/* * fs/f2fs/inode.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync) { if (is_inode_flag_set(inode, FI_NEW_INODE)) return; if (f2fs_inode_dirtied(inode, sync)) return; mark_inode_dirty_sync(inode); } void f2fs_set_inode_flags(struct inode *inode) { unsigned int flags = F2FS_I(inode)->i_flags; unsigned int new_fl = 0; if (flags & F2FS_SYNC_FL) new_fl |= S_SYNC; if (flags & F2FS_APPEND_FL) new_fl |= S_APPEND; if (flags & F2FS_IMMUTABLE_FL) new_fl |= S_IMMUTABLE; if (flags & F2FS_NOATIME_FL) new_fl |= S_NOATIME; if (flags & F2FS_DIRSYNC_FL) new_fl |= S_DIRSYNC; if (f2fs_encrypted_inode(inode)) new_fl |= S_ENCRYPTED; inode_set_flags(inode, new_fl, S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC| S_ENCRYPTED); } static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) { int extra_size = get_extra_isize(inode); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { if (ri->i_addr[extra_size]) inode->i_rdev = old_decode_dev( le32_to_cpu(ri->i_addr[extra_size])); else inode->i_rdev = new_decode_dev( le32_to_cpu(ri->i_addr[extra_size + 1])); } } static bool __written_first_block(struct f2fs_sb_info *sbi, struct f2fs_inode *ri) { block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]); if (is_valid_data_blkaddr(sbi, addr)) return true; return false; } static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) { int extra_size = get_extra_isize(inode); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { if (old_valid_dev(inode->i_rdev)) { ri->i_addr[extra_size] = cpu_to_le32(old_encode_dev(inode->i_rdev)); ri->i_addr[extra_size + 1] = 0; } else { ri->i_addr[extra_size] = 0; ri->i_addr[extra_size + 1] = cpu_to_le32(new_encode_dev(inode->i_rdev)); ri->i_addr[extra_size + 2] = 0; } } } static void __recover_inline_status(struct inode *inode, struct page *ipage) { void *inline_data = inline_data_addr(inode, ipage); __le32 *start = inline_data; __le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32); while (start < end) { if (*start++) { f2fs_wait_on_page_writeback(ipage, NODE, true); set_inode_flag(inode, FI_DATA_EXIST); set_raw_inline(inode, F2FS_INODE(ipage)); set_page_dirty(ipage); return; } } return; } static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri = &F2FS_NODE(page)->i; if (!f2fs_sb_has_inode_chksum(sbi->sb)) return false; if (!RAW_IS_INODE(F2FS_NODE(page)) || !(ri->i_inline & F2FS_EXTRA_ATTR)) return false; if (!F2FS_FITS_IN_INODE(ri, le16_to_cpu(ri->i_extra_isize), i_inode_checksum)) return false; return true; } static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_node *node = F2FS_NODE(page); struct f2fs_inode *ri = &node->i; __le32 ino = node->footer.ino; __le32 gen = ri->i_generation; __u32 chksum, chksum_seed; __u32 dummy_cs = 0; unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum); unsigned int cs_size = sizeof(dummy_cs); chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino, sizeof(ino)); chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen)); chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset); chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size); offset += cs_size; chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset, F2FS_BLKSIZE - offset); return chksum; } bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri; __u32 provided, calculated; if (unlikely(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))) return true; #ifdef CONFIG_F2FS_CHECK_FS if (!f2fs_enable_inode_chksum(sbi, page)) #else if (!f2fs_enable_inode_chksum(sbi, page) || PageDirty(page) || PageWriteback(page)) #endif return true; ri = &F2FS_NODE(page)->i; provided = le32_to_cpu(ri->i_inode_checksum); calculated = f2fs_inode_chksum(sbi, page); if (provided != calculated) f2fs_msg(sbi->sb, KERN_WARNING, "checksum invalid, ino = %x, %x vs. %x", ino_of_node(page), provided, calculated); return provided == calculated; } void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page) { struct f2fs_inode *ri = &F2FS_NODE(page)->i; if (!f2fs_enable_inode_chksum(sbi, page)) return; ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page)); } static bool sanity_check_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && !f2fs_has_extra_attr(inode)) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_msg(sbi->sb, KERN_WARNING, "%s: corrupted inode ino=%lx, run fsck to fix.", __func__, inode->i_ino); return false; } return true; } static int do_read_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct page *node_page; struct f2fs_inode *ri; projid_t i_projid; /* Check if ino is within scope */ if (f2fs_check_nid_range(sbi, inode->i_ino)) return -EINVAL; node_page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) return PTR_ERR(node_page); ri = F2FS_INODE(node_page); inode->i_mode = le16_to_cpu(ri->i_mode); i_uid_write(inode, le32_to_cpu(ri->i_uid)); i_gid_write(inode, le32_to_cpu(ri->i_gid)); set_nlink(inode, le32_to_cpu(ri->i_links)); inode->i_size = le64_to_cpu(ri->i_size); inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1); inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); inode->i_generation = le32_to_cpu(ri->i_generation); if (S_ISDIR(inode->i_mode)) fi->i_current_depth = le32_to_cpu(ri->i_current_depth); else if (S_ISREG(inode->i_mode)) fi->i_gc_failures[GC_FAILURE_PIN] = le16_to_cpu(ri->i_gc_failures); fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); fi->i_flags = le32_to_cpu(ri->i_flags); fi->flags = 0; fi->i_advise = ri->i_advise; fi->i_pino = le32_to_cpu(ri->i_pino); fi->i_dir_level = ri->i_dir_level; if (f2fs_init_extent_tree(inode, &ri->i_ext)) set_page_dirty(node_page); get_inline_info(inode, ri); fi->i_extra_isize = f2fs_has_extra_attr(inode) ? le16_to_cpu(ri->i_extra_isize) : 0; if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) { fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size); } else if (f2fs_has_inline_xattr(inode) || f2fs_has_inline_dentry(inode)) { fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; } else { /* * Previous inline data or directory always reserved 200 bytes * in inode layout, even if inline_xattr is disabled. In order * to keep inline_dentry's structure for backward compatibility, * we get the space back only from inline_data. */ fi->i_inline_xattr_size = 0; } /* check data exist */ if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) __recover_inline_status(inode, node_page); /* get rdev by using inline_info */ __get_inode_rdev(inode, ri); if (__written_first_block(sbi, ri)) set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); if (!f2fs_need_inode_block_update(sbi, inode->i_ino)) fi->last_disk_size = inode->i_size; if (fi->i_flags & F2FS_PROJINHERIT_FL) set_inode_flag(inode, FI_PROJ_INHERIT); if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) i_projid = (projid_t)le32_to_cpu(ri->i_projid); else i_projid = F2FS_DEF_PROJID; fi->i_projid = make_kprojid(&init_user_ns, i_projid); if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi->sb) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime); fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec); } F2FS_I(inode)->i_disk_time[0] = inode->i_atime; F2FS_I(inode)->i_disk_time[1] = inode->i_ctime; F2FS_I(inode)->i_disk_time[2] = inode->i_mtime; F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime; f2fs_put_page(node_page, 1); stat_inc_inline_xattr(inode); stat_inc_inline_inode(inode); stat_inc_inline_dir(inode); return 0; } struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; int ret = 0; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) { trace_f2fs_iget(inode); return inode; } if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) goto make_now; ret = do_read_inode(inode); if (ret) goto bad_inode; if (!sanity_check_inode(inode)) { ret = -EINVAL; goto bad_inode; } make_now: if (ino == F2FS_NODE_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_node_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); } else if (ino == F2FS_META_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_meta_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); } else if (S_ISREG(inode->i_mode)) { inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; inode_nohighmem(inode); } else if (S_ISLNK(inode->i_mode)) { if (f2fs_encrypted_inode(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { inode->i_op = &f2fs_special_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); } else { ret = -EIO; goto bad_inode; } f2fs_set_inode_flags(inode); unlock_new_inode(inode); trace_f2fs_iget(inode); return inode; bad_inode: iget_failed(inode); trace_f2fs_iget_exit(inode, ret); return ERR_PTR(ret); } struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino) { struct inode *inode; retry: inode = f2fs_iget(sb, ino); if (IS_ERR(inode)) { if (PTR_ERR(inode) == -ENOMEM) { congestion_wait(BLK_RW_ASYNC, HZ/50); goto retry; } } return inode; } void f2fs_update_inode(struct inode *inode, struct page *node_page) { struct f2fs_inode *ri; struct extent_tree *et = F2FS_I(inode)->extent_tree; f2fs_wait_on_page_writeback(node_page, NODE, true); set_page_dirty(node_page); f2fs_inode_synced(inode); ri = F2FS_INODE(node_page); ri->i_mode = cpu_to_le16(inode->i_mode); ri->i_advise = F2FS_I(inode)->i_advise; ri->i_uid = cpu_to_le32(i_uid_read(inode)); ri->i_gid = cpu_to_le32(i_gid_read(inode)); ri->i_links = cpu_to_le32(inode->i_nlink); ri->i_size = cpu_to_le64(i_size_read(inode)); ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1); if (et) { read_lock(&et->lock); set_raw_extent(&et->largest, &ri->i_ext); read_unlock(&et->lock); } else { memset(&ri->i_ext, 0, sizeof(ri->i_ext)); } set_raw_inline(inode, ri); ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); if (S_ISDIR(inode->i_mode)) ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); else if (S_ISREG(inode->i_mode)) ri->i_gc_failures = cpu_to_le16(F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]); ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); ri->i_generation = cpu_to_le32(inode->i_generation); ri->i_dir_level = F2FS_I(inode)->i_dir_level; if (f2fs_has_extra_attr(inode)) { ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize); if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)->sb)) ri->i_inline_xattr_size = cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size); if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) && F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize, i_projid)) { projid_t i_projid; i_projid = from_kprojid(&init_user_ns, F2FS_I(inode)->i_projid); ri->i_projid = cpu_to_le32(i_projid); } if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)->sb) && F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize, i_crtime)) { ri->i_crtime = cpu_to_le64(F2FS_I(inode)->i_crtime.tv_sec); ri->i_crtime_nsec = cpu_to_le32(F2FS_I(inode)->i_crtime.tv_nsec); } } __set_inode_rdev(inode, ri); /* deleted inode */ if (inode->i_nlink == 0) clear_inline_node(node_page); F2FS_I(inode)->i_disk_time[0] = inode->i_atime; F2FS_I(inode)->i_disk_time[1] = inode->i_ctime; F2FS_I(inode)->i_disk_time[2] = inode->i_mtime; F2FS_I(inode)->i_disk_time[3] = F2FS_I(inode)->i_crtime; #ifdef CONFIG_F2FS_CHECK_FS f2fs_inode_chksum_set(F2FS_I_SB(inode), node_page); #endif } void f2fs_update_inode_page(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *node_page; retry: node_page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) { int err = PTR_ERR(node_page); if (err == -ENOMEM) { cond_resched(); goto retry; } else if (err != -ENOENT) { f2fs_stop_checkpoint(sbi, false); } return; } f2fs_update_inode(inode, node_page); f2fs_put_page(node_page, 1); } int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) return 