == &cmd) { cmd.ret = ret; atomic_dec(&fcc->queued_flush); continue; } tmp->ret = ret; complete(&tmp->wait); } } } return cmd.ret; } int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct flush_cmd_control *fcc; int err = 0; if (SM_I(sbi)->fcc_info) { fcc = SM_I(sbi)->fcc_info; if (fcc->f2fs_issue_flush) return err; goto init_thread; } fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); if (!fcc) return -ENOMEM; atomic_set(&fcc->issued_flush, 0); atomic_set(&fcc->queued_flush, 0); init_waitqueue_head(&fcc->flush_wait_queue); init_llist_head(&fcc->issue_list); SM_I(sbi)->fcc_info = fcc; if (!test_opt(sbi, FLUSH_MERGE)) return err; init_thread: fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(fcc->f2fs_issue_flush)) { err = PTR_ERR(fcc->f2fs_issue_flush); kfree(fcc); SM_I(sbi)->fcc_info = NULL; return err; } return err; } void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) { struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; if (fcc && fcc->f2fs_issue_flush) { struct task_struct *flush_thread = fcc->f2fs_issue_flush; fcc->f2fs_issue_flush = NULL; kthread_stop(flush_thread); } if (free) { kfree(fcc); SM_I(sbi)->fcc_info = NULL; } } int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) { int ret = 0, i; if (!f2fs_is_multi_device(sbi)) return 0; if (test_opt(sbi, NOBARRIER)) return 0; for (i = 1; i < sbi->s_ndevs; i++) { int count = DEFAULT_RETRY_IO_COUNT; if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) continue; do { ret = __submit_flush_wait(sbi, FDEV(i).bdev); if (ret) f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); } while (ret && --count); if (ret) { f2fs_stop_checkpoint(sbi, false); break; } spin_lock(&sbi->dev_lock); f2fs_clear_bit(i, (char *)&sbi->dirty_device); spin_unlock(&sbi->dev_lock); } return ret; } static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); /* need not be added */ if (IS_CURSEG(sbi, segno)) return; if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]++; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (unlikely(t >= DIRTY)) { f2fs_bug_on(sbi, 1); return; } if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]++; if (__is_large_section(sbi)) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); block_t valid_blocks = get_valid_blocks(sbi, segno, true); f2fs_bug_on(sbi, unlikely(!valid_blocks || valid_blocks == BLKS_PER_SEC(sbi))); if (!IS_CURSEC(sbi, secno)) set_bit(secno, dirty_i->dirty_secmap); } } } static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); block_t valid_blocks; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]--; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); enum dirty_type t = sentry->type; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) dirty_i->nr_dirty[t]--; valid_blocks = get_valid_blocks(sbi, segno, true); if (valid_blocks == 0) { clear_bit(GET_SEC_FROM_SEG(sbi, segno), dirty_i->victim_secmap); #ifdef CONFIG_F2FS_CHECK_FS clear_bit(segno, SIT_I(sbi)->invalid_segmap); #endif } if (__is_large_section(sbi)) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); if (!valid_blocks || valid_blocks == BLKS_PER_SEC(sbi)) { clear_bit(secno, dirty_i->dirty_secmap); return; } if (!IS_CURSEC(sbi, secno)) set_bit(secno, dirty_i->dirty_secmap); } } } /* * Should not occur error such as -ENOMEM. * Adding dirty entry into seglist is not critical operation. * If a given segment is one of current working segments, it won't be added. */ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned short valid_blocks, ckpt_valid_blocks; unsigned int usable_blocks; if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) return; usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); mutex_lock(&dirty_i->seglist_lock); valid_blocks = get_valid_blocks(sbi, segno, false); ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || ckpt_valid_blocks == usable_blocks)) { __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } else if (valid_blocks < usable_blocks) { __locate_dirty_segment(sbi, segno, DIRTY); } else { /* Recovery routine with SSR needs this */ __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); } /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { if (get_valid_blocks(sbi, segno, false)) continue; if (IS_CURSEG(sbi, segno)) continue; __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); } block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) { int ovp_hole_segs = (overprovision_segments(sbi) - reserved_segments(sbi)); block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); block_t holes[2] = {0, 0}; /* DATA and NODE */ block_t unusable; struct seg_entry *se; unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { se = get_seg_entry(sbi, segno); if (IS_NODESEG(se->type)) holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - se->valid_blocks; else holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - se->valid_blocks; } mutex_unlock(&dirty_i->seglist_lock); unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; if (unusable > ovp_holes) return unusable - ovp_holes; return 0; } int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) { int ovp_hole_segs = (overprovision_segments(sbi) - reserved_segments(sbi)); if (unusable > F2FS_OPTION(sbi).unusable_cap) return -EAGAIN; if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && dirty_segments(sbi) > ovp_hole_segs) return -EAGAIN; return 0; } /* This is only used by SBI_CP_DISABLED */ static unsigned int get_free_segment(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno = 0; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { if (get_valid_blocks(sbi, segno, false)) continue; if (get_ckpt_valid_blocks(sbi, segno, false)) continue; mutex_unlock(&dirty_i->seglist_lock); return segno; } mutex_unlock(&dirty_i->seglist_lock); return NULL_SEGNO; } static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc; f2fs_bug_on(sbi, !len); pend_list = &dcc->pend_list[plist_idx(len)]; dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); INIT_LIST_HEAD(&dc->list); dc->bdev = bdev; dc->lstart = lstart; dc->start = start; dc->len = len; dc->ref = 0; dc->state = D_PREP; dc->queued = 0; dc->error = 0; init_completion(&dc->wait); list_add_tail(&dc->list, pend_list); spin_lock_init(&dc->lock); dc->bio_ref = 0; atomic_inc(&dcc->discard_cmd_cnt); dcc->undiscard_blks += len; return dc; } static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len, struct rb_node *parent, struct rb_node **p, bool leftmost) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *dc; dc = __create_discard_cmd(sbi, bdev, lstart, start, len); rb_link_node(&dc->rb_node, parent, p); rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); return dc; } static void __detach_discard_cmd(struct discard_cmd_control *dcc, struct discard_cmd *dc) { if (dc->state == D_DONE) atomic_sub(dc->queued, &dcc->queued_discard); list_del(&dc->list); rb_erase_cached(&dc->rb_node, &dcc->root); dcc->undiscard_blks -= dc->len; kmem_cache_free(discard_cmd_slab, dc); atomic_dec(&dcc->discard_cmd_cnt); } static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; unsigned long flags; trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); spin_lock_irqsave(&dc->lock, flags); if (dc->bio_ref) { spin_unlock_irqrestore(&dc->lock, flags); return; } spin_unlock_irqrestore(&dc->lock, flags); f2fs_bug_on(sbi, dc->ref); if (dc->error == -EOPNOTSUPP) dc->error = 0; if (dc->error) printk_ratelimited( "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", KERN_INFO, sbi->sb->s_id, dc->lstart, dc->start, dc->len, dc->error); __detach_discard_cmd(dcc, dc); } static void f2fs_submit_discard_endio(struct bio *bio) { struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; unsigned long flags; spin_lock_irqsave(&dc->lock, flags); if (!dc->error) dc->error = blk_status_to_errno(bio->bi_status); dc->bio_ref--; if (!dc->bio_ref && dc->state == D_SUBMIT) { dc->state = D_DONE; complete_all(&dc->wait); } spin_unlock_irqrestore(&dc->lock, flags); bio_put(bio); } static void __check_sit_bitmap(struct f2fs_sb_info *sbi, block_t start, block_t end) { #ifdef CONFIG_F2FS_CHECK_FS struct seg_entry *sentry; unsigned int segno; block_t blk = start; unsigned long offset, size, max_blocks = sbi->blocks_per_seg; unsigned long *map; while (blk < end) { segno = GET_SEGNO(sbi, blk); sentry = get_seg_entry(sbi, segno); offset = GET_BLKOFF_FROM_SEG0(sbi, blk); if (end < START_BLOCK(sbi, segno + 1)) size = GET_BLKOFF_FROM_SEG0(sbi, end); else size = max_blocks; map = (unsigned long *)(sentry->cur_valid_map); offset = __find_rev_next_bit(map, size, offset); f2fs_bug_on(sbi, offset != size); blk = START_BLOCK(sbi, segno + 1); } #endif } static void __init_discard_policy(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, int discard_type, unsigned int granularity) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; /* common policy */ dpolicy->type = discard_type; dpolicy->sync = true; dpolicy->ordered = false; dpolicy->granularity = granularity; dpolicy->max_requests = dcc->max_discard_request; dpolicy->io_aware_gran = MAX_PLIST_NUM; dpolicy->timeout = false; if (discard_type == DPOLICY_BG) { dpolicy->min_interval = dcc->min_discard_issue_time; dpolicy->mid_interval = dcc->mid_discard_issue_time; dpolicy->max_interval = dcc->max_discard_issue_time; dpolicy->io_aware = true; dpolicy->sync = false; dpolicy->ordered = true; if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { dpolicy->granularity = 1; if (atomic_read(&dcc->discard_cmd_cnt)) dpolicy->max_interval = dcc->min_discard_issue_time; } } else if (discard_type == DPOLICY_FORCE) { dpolicy->min_interval = dcc->min_discard_issue_time; dpolicy->mid_interval = dcc->mid_discard_issue_time; dpolicy->max_interval = dcc->max_discard_issue_time; dpolicy->io_aware = false; } else if (discard_type == DPOLICY_FSTRIM) { dpolicy->io_aware = false; } else if (discard_type == DPOLICY_UMOUNT) { dpolicy->io_aware = false; /* we need to issue all to keep CP_TRIMMED_FLAG */ dpolicy->granularity = 1; dpolicy->timeout = true; } } static void __update_discard_tree_range(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len); /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ static int __submit_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, struct discard_cmd *dc, unsigned int *issued) { struct block_device *bdev = dc->bdev; struct request_queue *q = bdev_get_queue(bdev); unsigned int max_discard_blocks = SECTOR_TO_BLOCK(q->limits.max_discard_sectors); struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? &(dcc->fstrim_list) : &(dcc->wait_list); int flag = dpolicy->sync ? REQ_SYNC : 0; block_t lstart, start, len, total_len; int err = 0; if (dc->state != D_PREP) return 0; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) return 0; trace_f2fs_issue_discard(bdev, dc->start, dc->len); lstart = dc->lstart; start = dc->start; len = dc->len; total_len = len; dc->len = 0; while (total_len && *issued < dpolicy->max_requests && !err) { struct bio *bio = NULL; unsigned long flags; bool last = true; if (len > max_discard_blocks) { len = max_discard_blocks; last = false; } (*issued)++; if (*issued == dpolicy->max_requests) last = true; dc->len += len; if (time_to_inject(sbi, FAULT_DISCARD)) { f2fs_show_injection_info(sbi, FAULT_DISCARD); err = -EIO; goto submit; } err = __blkdev_issue_discard(bdev, SECTOR_FROM_BLOCK(start), SECTOR_FROM_BLOCK(len), GFP_NOFS, 0, &bio); submit: if (err) { spin_lock_irqsave(&dc->lock, flags); if (dc->state == D_PARTIAL) dc->state = D_SUBMIT; spin_unlock_irqrestore(&dc->lock, flags); break; } f2fs_bug_on(sbi, !bio); /* * should keep before submission to avoid D_DONE * right away */ spin_lock_irqsave(&dc->lock, flags); if (last) dc->state = D_SUBMIT; else dc->state = D_PARTIAL; dc->bio_ref++; spin_unlock_irqrestore(&dc->lock, flags); atomic_inc(&dcc->queued_discard); dc->queued++; list_move_tail(&dc->list, wait_list); /* sanity check on discard range */ __check_sit_bitmap(sbi, lstart, lstart + len); bio->bi_private = dc; bio->bi_end_io = f2fs_submit_discard_endio; bio->bi_opf |= flag; submit_bio(bio); atomic_inc(&dcc->issued_discard); f2fs_update_iostat(sbi, FS_DISCARD, 1); lstart += len; start += len; total_len -= len; len = total_len; } if (!err && len) { dcc->undiscard_blks -= len; __update_discard_tree_range(sbi, bdev, lstart, start, len); } return err; } static void __insert_discard_tree(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len, struct rb_node **insert_p, struct rb_node *insert_parent) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct rb_node **p; struct rb_node *parent = NULL; bool leftmost = true; if (insert_p && insert_parent) { parent = insert_parent; p = insert_p; goto do_insert; } p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart, &leftmost); do_insert: __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p, leftmost); } static void __relocate_discard_cmd(struct