/* * fs/f2fs/recovery.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include "f2fs.h" #include "node.h" #include "segment.h" static struct kmem_cache *fsync_entry_slab; bool space_for_roll_forward(struct f2fs_sb_info *sbi) { if (sbi->last_valid_block_count + sbi->alloc_valid_block_count > sbi->user_block_count) return false; return true; } static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, nid_t ino) { struct list_head *this; struct fsync_inode_entry *entry; list_for_each(this, head) { entry = list_entry(this, struct fsync_inode_entry, list); if (entry->inode->i_ino == ino) return entry; } return NULL; } static int recover_dentry(struct page *ipage, struct inode *inode) { struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage); struct f2fs_inode *raw_inode = &(raw_node->i); struct qstr name; struct f2fs_dir_entry *de; struct page *page; struct inode *dir; int err = 0; if (!is_dent_dnode(ipage)) goto out; dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino)); if (IS_ERR(dir)) { err = -EINVAL; goto out; } name.len = le32_to_cpu(raw_inode->i_namelen); name.name = raw_inode->i_name; de = f2fs_find_entry(dir, &name, &page); if (de) { kunmap(page); f2fs_put_page(page, 0); } else { err = __f2fs_add_link(dir, &name, inode); } iput(dir); out: kunmap(ipage); return err; } static int recover_inode(struct inode *inode, struct page *node_page) { void *kaddr = page_address(node_page); struct f2fs_node *raw_node = (struct f2fs_node *)kaddr; struct f2fs_inode *raw_inode = &(raw_node->i); inode->i_mode = le16_to_cpu(raw_inode->i_mode); i_size_write(inode, le64_to_cpu(raw_inode->i_size)); inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); return recover_dentry(node_page, inode); } static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) { unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); struct curseg_info *curseg; struct page *page; block_t blkaddr; int err = 0; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; /* read node page */ page = alloc_page(GFP_F2FS_ZERO); if (IS_ERR(page)) return PTR_ERR(page); lock_page(page); while (1) { struct fsync_inode_entry *entry; if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) goto out; if (cp_ver != cpver_of_node(page)) goto out; if (!is_fsync_dnode(page)) goto next; entry = get_fsync_inode(head, ino_of_node(page)); if (entry) { entry->blkaddr = blkaddr; if (IS_INODE(page) && is_dent_dnode(page)) set_inode_flag(F2FS_I(entry->inode), FI_INC_LINK); } else { if (IS_INODE(page) && is_dent_dnode(page)) { if (recover_inode_page(sbi, page)) { err = -ENOMEM; goto out; } } /* add this fsync inode to the list */ entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); if (!entry) { err = -ENOMEM; goto out; } entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); if (IS_ERR(entry->inode)) { err = PTR_ERR(entry->inode); kmem_cache_free(fsync_entry_slab, entry); goto out; } list_add_tail(&entry->list, head); entry->blkaddr = blkaddr; } if (IS_INODE(page)) { err = recover_inode(entry->inode, page); if (err) goto out; } next: /* check next segment */ blkaddr = next_blkaddr_of_node(page); ClearPageUptodate(page); } out: unlock_page(page); __free_pages(page, 0); return err; } static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) { struct fsync_inode_entry *entry, *tmp; list_for_each_entry_safe(entry, tmp, head, list) { iput(entry->inode); list_del(&entry->list); kmem_cache_free(fsync_entry_slab, entry); } } static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi, block_t blkaddr) { struct seg_entry *sentry; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); struct f2fs_summary sum; nid_t ino; void *kaddr; struct inode *inode; struct page *node_page; block_t bidx; int i; sentry = get_seg_entry(sbi, segno); if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) return; /* Get the previous summary */ for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (curseg->segno == segno) { sum = curseg->sum_blk->entries[blkoff]; break; } } if (i > CURSEG_COLD_DATA) { struct page *sum_page = get_sum_page(sbi, segno); struct f2fs_summary_block *sum_node; kaddr = page_address(sum_page); sum_node = (struct f2fs_summary_block *)kaddr; sum = sum_node->entries[blkoff]; f2fs_put_page(sum_page, 1); } /* Get the node page */ node_page = get_node_page(sbi, le32_to_cpu(sum.nid)); bidx = start_bidx_of_node(ofs_of_node(node_page)) + le16_to_cpu(sum.ofs_in_node); ino = ino_of_node(node_page); f2fs_put_page(node_page, 1); /* Deallocate previous index in the node page */ inode = f2fs_iget(sbi->sb, ino); if (IS_ERR(inode)) return; truncate_hole(inode, bidx, bidx + 1); iput(inode); } static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, block_t blkaddr) { unsigned int start, end; struct dnode_of_data dn; struct f2fs_summary sum; struct node_info ni; start = start_bidx_of_node(ofs_of_node(page)); if (IS_INODE(page)) end = start + ADDRS_PER_INODE; else end = start + ADDRS_PER_BLOCK; set_new_dnode(&dn, inode, NULL, NULL, 0); if (get_dnode_of_data(&dn, start, 0)) return; wait_on_page_writeback(dn.node_page); get_node_info(sbi, dn.nid, &ni); BUG_ON(ni.ino != ino_of_node(page)); BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page)); for (; start < end; start++) { block_t src, dest; src = datablock_addr(dn.node_page, dn.ofs_in_node); dest = datablock_addr(page, dn.ofs_in_node); if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { if (src == NULL_ADDR) { int err = reserve_new_block(&dn); /* We should not get -ENOSPC */ BUG_ON(err); } /* Check the previous node page having this index */ check_index_in_prev_nodes(sbi, dest); set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); /* write dummy data page */ recover_data_page(sbi, NULL, &sum, src, dest); update_extent_cache(dest, &dn); } dn.ofs_in_node++; } /* write node page in place */ set_summary(&sum, dn.nid, 0, 0); if (IS_INODE(dn.node_page)) sync_inode_page(&dn); copy_node_footer(dn.node_page, page); fill_node_footer(dn.node_page, dn.nid, ni.ino, ofs_of_node(page), false); set_page_dirty(dn.node_page); recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); f2fs_put_dnode(&dn); } static void recover_data(struct f2fs_sb_info *sbi, struct list_head *head, int type) { unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver); struct curseg_info *curseg; struct page *page; block_t blkaddr; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, type); blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); /* read node page */ page = alloc_page(GFP_NOFS | __GFP_ZERO); if (IS_ERR(page)) return; lock_page(page); while (1) { struct fsync_inode_entry *entry; if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC)) goto out; if (cp_ver != cpver_of_node(page)) goto out; entry = get_fsync_inode(head, ino_of_node(page)); if (!entry) goto next; do_recover_data(sbi, entry->inode, page, blkaddr); if (entry->blkaddr == blkaddr) { iput(entry->inode); list_del(&entry->list); kmem_cache_free(fsync_entry_slab, entry); } next: /* check next segment */ blkaddr = next_blkaddr_of_node(page); ClearPageUptodate(page); } out: unlock_page(page); __free_pages(page, 0); allocate_new_segments(sbi); } void recover_fsync_data(struct f2fs_sb_info *sbi) { struct list_head inode_list; fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", sizeof(struct fsync_inode_entry), NULL); if (unlikely(!fsync_entry_slab)) return; INIT_LIST_HEAD(&inode_list); /* step #1: find fsynced inode numbers */ if (find_fsync_dnodes(sbi, &inode_list)) goto out; if (list_empty(&inode_list)) goto out; /* step #2: recover data */ sbi->por_doing = 1; recover_data(sbi, &inode_list, CURSEG_WARM_NODE); sbi->por_doing = 0; BUG_ON(!list_empty(&inode_list)); out: destroy_fsync_dnodes(sbi, &inode_list); kmem_cache_destroy(fsync_entry_slab); write_checkpoint(sbi, false); }