0; if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) return 0; /* * We need to balance fs here to prevent from producing dirty node pages * during the urgent cleaning time when runing out of free sections. */ f2fs_update_inode_page(inode); if (wbc && wbc->nr_to_write) f2fs_balance_fs(sbi, true); return 0; } /* * Called at the last iput() if i_nlink is zero */ void f2fs_evict_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t xnid = F2FS_I(inode)->i_xattr_nid; int err = 0; /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) f2fs_drop_inmem_pages(inode); trace_f2fs_evict_inode(inode); truncate_inode_pages_final(&inode->i_data); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) goto out_clear; f2fs_bug_on(sbi, get_dirty_pages(inode)); f2fs_remove_dirty_inode(inode); f2fs_destroy_extent_tree(inode); if (inode->i_nlink || is_bad_inode(inode)) goto no_delete; dquot_initialize(inode); f2fs_remove_ino_entry(sbi, inode->i_ino, APPEND_INO); f2fs_remove_ino_entry(sbi, inode->i_ino, UPDATE_INO); f2fs_remove_ino_entry(sbi, inode->i_ino, FLUSH_INO); sb_start_intwrite(inode->i_sb); set_inode_flag(inode, FI_NO_ALLOC); i_size_write(inode, 0); retry: if (F2FS_HAS_BLOCKS(inode)) err = f2fs_truncate(inode); #ifdef CONFIG_F2FS_FAULT_INJECTION if (time_to_inject(sbi, FAULT_EVICT_INODE)) { f2fs_show_injection_info(FAULT_EVICT_INODE); err = -EIO; } #endif if (!err) { f2fs_lock_op(sbi); err = f2fs_remove_inode_page(inode); f2fs_unlock_op(sbi); if (err == -ENOENT) err = 0; } /* give more chances, if ENOMEM case */ if (err == -ENOMEM) { err = 0; goto retry; } if (err) f2fs_update_inode_page(inode); dquot_free_inode(inode); sb_end_intwrite(inode->i_sb); no_delete: dquot_drop(inode); stat_dec_inline_xattr(inode); stat_dec_inline_dir(inode); stat_dec_inline_inode(inode); if (likely(!is_set_ckpt_flags(sbi, CP_ERROR_FLAG))) f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE)); else f2fs_inode_synced(inode); /* ino == 0, if f2fs_new_inode() was failed t*/ if (inode->i_ino) invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); if (xnid) invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); if (inode->i_nlink) { if (is_inode_flag_set(inode, FI_APPEND_WRITE)) f2fs_add_ino_entry(sbi, inode->i_ino, APPEND_INO); if (is_inode_flag_set(inode, FI_UPDATE_WRITE)) f2fs_add_ino_entry(sbi, inode->i_ino, UPDATE_INO); } if (is_inode_flag_set(inode, FI_FREE_NID)) { f2fs_alloc_nid_failed(sbi, inode->i_ino); clear_inode_flag(inode, FI_FREE_NID); } else { /* * If xattr nid is corrupted, we can reach out error condition, * err & !f2fs_exist_written_data(sbi, inode->i_ino, ORPHAN_INO)). * In that case, f2fs_check_nid_range() is enough to give a clue. */ } out_clear: fscrypt_put_encryption_info(inode); clear_inode(inode); } /* caller should call f2fs_lock_op() */ void f2fs_handle_failed_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct node_info ni; /* * clear nlink of inode in order to release resource of inode * immediately. */ clear_nlink(inode); /* * we must call this to avoid inode being remained as dirty, resulting * in a panic when flushing dirty inodes in gdirty_list. */ f2fs_update_inode_page(inode); f2fs_inode_synced(inode); /* don't make bad inode, since it becomes a regular file. */ unlock_new_inode(inode); /* * Note: we should add inode to orphan list before f2fs_unlock_op() * so we can prevent losing this orphan when encoutering checkpoint * and following suddenly power-off. */ f2fs_get_node_info(sbi, inode->i_ino, &ni); if (ni.blk_addr != NULL_ADDR) { int err = f2fs_acquire_orphan_inode(sbi); if (err) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_msg(sbi->sb, KERN_WARNING, "Too many orphan inodes, run fsck to fix."); } else { f2fs_add_orphan_inode(inode); } f2fs_alloc_nid_done(sbi, inode->i_ino); } else { set_inode_flag(inode, FI_FREE_NID); } f2fs_unlock_op(sbi); /* iput will drop the inode object */ iput(inode); }