discard_cmd_control *dcc, struct discard_cmd *dc) { list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); } static void __punch_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc, block_t blkaddr) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_info di = dc->di; bool modified = false; if (dc->state == D_DONE || dc->len == 1) { __remove_discard_cmd(sbi, dc); return; } dcc->undiscard_blks -= di.len; if (blkaddr > di.lstart) { dc->len = blkaddr - dc->lstart; dcc->undiscard_blks += dc->len; __relocate_discard_cmd(dcc, dc); modified = true; } if (blkaddr < di.lstart + di.len - 1) { if (modified) { __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, di.start + blkaddr + 1 - di.lstart, di.lstart + di.len - 1 - blkaddr, NULL, NULL); } else { dc->lstart++; dc->len--; dc->start++; dcc->undiscard_blks += dc->len; __relocate_discard_cmd(dcc, dc); } } } static void __update_discard_tree_range(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t lstart, block_t start, block_t len) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct discard_cmd *dc; struct discard_info di = {0}; struct rb_node **insert_p = NULL, *insert_parent = NULL; struct request_queue *q = bdev_get_queue(bdev); unsigned int max_discard_blocks = SECTOR_TO_BLOCK(q->limits.max_discard_sectors); block_t end = lstart + len; dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, NULL, lstart, (struct rb_entry **)&prev_dc, (struct rb_entry **)&next_dc, &insert_p, &insert_parent, true, NULL); if (dc) prev_dc = dc; if (!prev_dc) { di.lstart = lstart; di.len = next_dc ? next_dc->lstart - lstart : len; di.len = min(di.len, len); di.start = start; } while (1) { struct rb_node *node; bool merged = false; struct discard_cmd *tdc = NULL; if (prev_dc) { di.lstart = prev_dc->lstart + prev_dc->len; if (di.lstart < lstart) di.lstart = lstart; if (di.lstart >= end) break; if (!next_dc || next_dc->lstart > end) di.len = end - di.lstart; else di.len = next_dc->lstart - di.lstart; di.start = start + di.lstart - lstart; } if (!di.len) goto next; if (prev_dc && prev_dc->state == D_PREP && prev_dc->bdev == bdev && __is_discard_back_mergeable(&di, &prev_dc->di, max_discard_blocks)) { prev_dc->di.len += di.len; dcc->undiscard_blks += di.len; __relocate_discard_cmd(dcc, prev_dc); di = prev_dc->di; tdc = prev_dc; merged = true; } if (next_dc && next_dc->state == D_PREP && next_dc->bdev == bdev && __is_discard_front_mergeable(&di, &next_dc->di, max_discard_blocks)) { next_dc->di.lstart = di.lstart; next_dc->di.len += di.len; next_dc->di.start = di.start; dcc->undiscard_blks += di.len; __relocate_discard_cmd(dcc, next_dc); if (tdc) __remove_discard_cmd(sbi, tdc); merged = true; } if (!merged) { __insert_discard_tree(sbi, bdev, di.lstart, di.start, di.len, NULL, NULL); } next: prev_dc = next_dc; if (!prev_dc) break; node = rb_next(&prev_dc->rb_node); next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); } } static int __queue_discard_cmd(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { block_t lblkstart = blkstart; if (!f2fs_bdev_support_discard(bdev)) return 0; trace_f2fs_queue_discard(bdev, blkstart, blklen); if (f2fs_is_multi_device(sbi)) { int devi = f2fs_target_device_index(sbi, blkstart); blkstart -= FDEV(devi).start_blk; } mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); return 0; } static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct rb_node **insert_p = NULL, *insert_parent = NULL; struct discard_cmd *dc; struct blk_plug plug; unsigned int pos = dcc->next_pos; unsigned int issued = 0; bool io_interrupted = false; mutex_lock(&dcc->cmd_lock); dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, NULL, pos, (struct rb_entry **)&prev_dc, (struct rb_entry **)&next_dc, &insert_p, &insert_parent, true, NULL); if (!dc) dc = next_dc; blk_start_plug(&plug); while (dc) { struct rb_node *node; int err = 0; if (dc->state != D_PREP) goto next; if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { io_interrupted = true; break; } dcc->next_pos = dc->lstart + dc->len; err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); if (issued >= dpolicy->max_requests) break; next: node = rb_next(&dc->rb_node); if (err) __remove_discard_cmd(sbi, dc); dc = rb_entry_safe(node, struct discard_cmd, rb_node); } blk_finish_plug(&plug); if (!dc) dcc->next_pos = 0; mutex_unlock(&dcc->cmd_lock); if (!issued && io_interrupted) issued = -1; return issued; } static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy); static int __issue_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc, *tmp; struct blk_plug plug; int i, issued; bool io_interrupted = false; if (dpolicy->timeout) f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); retry: issued = 0; for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { if (dpolicy->timeout && f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) break; if (i + 1 < dpolicy->granularity) break; if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) return __issue_discard_cmd_orderly(sbi, dpolicy); pend_list = &dcc->pend_list[i]; mutex_lock(&dcc->cmd_lock); if (list_empty(pend_list)) goto next; if (unlikely(dcc->rbtree_check)) f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false)); blk_start_plug(&plug); list_for_each_entry_safe(dc, tmp, pend_list, list) { f2fs_bug_on(sbi, dc->state != D_PREP); if (dpolicy->timeout && f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) break; if (dpolicy->io_aware && i < dpolicy->io_aware_gran && !is_idle(sbi, DISCARD_TIME)) { io_interrupted = true; break; } __submit_discard_cmd(sbi, dpolicy, dc, &issued); if (issued >= dpolicy->max_requests) break; } blk_finish_plug(&plug); next: mutex_unlock(&dcc->cmd_lock); if (issued >= dpolicy->max_requests || io_interrupted) break; } if (dpolicy->type == DPOLICY_UMOUNT && issued) { __wait_all_discard_cmd(sbi, dpolicy); goto retry; } if (!issued && io_interrupted) issued = -1; return issued; } static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *pend_list; struct discard_cmd *dc, *tmp; int i; bool dropped = false; mutex_lock(&dcc->cmd_lock); for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { pend_list = &dcc->pend_list[i]; list_for_each_entry_safe(dc, tmp, pend_list, list) { f2fs_bug_on(sbi, dc->state != D_PREP); __remove_discard_cmd(sbi, dc); dropped = true; } } mutex_unlock(&dcc->cmd_lock); return dropped; } void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) { __drop_discard_cmd(sbi); } static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, struct discard_cmd *dc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; unsigned int len = 0; wait_for_completion_io(&dc->wait); mutex_lock(&dcc->cmd_lock); f2fs_bug_on(sbi, dc->state != D_DONE); dc->ref--; if (!dc->ref) { if (!dc->error) len = dc->len; __remove_discard_cmd(sbi, dc); } mutex_unlock(&dcc->cmd_lock); return len; } static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, block_t start, block_t end) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? &(dcc->fstrim_list) : &(dcc->wait_list); struct discard_cmd *dc, *tmp; bool need_wait; unsigned int trimmed = 0; next: need_wait = false; mutex_lock(&dcc->cmd_lock); list_for_each_entry_safe(dc, tmp, wait_list, list) { if (dc->lstart + dc->len <= start || end <= dc->lstart) continue; if (dc->len < dpolicy->granularity) continue; if (dc->state == D_DONE && !dc->ref) { wait_for_completion_io(&dc->wait); if (!dc->error) trimmed += dc->len; __remove_discard_cmd(sbi, dc); } else { dc->ref++; need_wait = true; break; } } mutex_unlock(&dcc->cmd_lock); if (need_wait) { trimmed += __wait_one_discard_bio(sbi, dc); goto next; } return trimmed; } static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy) { struct discard_policy dp; unsigned int discard_blks; if (dpolicy) return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); /* wait all */ __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); return discard_blks; } /* This should be covered by global mutex, &sit_i->sentry_lock */ static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *dc; bool need_wait = false; mutex_lock(&dcc->cmd_lock); dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, NULL, blkaddr); if (dc) { if (dc->state == D_PREP) { __punch_discard_cmd(sbi, dc, blkaddr); } else { dc->ref++; need_wait = true; } } mutex_unlock(&dcc->cmd_lock); if (need_wait) __wait_one_discard_bio(sbi, dc); } void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; if (dcc && dcc->f2fs_issue_discard) { struct task_struct *discard_thread = dcc->f2fs_issue_discard; dcc->f2fs_issue_discard = NULL; kthread_stop(discard_thread); } } /* This comes from f2fs_put_super */ bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_policy dpolicy; bool dropped; __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity); __issue_discard_cmd(sbi, &dpolicy); dropped = __drop_discard_cmd(sbi); /* just to make sure there is no pending discard commands */ __wait_all_discard_cmd(sbi, NULL); f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); return dropped; } static int issue_discard_thread(void *data) { struct f2fs_sb_info *sbi = data; struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; wait_queue_head_t *q = &dcc->discard_wait_queue; struct discard_policy dpolicy; unsigned int wait_ms = dcc->min_discard_issue_time; int issued; set_freezable(); do { if (sbi->gc_mode == GC_URGENT_HIGH || !f2fs_available_free_memory(sbi, DISCARD_CACHE)) __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); else __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, dcc->discard_granularity); if (!atomic_read(&dcc->discard_cmd_cnt)) wait_ms = dpolicy.max_interval; wait_event_interruptible_timeout(*q, kthread_should_stop() || freezing(current) || dcc->discard_wake, msecs_to_jiffies(wait_ms)); if (dcc->discard_wake) dcc->discard_wake = 0; /* clean up pending candidates before going to sleep */ if (atomic_read(&dcc->queued_discard)) __wait_all_discard_cmd(sbi, NULL); if (try_to_freeze()) continue; if (f2fs_readonly(sbi->sb)) continue; if (kthread_should_stop()) return 0; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { wait_ms = dpolicy.max_interval; continue; } if (!atomic_read(&dcc->discard_cmd_cnt)) continue; sb_start_intwrite(sbi->sb); issued = __issue_discard_cmd(sbi, &dpolicy); if (issued > 0) { __wait_all_discard_cmd(sbi, &dpolicy); wait_ms = dpolicy.min_interval; } else if (issued == -1) { wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); if (!wait_ms) wait_ms = dpolicy.mid_interval; } else { wait_ms = dpolicy.max_interval; } sb_end_intwrite(sbi->sb); } while (!kthread_should_stop()); return 0; } #ifdef CONFIG_BLK_DEV_ZONED static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { sector_t sector, nr_sects; block_t lblkstart = blkstart; int devi = 0; if (f2fs_is_multi_device(sbi)) { devi = f2fs_target_device_index(sbi, blkstart); if (blkstart < FDEV(devi).start_blk || blkstart > FDEV(devi).end_blk) { f2fs_err(sbi, "Invalid block %x", blkstart); return -EIO; } blkstart -= FDEV(devi).start_blk; } /* For sequential zones, reset the zone write pointer */ if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { sector = SECTOR_FROM_BLOCK(blkstart); nr_sects = SECTOR_FROM_BLOCK(blklen); if (sector & (bdev_zone_sectors(bdev) - 1) || nr_sects != bdev_zone_sectors(bdev)) { f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", devi, sbi->s_ndevs ? FDEV(devi).path : "", blkstart, blklen); return -EIO; } trace_f2fs_issue_reset_zone(bdev, blkstart); return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, sector, nr_sects, GFP_NOFS); } /* For conventional zones, use regular discard if supported */ return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); } #endif static int __issue_discard_async(struct f2fs_sb_info *sbi, struct block_device *bdev, block_t blkstart, block_t blklen) { #ifdef CONFIG_BLK_DEV_ZONED if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); #endif return __queue_discard_cmd(sbi, bdev, blkstart, blklen); } static int f2fs_issue_discard(struct f2fs_sb_info *sbi, block_t blkstart, block_t blklen) { sector_t start = blkstart, len = 0; struct block_device *bdev; struct seg_entry *se; unsigned int offset; block_t i; int err = 0; bdev = f2fs_target_device(sbi, blkstart, NULL); for (i = blkstart; i < blkstart + blklen; i++, len++) { if (i != start) { struct block_device *bdev2 = f2fs_target_device(sbi, i, NULL); if (bdev2 != bdev) { err = __issue_discard_async(sbi, bdev, start, len); if (err) return err; bdev = bdev2; start = i; len = 0; } } se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); offset = GET_BLKOFF_FROM_SEG0(sbi, i); if (f2fs_block_unit_discard(sbi) && !f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; } if (len) err = __issue_discard_async(sbi, bdev, start, len); return err; } static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, bool check_only) { int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); int max_blocks = sbi->blocks_per_seg; struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); unsigned long *cur_map = (unsigned long *)se->cur_valid_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *discard_map = (unsigned long *)se->discard_map; unsigned long *dmap = SIT_I(sbi)->tmp_map; unsigned int start = 0, end = -1; bool force = (cpc->reason & CP_DISCARD); struct discard_entry *de = NULL; struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; int i; if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || !f2fs_block_unit_discard(sbi)) return false; if (!force) { if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || SM_I(sbi)->dcc_info->nr_discards >= SM_I(sbi)->dcc_info->max_discards) return false; } /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ for (i = 0; i < entries; i++) dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; while (force || SM_I(sbi)->dcc_info->nr_discards <= SM_I(sbi)->dcc_info->max_discards) { start = __find_rev_next_bit(dmap, max_blocks, end + 1); if (start >= max_blocks) break; end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); if (force && start && end != max_blocks && (end - start) < cpc->trim_minlen) continue; if (check_only) return true; if (!de) { de = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_F2FS_ZERO, true, NULL); de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); list_add_tail(&de->list, head); } for (i = start; i < end; i++) __set_bit_le(i, (void *)de->discard_map); SM_I(sbi)->dcc_info->nr_discards += end - start; } return false; } static void release_discard_addr(struct discard_entry *entry) { list_del(&entry->list); kmem_cache_free(discard_entry_slab, entry); } void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) { struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); struct discard_entry *entry, *this; /* drop caches */ list_for_each_entry_safe(entry, this, head, list) release_discard_addr(entry); } /* * Should call f2fs_clear_prefree_segments after checkpoint is done. */ static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno; mutex_lock(&dirty_i->seglist_lock); for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) __set_test_and_free(sbi, segno, false); mutex_unlock(&dirty_i->seglist_lock); } void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct list_head *head = &dcc->entry_list; struct discard_entry *entry, *this; struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; unsigned int start = 0, end = -1; unsigned int secno, start_segno; bool force = (cpc->reason & CP_DISCARD); bool section_alignment = F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION; if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) section_alignment = true; mutex_lock(&dirty_i->seglist_lock); while (1) { int i; if (section_alignment && end != -1) end--; start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); if (start >= MAIN_SEGS(sbi)) break; end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), start + 1); if (section_alignment) { start = rounddown(start, sbi->segs_per_sec); end = roundup(end, sbi->segs_per_sec); } for (i = start; i < end; i++) { if (test_and_clear_bit(i, prefree_map)) dirty_i->nr_dirty[PRE]--; } if (!f2fs_realtime_discard_enable(sbi)) continue; if (force && start >= cpc->trim_start && (end - 1) <= cpc->trim_end) continue; if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { f2fs_issue_discard(sbi, START_BLOCK(sbi, start), (end - start) << sbi->log_blocks_per_seg); continue; } next: secno = GET_SEC_FROM_SEG(sbi, start); start_segno = GET_SEG_FROM_SEC(sbi, secno); if (!IS_CURSEC(sbi, secno) && !get_valid_blocks(sbi, start, true)) f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), sbi->segs_per_sec << sbi->log_blocks_per_seg); start = start_segno + sbi->segs_per_sec; if (start < end) goto next; else end = start - 1; } mutex_unlock(&dirty_i->seglist_lock); if (!f2fs_block_unit_discard(sbi)) goto wakeup; /* send small discards */ list_for_each_entry_safe(entry, this, head, list) { unsigned int cur_pos = 0, next_pos, len, total_len = 0; bool is_valid = test_bit_le(0, entry->discard_map); find_next: if (is_valid) { next_pos = find_next_zero_bit_le(entry->discard_map, sbi->blocks_per_seg, cur_pos); len = next_pos - cur_pos; if (f2fs_sb_has_blkzoned(sbi) || (force && len < cpc->trim_minlen)) goto skip; f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, len); total_len += len; } else { next_pos = find_next_bit_le(entry->discard_map, sbi->blocks_per_seg, cur_pos); } skip: cur_pos = next_pos; is_valid = !is_valid; if (cur_pos < sbi->blocks_per_seg) goto find_next; release_discard_addr(entry); dcc->nr_discards -= total_len; } wakeup: wake_up_discard_thread(sbi, false); } int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; int err = 0; if (!f2fs_realtime_discard_enable(sbi)) return 0; dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); if (IS_ERR(dcc->f2fs_issue_discard)) err = PTR_ERR(dcc->f2fs_issue_discard); return err; } static int create_discard_cmd_control(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc; int err = 0, i; if (SM_I(sbi)->dcc_info) { dcc = SM_I(sbi)->dcc_info; goto init_thread; } dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); if (!dcc) return -ENOMEM; dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) dcc->discard_granularity = sbi->blocks_per_seg; else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) dcc->discard_granularity = BLKS_PER_SEC(sbi); INIT_LIST_HEAD(&dcc->entry_list); for (i = 0; i < MAX_PLIST_NUM; i++) INIT_LIST_HEAD(&dcc->pend_list[i]); INIT_LIST_HEAD(&dcc->wait_list); INIT_LIST_HEAD(&dcc->fstrim_list); mutex_init(&dcc->cmd_lock); atomic_set(&dcc->issued_discard, 0); atomic_set(&dcc->queued_discard, 0); atomic_set(&dcc->discard_cmd_cnt, 0); dcc->nr_discards = 0; dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; dcc->undiscard_blks = 0; dcc->next_pos = 0; dcc->root = RB_ROOT_CACHED; dcc->rbtree_check = false; init_waitqueue_head(&dcc->discard_wait_queue); SM_I(sbi)->dcc_info = dcc; init_thread: err = f2fs_start_discard_thread(sbi); if (err) { kfree(dcc); SM_I(sbi)->dcc_info = NULL; } return err; } static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; if (!dcc) return; f2fs_stop_discard_thread(sbi); /* * Recovery can cache discard commands, so in error path of * fill_super(), it needs to give a chance to handle them. */ if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) f2fs_issue_discard_timeout(sbi); kfree(dcc); SM_I(sbi)->dcc_info = NULL; } static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { sit_i->dirty_sentries++; return false; } return true; } static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, unsigned int segno, int modified) { struct seg_entry *se = get_seg_entry(sbi, segno); se->type = type; if (modified) __mark_sit_entry_dirty(sbi, segno); } static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr) { unsigned int segno = GET_SEGNO(sbi, blkaddr); if (segno == NULL_SEGNO) return 0; return get_seg_entry(sbi, segno)->mtime; } static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, unsigned long long old_mtime) { struct seg_entry *se; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned long long ctime = get_mtime(sbi, false); unsigned long long mtime = old_mtime ? old_mtime : ctime; if (segno == NULL_SEGNO) return; se = get_seg_entry(sbi, segno); if (!se->mtime) se->mtime = mtime; else se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, se->valid_blocks + 1); if (ctime > SIT_I(sbi)->max_mtime) SIT_I(sbi)->max_mtime = ctime; } static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) { struct seg_entry *se; unsigned int segno, offset; long int new_vblocks; bool exist; #ifdef CONFIG_F2FS_CHECK_FS bool mir_exist; #endif segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); new_vblocks = se->valid_blocks + del; offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); f2fs_bug_on(sbi, (new_vblocks < 0 || (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); se->valid_blocks = new_vblocks; /* Update valid block bitmap */ if (del > 0) { exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); #ifdef CONFIG_F2FS_CHECK_FS mir_exist = f2fs_test_and_set_bit(offset, se->cur_valid_map_mir); if (unlikely(exist != mir_exist)) { f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", blkaddr, exist); f2fs_bug_on(sbi, 1); } #endif if (unlikely(exist)) { f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr); f2fs_bug_on(sbi, 1); se->valid_blocks--; del = 0; } if (f2fs_block_unit_discard(sbi) && !f2fs_test_and_set_bit(offset, se->discard_map)) sbi->discard_blks--; /* * SSR should never reuse block which is checkpointed * or newly invalidated. */ if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks++; } } else { exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); #ifdef CONFIG_F2FS_CHECK_FS mir_exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map_mir); if (unlikely(exist != mir_exist)) { f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", blkaddr, exist); f2fs_bug_on(sbi, 1); } #endif if (unlikely(!exist)) { f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr); f2fs_bug_on(sbi, 1); se->valid_blocks++; del = 0; } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { /* * If checkpoints are off, we must not reuse data that * was used in the previous checkpoint. If it was used * before, we must track that to know how much space we * really have. */ if (f2fs_test_bit(offset, se->ckpt_valid_map)) { spin_lock(&sbi->stat_lock); sbi->unusable_block_count++; spin_unlock(&sbi->stat_lock); } } if (f2fs_block_unit_discard(sbi) && f2fs_test_and_clear_bit(offset, se->discard_map)) sbi->discard_blks++; } if (!f2fs_test_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks += del; __mark_sit_entry_dirty(sbi, segno); /* update total number of valid blocks to be written in ckpt area */ SIT_I(sbi)->written_valid_blocks += del; if (__is_large_section(sbi)) get_sec_entry(sbi, segno)->valid_blocks += del; } void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) { unsigned int segno = GET_SEGNO(sbi, addr); struct sit_info *sit_i = SIT_I(sbi); f2fs_bug_on(sbi, addr == NULL_ADDR); if (addr == NEW_ADDR || addr == COMPRESS_ADDR) return; invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); f2fs_invalidate_compress_page(sbi, addr); /* add it into sit main buffer */ down_write(&sit_i->sentry_lock); update_segment_mtime(sbi, addr, 0); update_sit_entry(sbi, addr, -1); /* add it into dirty seglist */ locate_dirty_segment(sbi, segno); up_write(&sit_i->sentry_lock); } bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno, offset; struct seg_entry *se; bool is_cp = false; if (!__is_valid_data_blkaddr(blkaddr)) return true; down_read(&sit_i->sentry_lock); segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); if (f2fs_test_bit(offset, se->ckpt_valid_map)) is_cp = true; up_read(&sit_i->sentry_lock); return is_cp; } /* * This function should be resided under the curseg_mutex lock */ static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, struct f2fs_summary *sum) { struct curseg_info *curseg = CURSEG_I(sbi, type); void *addr = curseg->sum_blk; addr += curseg->next_blkoff * sizeof(struct f2fs_summary); memcpy(addr, sum, sizeof(struct f2fs_summary)); } /* * Calculate the number of current summary pages for writing */ int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) { int valid_sum_count = 0; int i, sum_in_page; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { if (sbi->ckpt->alloc_type[i] == SSR) valid_sum_count += sbi->blocks_per_seg; else { if (for_ra) valid_sum_count += le16_to_cpu( F2FS_CKPT(sbi)->cur_data_blkoff[i]); else valid_sum_count += curseg_blkoff(sbi, i); } } sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE; if (valid_sum_count <= sum_in_page) return 1; else if ((valid_sum_count - sum_in_page) <= (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) return 2; return 3; } /* * Caller should put this summary page */ struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) { if (unlikely(f2fs_cp_error(sbi))) return ERR_PTR(-EIO); return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); } void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) { struct page *page = f2fs_grab_meta_page(sbi, blk_addr); memcpy(page_address(page), src, PAGE_SIZE); set_page_dirty(page); f2fs_put_page(page, 1); } static void write_sum_page(struct f2fs_sb_info *sbi, struct f2fs_summary_block *sum_blk, block_t blk_addr) { f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); } static void write_current_sum_page(struct f2fs_sb_info *sbi, int type, block_t blk_addr) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct page *page = f2fs_grab_meta_page(sbi, blk_addr); struct f2fs_summary_block *src = curseg->sum_blk; struct f2fs_summary_block *dst; dst = (struct f2fs_summary_block *)page_address(page); memset(dst, 0, PAGE_SIZE); mutex_lock(&curseg->curseg_mutex); down_read(&curseg->journal_rwsem); memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); up_read(&curseg->journal_rwsem); memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); mutex_unlock(&curseg->curseg_mutex); set_page_dirty(page); f2fs_put_page(page, 1); } static int is_next_segment_free(struct f2fs_sb_info *sbi, struct curseg_info *curseg, int type) { unsigned int segno = curseg->segno + 1; struct free_segmap_info *free_i = FREE_I(sbi); if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) return !test_bit(segno, free_i->free_segmap); return 0; } /* * Find a new segment from the free segments bitmap to right order * This function should be returned with success, otherwise BUG */ static void get_new_segment(struct f2fs_sb_info *sbi, unsigned int *newseg, bool new_sec, int dir) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno, secno, zoneno; unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); unsigned int left_start = hint; bool init = true; int go_left = 0; int i; spin_lock(&free_i->segmap_lock); if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { segno = find_next_zero_bit(free_i->free_segmap, GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) goto got_it; } find_other_zone: secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); if (secno >= MAIN_SECS(sbi)) { if (dir == ALLOC_RIGHT) { secno = find_first_zero_bit(free_i->free_secmap, MAIN_SECS(sbi)); f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); } else { go_left = 1; left_start = hint - 1; } } if (go_left == 0) goto skip_left; while (test_bit(left_start, free_i->free_secmap)) { if (left_start > 0) { left_start--; continue; } left_start = find_first_zero_bit(free_i->free_secmap, MAIN_SECS(sbi)); f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); break; } secno = left_start; skip_left: segno = GET_SEG_FROM_SEC(sbi, secno); zoneno = GET_ZONE_FROM_SEC(sbi, secno); /* give up on finding another zone */ if (!init) goto got_it; if (sbi->secs_per_zone == 1) goto got_it; if (zoneno == old_zoneno) goto got_it; if (dir == ALLOC_LEFT) { if (!go_left && zoneno + 1 >= total_zones) goto got_it; if (go_left && zoneno == 0) goto got_it; } for (i = 0; i < NR_CURSEG_TYPE; i++) if (CURSEG_I(sbi, i)->zone == zoneno) break; if (i < NR_CURSEG_TYPE) { /* zone is in user, try another */ if (go_left) hint = zoneno * sbi->secs_per_zone - 1; else if (zoneno + 1 >= total_zones) hint = 0; else hint = (zoneno + 1) * sbi->secs_per_zone; init = false; goto find_other_zone; } got_it: /* set it as dirty segment in free segmap */ f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); __set_inuse(sbi, segno); *newseg = segno; spin_unlock(&free_i->segmap_lock); } static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; unsigned short seg_type = curseg->seg_type; curseg->inited = true; curseg->segno = curseg->next_segno; curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); curseg->next_blkoff = 0; curseg->next_segno = NULL_SEGNO; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); sanity_check_seg_type(sbi, seg_type); if (IS_DATASEG(seg_type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(seg_type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); } static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned short seg_type = curseg->seg_type; sanity_check_seg_type(sbi, seg_type); if (f2fs_need_rand_seg(sbi)) return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); /* if segs_per_sec is large than 1, we need to keep original policy. */ if (__is_large_section(sbi)) return curseg->segno; /* inmem log may not locate on any segment after mount */ if (!curseg->inited) return 0; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return 0; if (test_opt(sbi, NOHEAP) && (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) return 0; if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) return SIT_I(sbi)->last_victim[ALLOC_NEXT]; /* find segments from 0 to reuse freed segments */ if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) return 0; return curseg->segno; } /* * Allocate a current working segment. * This function always allocates a free segment in LFS manner. */ static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned short seg_type = curseg->seg_type; unsigned int segno = curseg->segno; int dir = ALLOC_LEFT; if (curseg->inited) write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) dir = ALLOC_RIGHT; if (test_opt(sbi, NOHEAP)) dir = ALLOC_RIGHT; segno = __get_next_segno(sbi, type); get_new_segment(sbi, &segno, new_sec, dir); curseg->next_segno = segno; reset_curseg(sbi, type, 1); curseg->alloc_type = LFS; if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) curseg->fragment_remained_chunk = prandom_u32() % sbi->max_fragment_chunk + 1; } static int __next_free_blkoff(struct f2fs_sb_info *sbi, int segno, block_t start) { struct seg_entry *se = get_seg_entry(sbi, segno); int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); unsigned long *target_map = SIT_I(sbi)->tmp_map; unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; unsigned long *cur_map = (unsigned long *)se->cur_valid_map; int i; for (i = 0; i < entries; i++) target_map[i] = ckpt_map[i] | cur_map[i]; return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); } /* * If a segment is written by LFS manner, next block offset is just obtained * by increasing the current block offset. However, if a segment is written by * SSR manner, next block offset obtained by calling __next_free_blkoff */ static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, struct curseg_info *seg) { if (seg->alloc_type == SSR) { seg->next_blkoff = __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); } else { seg->next_blkoff++; if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { /* To allocate block chunks in different sizes, use random number */ if (--seg->fragment_remained_chunk <= 0) { seg->fragment_remained_chunk = prandom_u32() % sbi->max_fragment_chunk + 1; seg->next_blkoff += prandom_u32() % sbi->max_fragment_hole + 1; } } } } bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) { return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; } /* * This function always allocates a used segment(from dirty seglist) by SSR * manner, so it should recover the existing segment information of valid blocks */ static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int new_segno = curseg->next_segno; struct f2fs_summary_block *sum_node; struct page *sum_page; if (flush) write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); __set_test_and_inuse(sbi, new_segno); mutex_lock(&dirty_i->seglist_lock); __remove_dirty_segment(sbi, new_segno, PRE); __remove_dirty_segment(sbi, new_segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); reset_curseg(sbi, type, 1); curseg->alloc_type = SSR; curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); sum_page = f2fs_get_sum_page(sbi, new_segno); if (IS_ERR(sum_page)) { /* GC won't be able to use stale summary pages by cp_error */ memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); return; } sum_node = (struct f2fs_summary_block *)page_address(sum_page); memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); f2fs_put_page(sum_page, 1); } static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, int alloc_mode, unsigned long long age); static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, int target_type, int alloc_mode, unsigned long long age) { struct curseg_info *curseg = CURSEG_I(sbi, type); curseg->seg_type = target_type; if (get_ssr_segment(sbi, type, alloc_mode, age)) { struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); curseg->seg_type = se->type; change_curseg(sbi, type, true); } else { /* allocate cold segment by default */ curseg->seg_type = CURSEG_COLD_DATA; new_curseg(sbi, type, true); } stat_inc_seg_type(sbi, curseg); } static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); if (!sbi->am.atgc_enabled) return; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&SIT_I(sbi)->sentry_lock); get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); up_write(&SIT_I(sbi)->sentry_lock); mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); } void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) { __f2fs_init_atgc_curseg(sbi); } static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); if (!curseg->inited) goto out; if (get_valid_blocks(sbi, curseg->segno, false)) { write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); } else { mutex_lock(&DIRTY_I(sbi)->seglist_lock); __set_test_and_free(sbi, curseg->segno, true); mutex_unlock(&DIRTY_I(sbi)->seglist_lock); } out: mutex_unlock(&curseg->curseg_mutex); } void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) { __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); if (sbi->am.atgc_enabled) __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); } static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); if (!curseg->inited) goto out; if (get_valid_blocks(sbi, curseg->segno, false)) goto out; mutex_lock(&DIRTY_I(sbi)->seglist_lock); __set_test_and_inuse(sbi, curseg->segno); mutex_unlock(&DIRTY_I(sbi)->seglist_lock); out: mutex_unlock(&curseg->curseg_mutex); } void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) { __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); if (sbi->am.atgc_enabled) __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); } static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, int alloc_mode, unsigned long long age) { struct curseg_info *curseg = CURSEG_I(sbi, type); const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; unsigned segno = NULL_SEGNO; unsigned short seg_type = curseg->seg_type; int i, cnt; bool reversed = false; sanity_check_seg_type(sbi, seg_type); /* f2fs_need_SSR() already forces to do this */ if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { curseg->next_segno = segno; return 1; } /* For node segments, let's do SSR more intensively */ if (IS_NODESEG(seg_type)) { if (seg_type >= CURSEG_WARM_NODE) { reversed = true; i = CURSEG_COLD_NODE; } else { i = CURSEG_HOT_NODE; } cnt = NR_CURSEG_NODE_TYPE; } else { if (seg_type >= CURSEG_WARM_DATA) { reversed = true; i = CURSEG_COLD_DATA; } else { i = CURSEG_HOT_DATA; } cnt = NR_CURSEG_DATA_TYPE; } for (; cnt-- > 0; reversed ? i-- : i++) { if (i == seg_type) continue; if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { curseg->next_segno = segno; return 1; } } /* find valid_blocks=0 in dirty list */ if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { segno = get_free_segment(sbi); if (segno != NULL_SEGNO) { curseg->next_segno = segno; return 1; } } return 0; } /* * flush out current segment and replace it with new segment * This function should be returned with success, otherwise BUG */ static void allocate_segment_by_default(struct f2fs_sb_info *sbi, int type, bool force) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (force) new_curseg(sbi, type, true); else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && curseg->seg_type == CURSEG_WARM_NODE) new_curseg(sbi, type, false); else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg, type) && likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) new_curseg(sbi, type, false); else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) change_curseg(sbi, type, true); else new_curseg(sbi, type, false); stat_inc_seg_type(sbi, curseg); } void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, unsigned int start, unsigned int end) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&SIT_I(sbi)->sentry_lock); segno = CURSEG_I(sbi, type)->segno; if (segno < start || segno > end) goto unlock; if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) change_curseg(sbi, type, true); else new_curseg(sbi, type, true); stat_inc_seg_type(sbi, curseg); locate_dirty_segment(sbi, segno); unlock: up_write(&SIT_I(sbi)->sentry_lock); if (segno != curseg->segno) f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", type, segno, curseg->segno); mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); } static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, bool new_sec, bool force) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int old_segno; if (!curseg->inited) goto alloc; if (force || curseg->next_blkoff || get_valid_blocks(sbi, curseg->segno, new_sec)) goto alloc; if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) return; alloc: old_segno = curseg->segno; SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); locate_dirty_segment(sbi, old_segno); } static void __allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) { __allocate_new_segment(sbi, type, true, force); } void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) { f2fs_down_read(&SM_I(sbi)->curseg_lock); down_write(&SIT_I(sbi)->sentry_lock); __allocate_new_section(sbi, type, force); up_write(&SIT_I(sbi)->sentry_lock); f2fs_up_read(&SM_I(sbi)->curseg_lock); } void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) { int i; f2fs_down_read(&SM_I(sbi)->curseg_lock); down_write(&SIT_I(sbi)->sentry_lock); for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) __allocate_new_segment(sbi, i, false, false); up_write(&SIT_I(sbi)->sentry_lock); f2fs_up_read(&SM_I(sbi)->curseg_lock); } static const struct segment_allocation default_salloc_ops = { .allocate_segment = allocate_segment_by_default, }; bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) { __u64 trim_start = cpc->trim_start; bool has_candidate = false; down_write(&SIT_I(sbi)->sentry_lock); for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { if (add_discard_addrs(sbi, cpc, true)) { has_candidate = true; break; } } up_write(&SIT_I(sbi)->sentry_lock); cpc->trim_start = trim_start; return has_candidate; } static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, struct discard_policy *dpolicy, unsigned int start, unsigned int end) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; struct discard_cmd *prev_dc = NULL, *next_dc = NULL; struct rb_node **insert_p = NULL, *insert_parent = NULL; struct discard_cmd *dc; struct blk_plug plug; int issued; unsigned int trimmed = 0; next: issued = 0; mutex_lock(&dcc->cmd_lock); if (unlikely(dcc->rbtree_check)) f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false)); dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, NULL, start, (struct rb_entry **)&prev_dc, (struct rb_entry **)&next_dc, &insert_p, &insert_parent, true, NULL); if (!dc) dc = next_dc; blk_start_plug(&plug); while (dc && dc->lstart <= end) { struct rb_node *node; int err = 0; if (dc->len < dpolicy->granularity) goto skip; if (dc->state != D_PREP) { list_move_tail(&dc->list, &dcc->fstrim_list); goto skip; } err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); if (issued >= dpolicy->max_requests) { start = dc->lstart + dc->len; if (err) __remove_discard_cmd(sbi, dc); blk_finish_plug(&plug); mutex_unlock(&dcc->cmd_lock); trimmed += __wait_all_discard_cmd(sbi, NULL); f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); goto next; } skip: node = rb_next(&dc->rb_node); if (err) __remove_discard_cmd(sbi, dc); dc = rb_entry_safe(node, struct discard_cmd, rb_node); if (fatal_signal_pending(current)) break; } blk_finish_plug(&plug); mutex_unlock(&dcc->cmd_lock); return trimmed; } int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) { __u64 start = F2FS_BYTES_TO_BLK(range->start); __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; unsigned int start_segno, end_segno; block_t start_block, end_block; struct cp_control cpc; struct discard_policy dpolicy; unsigned long long trimmed = 0; int err = 0; bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) return -EINVAL; if (end < MAIN_BLKADDR(sbi)) goto out; if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); return -EFSCORRUPTED; } /* start/end segment number in main_area */ start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : GET_SEGNO(sbi, end); if (need_align) { start_segno = rounddown(start_segno, sbi->segs_per_sec); end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; } cpc.reason = CP_DISCARD; cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); cpc.trim_start = start_segno; cpc.trim_end = end_segno; if (sbi->discard_blks == 0) goto out; f2fs_down_write(&sbi->gc_lock); err = f2fs_write_checkpoint(sbi, &cpc); f2fs_up_write(&sbi->gc_lock); if (err) goto out; /* * We filed discard candidates, but actually we don't need to wait for * all of them, since they'll be issued in idle time along with runtime * discard option. User configuration looks like using runtime discard * or periodic fstrim instead of it. */ if (f2fs_realtime_discard_enable(sbi)) goto out; start_block = START_BLOCK(sbi, start_segno); end_block = START_BLOCK(sbi, end_segno + 1); __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); trimmed = __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); trimmed += __wait_discard_cmd_range(sbi, &dpolicy, start_block, end_block); out: if (!err) range->len = F2FS_BLK_TO_BYTES(trimmed); return err; } static bool __has_curseg_space(struct f2fs_sb_info *sbi, struct curseg_info *curseg) { return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, curseg->segno); } int f2fs_rw_hint_to_seg_type(enum rw_hint hint) { switch (hint) { case WRITE_LIFE_SHORT: return CURSEG_HOT_DATA; case WRITE_LIFE_EXTREME: return CURSEG_COLD_DATA; default: return CURSEG_WARM_DATA; } } static int __get_segment_type_2(struct f2fs_io_info *fio) { if (fio->type == DATA) return CURSEG_HOT_DATA; else return CURSEG_HOT_NODE; } static int __get_segment_type_4(struct f2fs_io_info *fio) { if (fio->type == DATA) { struct inode *inode = fio->page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else return CURSEG_COLD_DATA; } else { if (IS_DNODE(fio->page) && is_cold_node(fio->page)) return CURSEG_WARM_NODE; else return CURSEG_COLD_NODE; } } static int __get_segment_type_6(struct f2fs_io_info *fio) { if (fio->type == DATA) { struct inode *inode = fio->page->mapping->host; if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) return CURSEG_COLD_DATA_PINNED; if (page_private_gcing(fio->page)) { if (fio->sbi->am.atgc_enabled && (fio->io_type == FS_DATA_IO) && (fio->sbi->gc_mode != GC_URGENT_HIGH)) return CURSEG_ALL_DATA_ATGC; else return CURSEG_COLD_DATA; } if (file_is_cold(inode) || f2fs_need_compress_data(inode)) return CURSEG_COLD_DATA; if (file_is_hot(inode) || is_inode_flag_set(inode, FI_HOT_DATA) || f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode)) return CURSEG_HOT_DATA; return f2fs_rw_hint_to_seg_type(inode->i_write_hint); } else { if (IS_DNODE(fio->page)) return is_cold_node(fio->page) ? CURSEG_WARM_NODE : CURSEG_HOT_NODE; return CURSEG_COLD_NODE; } } static int __get_segment_type(struct f2fs_io_info *fio) { int type = 0; switch (F2FS_OPTION(fio->sbi).active_logs) { case 2: type = __get_segment_type_2(fio); break; case 4: type = __get_segment_type_4(fio); break; case 6: type = __get_segment_type_6(fio); break; default: f2fs_bug_on(fio->sbi, true); } if (IS_HOT(type)) fio->temp = HOT; else if (IS_WARM(type)) fio->temp = WARM; else fio->temp = COLD; return type; } void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, int type, struct f2fs_io_info *fio) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned long long old_mtime; bool from_gc = (type == CURSEG_ALL_DATA_ATGC); struct seg_entry *se = NULL; f2fs_down_read(&SM_I(sbi)->curseg_lock); mutex_lock(&curseg->curseg_mutex); down_write(&sit_i->sentry_lock); if (from_gc) { f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); sanity_check_seg_type(sbi, se->type); f2fs_bug_on(sbi, IS_NODESEG(se->type)); } *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); f2fs_wait_discard_bio(sbi, *new_blkaddr); /* * __add_sum_entry should be resided under the curseg_mutex * because, this function updates a summary entry in the * current summary block. */ __add_sum_entry(sbi, type, sum); __refresh_next_blkoff(sbi, curseg); stat_inc_block_count(sbi, curseg); if (from_gc) { old_mtime = get_segment_mtime(sbi, old_blkaddr); } else { update_segment_mtime(sbi, old_blkaddr, 0); old_mtime = 0; } update_segment_mtime(sbi, *new_blkaddr, old_mtime); /* * SIT information should be updated before segment allocation, * since SSR needs latest valid block information. */ update_sit_entry(sbi, *new_blkaddr, 1); if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) update_sit_entry(sbi, old_blkaddr, -1); if (!__has_curseg_space(sbi, curseg)) { if (from_gc) get_atssr_segment(sbi, type, se->type, AT_SSR, se->mtime); else sit_i->s_ops->allocate_segment(sbi, type, false); } /* * segment dirty status should be updated after segment allocation, * so we just need to update status only one time after previous * segment being closed. */ locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); up_write(&sit_i->sentry_lock); if (page && IS_NODESEG(type)) { fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); f2fs_inode_chksum_set(sbi, page); } if (fio) { struct f2fs_bio_info *io; if (F2FS_IO_ALIGNED(sbi)) fio->retry = false; INIT_LIST_HEAD(&fio->list); fio->in_list = true; io = sbi->write_io[fio->type] + fio->temp; spin_lock(&io->io_lock); list_add_tail(&fio->list, &io->io_list); spin_unlock(&io->io_lock); } mutex_unlock(&curseg->curseg_mutex); f2fs_up_read(&SM_I(sbi)->curseg_lock); } void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, block_t blkaddr, unsigned int blkcnt) { if (!f2fs_is_multi_device(sbi)) return; while (1) { unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; /* update device state for fsync */ f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); /* update device state for checkpoint */ if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { spin_lock(&sbi->dev_lock); f2fs_set_bit(devidx, (char *)&sbi->dirty_device); spin_unlock(&sbi->dev_lock); } if (blkcnt <= blks) break; blkcnt -= blks; blkaddr += blks; } } static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) { int type = __get_segment_type(fio); bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); if (keep_order) f2fs_down_read(&fio->sbi->io_order_lock); reallocate: f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, &fio->new_blkaddr, sum, type, fio); if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { invalidate_mapping_pages(META_MAPPING(fio->sbi), fio->old_blkaddr, fio->old_blkaddr); f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); } /* writeout dirty page into bdev */ f2fs_submit_page_write(fio); if (fio->retry) { fio->old_blkaddr = fio->new_blkaddr; goto reallocate; } f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); if (keep_order) f2fs_up_read(&fio->sbi->io_order_lock); } void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, enum iostat_type io_type) { struct f2fs_io_info fio = { .sbi = sbi, .type = META, .temp = HOT, .op = REQ_OP_WRITE, .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, .old_blkaddr = page->index, .new_blkaddr = page->index, .page = page, .encrypted_page = NULL, .in_list = false, }; if (unlikely(page->index >= MAIN_BLKADDR(sbi))) fio.op_flags &= ~REQ_META; set_page_writeback(page); ClearPageError(page); f2fs_submit_page_write(&fio); stat_inc_meta_count(sbi, page->index); f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); } void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) { struct f2fs_summary sum; set_summary(&sum, nid, 0, 0); do_write_page(&sum, fio); f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); } void f2fs_outplace_write_data(struct dnode_of_data *dn, struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; struct f2fs_summary sum; f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); do_write_page(&sum, fio); f2fs_update_data_blkaddr(dn, fio->new_blkaddr); f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); } int f2fs_inplace_write_data(struct f2fs_io_info *fio) { int err; struct f2fs_sb_info *sbi = fio->sbi; unsigned int segno; fio->new_blkaddr = fio->old_blkaddr; /* i/o temperature is needed for passing down write hints */ __get_segment_type(fio); segno = GET_SEGNO(sbi, fio->new_blkaddr); if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", __func__, segno); err = -EFSCORRUPTED; goto drop_bio; } if (f2fs_cp_error(sbi)) { err = -EIO; goto drop_bio; } invalidate_mapping_pages(META_MAPPING(sbi), fio->new_blkaddr, fio->new_blkaddr); stat_inc_inplace_blocks(fio->sbi); if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) err = f2fs_merge_page_bio(fio); else err = f2fs_submit_page_bio(fio); if (!err) { f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); } return err; drop_bio: if (fio->bio && *(fio->bio)) { struct bio *bio = *(fio->bio); bio->bi_status = BLK_STS_IOERR; bio_endio(bio); *(fio->bio) = NULL; } return err; } static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, unsigned int segno) { int i; for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { if (CURSEG_I(sbi, i)->segno == segno) break; } return i; } void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr, bool recover_curseg, bool recover_newaddr, bool from_gc) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg; unsigned int segno, old_cursegno; struct seg_entry *se; int type; unsigned short old_blkoff; unsigned char old_alloc_type; segno = GET_SEGNO(sbi, new_blkaddr); se = get_seg_entry(sbi, segno); type = se->type; f2fs_down_write(&SM_I(sbi)->curseg_lock); if (!recover_curseg) { /* for recovery flow */ if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { if (old_blkaddr == NULL_ADDR) type = CURSEG_COLD_DATA; else type = CURSEG_WARM_DATA; } } else { if (IS_CURSEG(sbi, segno)) { /* se->type is volatile as SSR allocation */ type = __f2fs_get_curseg(sbi, segno); f2fs_bug_on(sbi, type == NO_CHECK_TYPE); } else { type = CURSEG_WARM_DATA; } } f2fs_bug_on(sbi, !IS_DATASEG(type)); curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); down_write(&sit_i->sentry_lock); old_cursegno = curseg->segno; old_blkoff = curseg->next_blkoff; old_alloc_type = curseg->alloc_type; /* change the current segment */ if (segno != curseg->segno) { curseg->next_segno = segno; change_curseg(sbi, type, true); } curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); __add_sum_entry(sbi, type, sum); if (!recover_curseg || recover_newaddr) { if (!from_gc) update_segment_mtime(sbi, new_blkaddr, 0); update_sit_entry(sbi, new_blkaddr, 1); } if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { invalidate_mapping_pages(META_MAPPING(sbi), old_blkaddr, old_blkaddr); f2fs_invalidate_compress_page(sbi, old_blkaddr); if (!from_gc) update_segment_mtime(sbi, old_blkaddr, 0); update_sit_entry(sbi, old_blkaddr, -1); } locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); locate_dirty_segment(sbi, old_cursegno); if (recover_curseg) { if (old_cursegno != curseg->segno) { curseg->next_segno = old_cursegno; change_curseg(sbi, type, true); } curseg->next_blkoff = old_blkoff; curseg->alloc_type = old_alloc_type; } up_write(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); f2fs_up_write(&SM_I(sbi)->curseg_lock); } void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, block_t old_addr, block_t new_addr, unsigned char version, bool recover_curseg, bool recover_newaddr) { struct f2fs_summary sum; set_summary(&sum, dn->nid, dn->ofs_in_node, version); f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg, recover_newaddr, false); f2fs_update_data_blkaddr(dn, new_addr); } void f2fs_wait_on_page_writeback(struct page *page, enum page_type type, bool ordered, bool locked) { if (PageWriteback(page)) { struct f2fs_sb_info *sbi = F2FS_P_SB(page); /* submit cached LFS IO */ f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); /* sbumit cached IPU IO */ f2fs_submit_merged_ipu_write(sbi, NULL, page); if (ordered) { wait_on_page_writeback(page); f2fs_bug_on(sbi, locked && PageWriteback(page)); } else { wait_for_stable_page(page); } } } void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *cpage; if (!f2fs_post_read_required(inode)) return; if (!__is_valid_data_blkaddr(blkaddr)) return; cpage = find_lock_page(META_MAPPING(sbi), blkaddr); if (cpage) { f2fs_wait_on_page_writeback(cpage, DATA, true, true); f2fs_put_page(cpage, 1); } } void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, block_t len) { block_t i; for (i = 0; i < len; i++) f2fs_wait_on_block_writeback(inode, blkaddr + i); } static int read_compacted_summaries(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *seg_i; unsigned char *kaddr; struct page *page; block_t start; int i, j, offset; start = start_sum_block(sbi); page = f2fs_get_meta_page(sbi, start++); if (IS_ERR(page)) return PTR_ERR(page); kaddr = (unsigned char *)page_address(page); /* Step 1: restore nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); /* Step 2: restore sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; /* Step 3: restore summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; unsigned int segno; seg_i = CURSEG_I(sbi, i); segno = le32_to_cpu(ckpt->cur_data_segno[i]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); seg_i->next_segno = segno; reset_curseg(sbi, i, 0); seg_i->alloc_type = ckpt->alloc_type[i]; seg_i->next_blkoff = blk_off; if (seg_i->alloc_type == SSR) blk_off = sbi->blocks_per_seg; for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); seg_i->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; f2fs_put_page(page, 1); page = NULL; page = f2fs_get_meta_page(sbi, start++); if (IS_ERR(page)) return PTR_ERR(page); kaddr = (unsigned char *)page_address(page); offset = 0; } } f2fs_put_page(page, 1); return 0; } static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_summary_block *sum; struct curseg_info *curseg; struct page *new; unsigned short blk_off; unsigned int segno = 0; block_t blk_addr = 0; int err = 0; /* get segment number and block addr */ if (IS_DATASEG(type)) { segno = le32_to_cpu(ckpt->cur_data_segno[type]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]); blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]); if (__exist_node_summaries(sbi)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLOCK(sbi, segno); } new = f2fs_get_meta_page(sbi, blk_addr); if (IS_ERR(new)) return PTR_ERR(new); sum = (struct f2fs_summary_block *)page_address(new); if (IS_NODESEG(type)) { if (__exist_node_summaries(sbi)) { struct f2fs_summary *ns = &sum->entries[0]; int i; for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { ns->version = 0; ns->ofs_in_node = 0; } } else { err = f2fs_restore_node_summary(sbi, segno, sum); if (err) goto out; } } /* set uncompleted segment to curseg */ curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); /* update journal info */ down_write(&curseg->journal_rwsem); memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); up_write(&curseg->journal_rwsem); memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); curseg->next_segno = segno; reset_curseg(sbi, type, 0); curseg->alloc_type = ckpt->alloc_type[type]; curseg->next_blkoff = blk_off; mutex_unlock(&curseg->curseg_mutex); out: f2fs_put_page(new, 1); return err; } static int restore_curseg_summaries(struct f2fs_sb_info *sbi) { struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; int type = CURSEG_HOT_DATA; int err; if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { int npages = f2fs_npages_for_summary_flush(sbi, true); if (npages >= 2) f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, META_CP, true); /* restore for compacted data summary */ err = read_compacted_summaries(sbi); if (err) return err; type = CURSEG_HOT_NODE; } if (__exist_node_summaries(sbi)) f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), NR_CURSEG_PERSIST_TYPE - type, META_CP, true); for (; type <= CURSEG_COLD_NODE; type++) { err = read_normal_summaries(sbi, type); if (err) return err; } /* sanity check for summary blocks */ if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { f2fs_err(sbi, "invalid journal entries nats %u sits %u", nats_in_cursum(nat_j), sits_in_cursum(sit_j)); return -EINVAL; } return 0; } static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) { struct page *page; unsigned char *kaddr; struct f2fs_summary *summary; struct curseg_info *seg_i; int written_size = 0; int i, j; page = f2fs_grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); memset(kaddr, 0, PAGE_SIZE); /* Step 1: write nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 2: write sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 3: write summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blkoff; seg_i = CURSEG_I(sbi, i); if (sbi->ckpt->alloc_type[i] == SSR) blkoff = sbi->blocks_per_seg; else blkoff = curseg_blkoff(sbi, i); for (j = 0; j < blkoff; j++) { if (!page) { page = f2fs_grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); memset(kaddr, 0, PAGE_SIZE); written_size = 0; } summary = (struct f2fs_summary *)(kaddr + written_size); *summary = seg_i->sum_blk->entries[j]; written_size += SUMMARY_SIZE; if (written_size + SUMMARY_SIZE <= PAGE_SIZE - SUM_FOOTER_SIZE) continue; set_page_dirty(page); f2fs_put_page(page, 1); page = NULL; } } if (page) { set_page_dirty(page); f2fs_put_page(page, 1); } } static void write_normal_summaries(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { int i, end; if (IS_DATASEG(type)) end = type + NR_CURSEG_DATA_TYPE; else end = type + NR_CURSEG_NODE_TYPE; for (i = type; i < end; i++) write_current_sum_page(sbi, i, blkaddr + (i - type)); } void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) write_compacted_summaries(sbi, start_blk); else write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); } void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); } int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, unsigned int val, int alloc) { int i; if (type == NAT_JOURNAL) { for (i = 0; i < nats_in_cursum(journal); i++) { if (le32_to_cpu(nid_in_journal(journal, i)) == val) return i; } if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) return update_nats_in_cursum(journal, 1); } else if (type == SIT_JOURNAL) { for (i = 0; i < sits_in_cursum(journal); i++) if (le32_to_cpu(segno_in_journal(journal, i)) == val) return i; if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) return update_sits_in_cursum(journal, 1); } return -1; } static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno) { return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); } static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); struct page *page; pgoff_t src_off, dst_off; src_off = current_sit_addr(sbi, start); dst_off = next_sit_addr(sbi, src_off); page = f2fs_grab_meta_page(sbi, dst_off); seg_info_to_sit_page(sbi, page, start); set_page_dirty(page); set_to_next_sit(sit_i, start); return page; } static struct sit_entry_set *grab_sit_entry_set(void) { struct sit_entry_set *ses = f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS, true, NULL); ses->entry_cnt = 0; INIT_LIST_HEAD(&ses->set_list); return ses; } static void release_sit_entry_set(struct sit_entry_set *ses) { list_del(&ses->set_list); kmem_cache_free(sit_entry_set_slab, ses); } static void adjust_sit_entry_set(struct sit_entry_set *ses, struct list_head *head) { struct sit_entry_set *next = ses; if (list_is_last(&ses->set_list, head)) return; list_for_each_entry_continue(next, head, set_list) if (ses->entry_cnt <= next->entry_cnt) break; list_move_tail(&ses->set_list, &next->set_list); } static void add_sit_entry(unsigned int segno, struct list_head *head) { struct sit_entry_set *ses; unsigned int start_segno = START_SEGNO(segno); list_for_each_entry(ses, head, set_list) { if (ses->start_segno == start_segno) { ses->entry_cnt++; adjust_sit_entry_set(ses, head); return; } } ses = grab_sit_entry_set(); ses->start_segno = start_segno; ses->entry_cnt++; list_add(&ses->set_list, head); } static void add_sits_in_set(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); struct list_head *set_list = &sm_info->sit_entry_set; unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; unsigned int segno; for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) add_sit_entry(segno, set_list); } static void remove_sits_in_journal(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; int i; down_write(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int segno; bool dirtied; segno = le32_to_cpu(segno_in_journal(journal, i)); dirtied = __mark_sit_entry_dirty(sbi, segno); if (!dirtied) add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); } update_sits_in_cursum(journal, -i); up_write(&curseg->journal_rwsem); } /* * CP calls this function, which flushes SIT entries including sit_journal, * and moves prefree segs to free segs. */ void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) { struct sit_info *sit_i = SIT_I(sbi); unsigned long *bitmap = sit_i->dirty_sentries_bitmap; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct sit_entry_set *ses, *tmp; struct list_head *head = &SM_I(sbi)->sit_entry_set; bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); struct seg_entry *se; down_write(&sit_i->sentry_lock); if (!sit_i->dirty_sentries) goto out; /* * add and account sit entries of dirty bitmap in sit entry * set temporarily */ add_sits_in_set(sbi); /* * if there are no enough space in journal to store dirty sit * entries, remove all entries from journal and add and account * them in sit entry set. */ if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || !to_journal) remove_sits_in_journal(sbi); /* * there are two steps to flush sit entries: * #1, flush sit entries to journal in current cold data summary block. * #2, flush sit entries to sit page. */ list_for_each_entry_safe(ses, tmp, head, set_list) { struct page *page = NULL; struct f2fs_sit_block *raw_sit = NULL; unsigned int start_segno = ses->start_segno; unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, (unsigned long)MAIN_SEGS(sbi)); unsigned int segno = start_segno; if (to_journal && !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) to_journal = false; if (to_journal) { down_write(&curseg->journal_rwsem); } else { page = get_next_sit_page(sbi, start_segno); raw_sit = page_address(page); } /* flush dirty sit entries in region of current sit set */ for_each_set_bit_from(segno, bitmap, end) { int offset, sit_offset; se = get_seg_entry(sbi, segno); #ifdef CONFIG_F2FS_CHECK_FS if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, SIT_VBLOCK_MAP_SIZE)) f2fs_bug_on(sbi, 1); #endif /* add discard candidates */ if (!(cpc->reason & CP_DISCARD)) { cpc->trim_start = segno; add_discard_addrs(sbi, cpc, false); } if (to_journal) { offset = f2fs_lookup_journal_in_cursum(journal, SIT_JOURNAL, segno, 1); f2fs_bug_on(sbi, offset < 0); segno_in_journal(journal, offset) = cpu_to_le32(segno); seg_info_to_raw_sit(se, &sit_in_journal(journal, offset)); check_block_count(sbi, segno, &sit_in_journal(journal, offset)); } else { sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); check_block_count(sbi, segno, &raw_sit->entries[sit_offset]); } __clear_bit(segno, bitmap); sit_i->dirty_sentries--; ses->entry_cnt--; } if (to_journal) up_write(&curseg->journal_rwsem); else f2fs_put_page(page, 1); f2fs_bug_on(sbi, ses->entry_cnt); release_sit_entry_set(ses); } f2fs_bug_on(sbi, !list_empty(head)); f2fs_bug_on(sbi, sit_i->dirty_sentries); out: if (cpc->reason & CP_DISCARD) { __u64 trim_start = cpc->trim_start; for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) add_discard_addrs(sbi, cpc, false); cpc->trim_start = trim_start; } up_write(&sit_i->sentry_lock); set_prefree_as_free_segments(sbi); } static int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *bitmap; unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; /* allocate memory for SIT information */ sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); if (!sit_i) return -ENOMEM; SM_I(sbi)->sit_info = sit_i; sit_i->sentries = f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), MAIN_SEGS(sbi)), GFP_KERNEL); if (!sit_i->sentries) return -ENOMEM; main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, GFP_KERNEL); if (!sit_i->dirty_sentries_bitmap) return -ENOMEM; #ifdef CONFIG_F2FS_CHECK_FS bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); #else bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); #endif sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!sit_i->bitmap) return -ENOMEM; bitmap = sit_i->bitmap; for (start = 0; start < MAIN_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; sit_i->sentries[start].ckpt_valid_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; #ifdef CONFIG_F2FS_CHECK_FS sit_i->sentries[start].cur_valid_map_mir = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; #endif if (discard_map) { sit_i->sentries[start].discard_map = bitmap; bitmap += SIT_VBLOCK_MAP_SIZE; } } sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->tmp_map) return -ENOMEM; if (__is_large_section(sbi)) { sit_i->sec_entries = f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), MAIN_SECS(sbi)), GFP_KERNEL); if (!sit_i->sec_entries) return -ENOMEM; } /* get information related with SIT */ sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; /* setup SIT bitmap from ckeckpoint pack */ sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); if (!sit_i->sit_bitmap) return -ENOMEM; #ifdef CONFIG_F2FS_CHECK_FS sit_i->sit_bitmap_mir = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); if (!sit_i->sit_bitmap_mir) return -ENOMEM; sit_i->invalid_segmap = f2fs_kvzalloc(sbi, main_bitmap_size, GFP_KERNEL); if (!sit_i->invalid_segmap) return -ENOMEM; #endif /* init SIT information */ sit_i->s_ops = &default_salloc_ops; sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; sit_i->written_valid_blocks = 0; sit_i->bitmap_size = sit_bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); sit_i->mounted_time = ktime_get_boottime_seconds(); init_rwsem(&sit_i->sentry_lock); return 0; } static int build_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i; unsigned int bitmap_size, sec_bitmap_size; /* allocate memory for free segmap information */ free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); if (!free_i) return -ENOMEM; SM_I(sbi)->free_info = free_i; bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); if (!free_i->free_segmap) return -ENOMEM; sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); if (!free_i->free_secmap) return -ENOMEM; /* set all segments as dirty temporarily */ memset(free_i->free_segmap, 0xff, bitmap_size); memset(free_i->free_secmap, 0xff, sec_bitmap_size); /* init free segmap information */ free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); free_i->free_segments = 0; free_i->free_sections = 0; spin_lock_init(&free_i->segmap_lock); return 0; } static int build_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array; int i; array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), GFP_KERNEL); if (!array) return -ENOMEM; SM_I(sbi)->curseg_array = array; for (i = 0; i < NO_CHECK_TYPE; i++) { mutex_init(&array[i].curseg_mutex); array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); if (!array[i].sum_blk) return -ENOMEM; init_rwsem(&array[i].journal_rwsem); array[i].journal = f2fs_kzalloc(sbi, sizeof(struct f2fs_journal), GFP_KERNEL); if (!array[i].journal) return -ENOMEM; if (i < NR_PERSISTENT_LOG) array[i].seg_type = CURSEG_HOT_DATA + i; else if (i == CURSEG_COLD_DATA_PINNED) array[i].seg_type = CURSEG_COLD_DATA; else if (i == CURSEG_ALL_DATA_ATGC) array[i].seg_type = CURSEG_COLD_DATA; array[i].segno = NULL_SEGNO; array[i].next_blkoff = 0; array[i].inited = false; } return restore_curseg_summaries(sbi); } static int build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_journal *journal = curseg->journal; struct seg_entry *se; struct f2fs_sit_entry sit; int sit_blk_cnt = SIT_BLK_CNT(sbi); unsigned int i, start, end; unsigned int readed, start_blk = 0; int err = 0; block_t total_node_blocks = 0; do { readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, META_SIT, true); start = start_blk * sit_i->sents_per_block; end = (start_blk + readed) * sit_i->sents_per_block; for (; start < end && start < MAIN_SEGS(sbi); start++) { struct f2fs_sit_block *sit_blk; struct page *page; se = &sit_i->sentries[start]; page = get_current_sit_page(sbi, start); if (IS_ERR(page)) return PTR_ERR(page); sit_blk = (struct f2fs_sit_block *)page_address(page); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; f2fs_put_page(page, 1); err = check_block_count(sbi, start, &sit); if (err) return err; seg_info_from_raw_sit(se, &sit); if (IS_NODESEG(se->type)) total_node_blocks += se->valid_blocks; if (f2fs_block_unit_discard(sbi)) { /* build discard map only one time */ if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); } else { memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; } } if (__is_large_section(sbi)) get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks; } start_blk += readed; } while (start_blk < sit_blk_cnt); down_read(&curseg->journal_rwsem); for (i = 0; i < sits_in_cursum(journal); i++) { unsigned int old_valid_blocks; start = le32_to_cpu(segno_in_journal(journal, i)); if (start >= MAIN_SEGS(sbi)) { f2fs_err(sbi, "Wrong journal entry on segno %u", start); err = -EFSCORRUPTED; break; } se = &sit_i->sentries[start]; sit = sit_in_journal(journal, i); old_valid_blocks = se->valid_blocks; if (IS_NODESEG(se->type)) total_node_blocks -= old_valid_blocks; err = check_block_count(sbi, start, &sit); if (err) break; seg_info_from_raw_sit(se, &sit); if (IS_NODESEG(se->type)) total_node_blocks += se->valid_blocks; if (f2fs_block_unit_discard(sbi)) { if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); } else { memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); sbi->discard_blks += old_valid_blocks; sbi->discard_blks -= se->valid_blocks; } } if (__is_large_section(sbi)) { get_sec_entry(sbi, start)->valid_blocks += se->valid_blocks; get_sec_entry(sbi, start)->valid_blocks -= old_valid_blocks; } } up_read(&curseg->journal_rwsem); if (!err && total_node_blocks != valid_node_count(sbi)) { f2fs_err(sbi, "SIT is corrupted node# %u vs %u", total_node_blocks, valid_node_count(sbi)); err = -EFSCORRUPTED; } return err; } static void init_free_segmap(struct f2fs_sb_info *sbi) { unsigned int start; int type; struct seg_entry *sentry; for (start = 0; start < MAIN_SEGS(sbi); start++) { if (f2fs_usable_blks_in_seg(sbi, start) == 0) continue; sentry = get_seg_entry(sbi, start); if (!sentry->valid_blocks) __set_free(sbi, start); else SIT_I(sbi)->written_valid_blocks += sentry->valid_blocks; } /* set use the current segments */ for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { struct curseg_info *curseg_t = CURSEG_I(sbi, type); __set_test_and_inuse(sbi, curseg_t->segno); } } static void init_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno = 0, offset = 0, secno; block_t valid_blocks, usable_blks_in_seg; block_t blks_per_sec = BLKS_PER_SEC(sbi); while (1) { /* find dirty segment based on free segmap */ segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); if (segno >= MAIN_SEGS(sbi)) break; offset = segno + 1; valid_blocks = get_valid_blocks(sbi, segno, false); usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); if (valid_blocks == usable_blks_in_seg || !valid_blocks) continue; if (valid_blocks > usable_blks_in_seg) { f2fs_bug_on(sbi, 1); continue; } mutex_lock(&dirty_i->seglist_lock); __locate_dirty_segment(sbi, segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); } if (!__is_large_section(sbi)) return; mutex_lock(&dirty_i->seglist_lock); for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { valid_blocks = get_valid_blocks(sbi, segno, true); secno = GET_SEC_FROM_SEG(sbi, segno); if (!valid_blocks || valid_blocks == blks_per_sec) continue; if (IS_CURSEC(sbi, secno)) continue; set_bit(secno, dirty_i->dirty_secmap); } mutex_unlock(&dirty_i->seglist_lock); } static int init_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->victim_secmap) return -ENOMEM; return 0; } static int build_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i; unsigned int bitmap_size, i; /* allocate memory for dirty segments list information */ dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), GFP_KERNEL); if (!dirty_i) return -ENOMEM; SM_I(sbi)->dirty_info = dirty_i; mutex_init(&dirty_i->seglist_lock); bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); for (i = 0; i < NR_DIRTY_TYPE; i++) { dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->dirty_segmap[i]) return -ENOMEM; } if (__is_large_section(sbi)) { bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); if (!dirty_i->dirty_secmap) return -ENOMEM; } init_dirty_segmap(sbi); return init_victim_secmap(sbi); } static int sanity_check_curseg(struct f2fs_sb_info *sbi) { int i; /* * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; * In LFS curseg, all blkaddr after .next_blkoff should be unused. */ for (i = 0; i < NR_PERSISTENT_LOG; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); struct seg_entry *se = get_seg_entry(sbi, curseg->segno); unsigned int blkofs = curseg->next_blkoff; if (f2fs_sb_has_readonly(sbi) && i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) continue; sanity_check_seg_type(sbi, curseg->seg_type); if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { f2fs_err(sbi, "Current segment has invalid alloc_type:%d", curseg->alloc_type); return -EFSCORRUPTED; } if (f2fs_test_bit(blkofs, se->cur_valid_map)) goto out; if (curseg->alloc_type == SSR) continue; for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { if (!f2fs_test_bit(blkofs, se->cur_valid_map)) continue; out: f2fs_err(sbi, "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", i, curseg->segno, curseg->alloc_type, curseg->next_blkoff, blkofs); return -EFSCORRUPTED; } } return 0; } #ifdef CONFIG_BLK_DEV_ZONED static int check_zone_write_pointer(struct f2fs_sb_info *sbi, struct f2fs_dev_info *fdev, struct blk_zone *zone) { unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; block_t zone_block, wp_block, last_valid_block; unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; int i, s, b, ret; struct seg_entry *se; if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); wp_segno = GET_SEGNO(sbi, wp_block); wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); zone_segno = GET_SEGNO(sbi, zone_block); zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); if (zone_segno >= MAIN_SEGS(sbi)) return 0; /* * Skip check of zones cursegs point to, since * fix_curseg_write_pointer() checks them. */ for (i = 0; i < NO_CHECK_TYPE; i++) if (zone_secno == GET_SEC_FROM_SEG(sbi, CURSEG_I(sbi, i)->segno)) return 0; /* * Get last valid block of the zone. */ last_valid_block = zone_block - 1; for (s = sbi->segs_per_sec - 1; s >= 0; s--) { segno = zone_segno + s; se = get_seg_entry(sbi, segno); for (b = sbi->blocks_per_seg - 1; b >= 0; b--) if (f2fs_test_bit(b, se->cur_valid_map)) { last_valid_block = START_BLOCK(sbi, segno) + b; break; } if (last_valid_block >= zone_block) break; } /* * If last valid block is beyond the write pointer, report the * inconsistency. This inconsistency does not cause write error * because the zone will not be selected for write operation until * it get discarded. Just report it. */ if (last_valid_block >= wp_block) { f2fs_notice(sbi, "Valid block beyond write pointer: " "valid block[0x%x,0x%x] wp[0x%x,0x%x]", GET_SEGNO(sbi, last_valid_block), GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), wp_segno, wp_blkoff); return 0; } /* * If there is no valid block in the zone and if write pointer is * not at zone start, reset the write pointer. */ if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { f2fs_notice(sbi, "Zone without valid block has non-zero write " "pointer. Reset the write pointer: wp[0x%x,0x%x]", wp_segno, wp_blkoff); ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, zone->len >> log_sectors_per_block); if (ret) { f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", fdev->path, ret); return ret; } } return 0; } static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, block_t zone_blkaddr) { int i; for (i = 0; i < sbi->s_ndevs; i++) { if (!bdev_is_zoned(FDEV(i).bdev)) continue; if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && zone_blkaddr <= FDEV(i).end_blk)) return &FDEV(i); } return NULL; } static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, void *data) { memcpy(data, zone, sizeof(struct blk_zone)); return 0; } static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) { struct curseg_info *cs = CURSEG_I(sbi, type); struct f2fs_dev_info *zbd; struct blk_zone zone; unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; block_t cs_zone_block, wp_block; unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; sector_t zone_sector; int err; cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); zbd = get_target_zoned_dev(sbi, cs_zone_block); if (!zbd) return 0; /* report zone for the sector the curseg points to */ zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) << log_sectors_per_block; err = blkdev_report_zones(zbd->bdev, zone_sector, 1, report_one_zone_cb, &zone); if (err != 1) { f2fs_err(sbi, "Report zone failed: %s errno=(%d)", zbd->path, err); return err; } if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); wp_segno = GET_SEGNO(sbi, wp_block); wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && wp_sector_off == 0) return 0; f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); f2fs_notice(sbi, "Assign new section to curseg[%d]: " "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); f2fs_allocate_new_section(sbi, type, true); /* check consistency of the zone curseg pointed to */ if (check_zone_write_pointer(sbi, zbd, &zone)) return -EIO; /* check newly assigned zone */ cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); zbd = get_target_zoned_dev(sbi, cs_zone_block); if (!zbd) return 0; zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) << log_sectors_per_block; err = blkdev_report_zones(zbd->bdev, zone_sector, 1, report_one_zone_cb, &zone); if (err != 1) { f2fs_err(sbi, "Report zone failed: %s errno=(%d)", zbd->path, err); return err; } if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) return 0; if (zone.wp != zone.start) { f2fs_notice(sbi, "New zone for curseg[%d] is not yet discarded. " "Reset the zone: curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); err = __f2fs_issue_discard_zone(sbi, zbd->bdev, zone_sector >> log_sectors_per_block, zone.len >> log_sectors_per_block); if (err) { f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", zbd->path, err); return err; } } return 0; } int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) { int i, ret; for (i = 0; i < NR_PERSISTENT_LOG; i++) { ret = fix_curseg_write_pointer(sbi, i); if (ret) return ret; } return 0; } struct check_zone_write_pointer_args { struct f2fs_sb_info *sbi; struct f2fs_dev_info *fdev; }; static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct check_zone_write_pointer_args *args; args = (struct check_zone_write_pointer_args *)data; return check_zone_write_pointer(args->sbi, args->fdev, zone); } int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) { int i, ret; struct check_zone_write_pointer_args args; for (i = 0; i < sbi->s_ndevs; i++) { if (!bdev_is_zoned(FDEV(i).bdev)) continue; args.sbi = sbi; args.fdev = &FDEV(i); ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, check_zone_write_pointer_cb, &args); if (ret < 0) return ret; } return 0; } static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, unsigned int dev_idx) { if (!bdev_is_zoned(FDEV(dev_idx).bdev)) return true; return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); } /* Return the zone index in the given device */ static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, int dev_idx) { block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> sbi->log_blocks_per_blkz; } /* * Return the usable segments in a section based on the zone's * corresponding zone capacity. Zone is equal to a section. */ static inline unsigned int f2fs_usable_zone_segs_in_sec( struct f2fs_sb_info *sbi, unsigned int segno) { unsigned int dev_idx, zone_idx, unusable_segs_in_sec; dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); /* Conventional zone's capacity is always equal to zone size */ if (is_conv_zone(sbi, zone_idx, dev_idx)) return sbi->segs_per_sec; /* * If the zone_capacity_blocks array is NULL, then zone capacity * is equal to the zone size for all zones */ if (!FDEV(dev_idx).zone_capacity_blocks) return sbi->segs_per_sec; /* Get the segment count beyond zone capacity block */ unusable_segs_in_sec = (sbi->blocks_per_blkz - FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> sbi->log_blocks_per_seg; return sbi->segs_per_sec - unusable_segs_in_sec; } /* * Return the number of usable blocks in a segment. The number of blocks * returned is always equal to the number of blocks in a segment for * segments fully contained within a sequential zone capacity or a * conventional zone. For segments partially contained in a sequential * zone capacity, the number of usable blocks up to the zone capacity * is returned. 0 is returned in all other cases. */ static inline unsigned int f2fs_usable_zone_blks_in_seg( struct f2fs_sb_info *sbi, unsigned int segno) { block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; unsigned int zone_idx, dev_idx, secno; secno = GET_SEC_FROM_SEG(sbi, segno); seg_start = START_BLOCK(sbi, segno); dev_idx = f2fs_target_device_index(sbi, seg_start); zone_idx = get_zone_idx(sbi, secno, dev_idx); /* * Conventional zone's capacity is always equal to zone size, * so, blocks per segment is unchanged. */ if (is_conv_zone(sbi, zone_idx, dev_idx)) return sbi->blocks_per_seg; if (!FDEV(dev_idx).zone_capacity_blocks) return sbi->blocks_per_seg; sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); sec_cap_blkaddr = sec_start_blkaddr + FDEV(dev_idx).zone_capacity_blocks[zone_idx]; /* * If segment starts before zone capacity and spans beyond * zone capacity, then usable blocks are from seg start to * zone capacity. If the segment starts after the zone capacity, * then there are no usable blocks. */ if (seg_start >= sec_cap_blkaddr) return 0; if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) return sec_cap_blkaddr - seg_start; return sbi->blocks_per_seg; } #else int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) { return 0; } int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) { return 0; } static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, unsigned int segno) { return 0; } static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, unsigned int segno) { return 0; } #endif unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, unsigned int segno) { if (f2fs_sb_has_blkzoned(sbi)) return f2fs_usable_zone_blks_in_seg(sbi, segno); return sbi->blocks_per_seg; } unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, unsigned int segno) { if (f2fs_sb_has_blkzoned(sbi)) return f2fs_usable_zone_segs_in_sec(sbi, segno); return sbi->segs_per_sec; } /* * Update min, max modified time for cost-benefit GC algorithm */ static void init_min_max_mtime(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno; down_write(&sit_i->sentry_lock); sit_i->min_mtime = ULLONG_MAX; for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { unsigned int i; unsigned long long mtime = 0; for (i = 0; i < sbi->segs_per_sec; i++) mtime += get_seg_entry(sbi, segno + i)->mtime; mtime = div_u64(mtime, sbi->segs_per_sec); if (sit_i->min_mtime > mtime) sit_i->min_mtime = mtime; } sit_i->max_mtime = get_mtime(sbi, false); sit_i->dirty_max_mtime = 0; up_write(&sit_i->sentry_lock); } int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info; int err; sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); if (!sm_info) return -ENOMEM; /* init sm info */ sbi->sm_info = sm_info; sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); sm_info->segment_count = le32_to_cpu(raw_super->segment_count); sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); sm_info->rec_prefree_segments = sm_info->main_segments * DEF_RECLAIM_PREFREE_SEGMENTS / 100; if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; if (!f2fs_lfs_mode(sbi)) sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; sm_info->min_seq_blocks = sbi->blocks_per_seg; sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; sm_info->min_ssr_sections = reserved_sections(sbi); INIT_LIST_HEAD(&sm_info->sit_entry_set); init_f2fs_rwsem(&sm_info->curseg_lock); if (!f2fs_readonly(sbi->sb)) { err = f2fs_create_flush_cmd_control(sbi); if (err) return err; } err = create_discard_cmd_control(sbi); if (err) return err; err = build_sit_info(sbi); if (err) return err; err = build_free_segmap(sbi); if (err) return err; err = build_curseg(sbi); if (err) return err; /* reinit free segmap based on SIT */ err = build_sit_entries(sbi); if (err) return err; init_free_segmap(sbi); err = build_dirty_segmap(sbi); if (err) return err; err = sanity_check_curseg(sbi); if (err) return err; init_min_max_mtime(sbi); return 0; } static void discard_dirty_segmap(struct f2fs_sb_info *sbi, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); mutex_lock(&dirty_i->seglist_lock); kvfree(dirty_i->dirty_segmap[dirty_type]); dirty_i->nr_dirty[dirty_type] = 0; mutex_unlock(&dirty_i->seglist_lock); } static void destroy_victim_secmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); kvfree(dirty_i->victim_secmap); } static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); int i; if (!dirty_i) return; /* discard pre-free/dirty segments list */ for (i = 0; i < NR_DIRTY_TYPE; i++) discard_dirty_segmap(sbi, i); if (__is_large_section(sbi)) { mutex_lock(&dirty_i->seglist_lock); kvfree(dirty_i->dirty_secmap); mutex_unlock(&dirty_i->seglist_lock); } destroy_victim_secmap(sbi); SM_I(sbi)->dirty_info = NULL; kfree(dirty_i); } static void destroy_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array = SM_I(sbi)->curseg_array; int i; if (!array) return; SM_I(sbi)->curseg_array = NULL; for (i = 0; i < NR_CURSEG_TYPE; i++) { kfree(array[i].sum_blk); kfree(array[i].journal); } kfree(array); } static void destroy_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i = SM_I(sbi)->free_info; if (!free_i) return; SM_I(sbi)->free_info = NULL; kvfree(free_i->free_segmap); kvfree(free_i->free_secmap); kfree(free_i); } static void destroy_sit_info(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); if (!sit_i) return; if (sit_i->sentries) kvfree(sit_i->bitmap); kfree(sit_i->tmp_map); kvfree(sit_i->sentries); kvfree(sit_i->sec_entries); kvfree(sit_i->dirty_sentries_bitmap); SM_I(sbi)->sit_info = NULL; kvfree(sit_i->sit_bitmap); #ifdef CONFIG_F2FS_CHECK_FS kvfree(sit_i->sit_bitmap_mir); kvfree(sit_i->invalid_segmap); #endif kfree(sit_i); } void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); if (!sm_info) return; f2fs_destroy_flush_cmd_control(sbi, true); destroy_discard_cmd_control(sbi); destroy_dirty_segmap(sbi); destroy_curseg(sbi); destroy_free_segmap(sbi); destroy_sit_info(sbi); sbi->sm_info = NULL; kfree(sm_info); } int __init f2fs_create_segment_manager_caches(void) { discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", sizeof(struct discard_entry)); if (!discard_entry_slab) goto fail; discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", sizeof(struct discard_cmd)); if (!discard_cmd_slab) goto destroy_discard_entry; sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", sizeof(struct sit_entry_set)); if (!sit_entry_set_slab) goto destroy_discard_cmd; inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", sizeof(struct inmem_pages)); if (!inmem_entry_slab) goto destroy_sit_entry_set; return 0; destroy_sit_entry_set: kmem_cache_destroy(sit_entry_set_slab); destroy_discard_cmd: kmem_cache_destroy(discard_cmd_slab); destroy_discard_entry: kmem_cache_destroy(discard_entry_slab); fail: return -ENOMEM; } void f2fs_destroy_segment_manager_caches(void) { kmem_cache_destroy(sit_entry_set_slab); kmem_cache_destroy(discard_cmd_slab); kmem_cache_destroy(discard_entry_slab); kmem_cache_destroy(inmem_entry_slab); }