// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext4.h" #include "ext4_extents.h" /* Needed for trace points definition */ #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "mballoc.h" #include "fsmap.h" #define CREATE_TRACE_POINTS #include static struct ext4_lazy_init *ext4_li_info; static struct mutex ext4_li_mtx; static struct ratelimit_state ext4_mount_msg_ratelimit; static int ext4_load_journal(struct super_block *, struct ext4_super_block *, unsigned long journal_devnum); static int ext4_show_options(struct seq_file *seq, struct dentry *root); static int ext4_commit_super(struct super_block *sb, int sync); static void ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es); static void ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es); static int ext4_sync_fs(struct super_block *sb, int wait); static int ext4_remount(struct super_block *sb, int *flags, char *data); static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); static int ext4_unfreeze(struct super_block *sb); static int ext4_freeze(struct super_block *sb); static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data); static inline int ext2_feature_set_ok(struct super_block *sb); static inline int ext3_feature_set_ok(struct super_block *sb); static int ext4_feature_set_ok(struct super_block *sb, int readonly); static void ext4_destroy_lazyinit_thread(void); static void ext4_unregister_li_request(struct super_block *sb); static void ext4_clear_request_list(void); static struct inode *ext4_get_journal_inode(struct super_block *sb, unsigned int journal_inum); /* * Lock ordering * * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and * i_mmap_rwsem (inode->i_mmap_rwsem)! * * page fault path: * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> * page lock -> i_data_sem (rw) * * buffered write path: * sb_start_write -> i_mutex -> mmap_sem * sb_start_write -> i_mutex -> transaction start -> page lock -> * i_data_sem (rw) * * truncate: * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> * i_data_sem (rw) * * direct IO: * sb_start_write -> i_mutex -> mmap_sem * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) * * writepages: * transaction start -> page lock(s) -> i_data_sem (rw) */ #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) static struct file_system_type ext2_fs_type = { .owner = THIS_MODULE, .name = "ext2", .mount = ext4_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext2"); MODULE_ALIAS("ext2"); #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) #else #define IS_EXT2_SB(sb) (0) #endif static struct file_system_type ext3_fs_type = { .owner = THIS_MODULE, .name = "ext3", .mount = ext4_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext3"); MODULE_ALIAS("ext3"); #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) /* * This works like sb_bread() except it uses ERR_PTR for error * returns. Currently with sb_bread it's impossible to distinguish * between ENOMEM and EIO situations (since both result in a NULL * return. */ struct buffer_head * ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) { struct buffer_head *bh = sb_getblk(sb, block); if (bh == NULL) return ERR_PTR(-ENOMEM); if (ext4_buffer_uptodate(bh)) return bh; ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; put_bh(bh); return ERR_PTR(-EIO); } static int ext4_verify_csum_type(struct super_block *sb, struct ext4_super_block *es) { if (!ext4_has_feature_metadata_csum(sb)) return 1; return es->s_checksum_type == EXT4_CRC32C_CHKSUM; } static __le32 ext4_superblock_csum(struct super_block *sb, struct ext4_super_block *es) { struct ext4_sb_info *sbi = EXT4_SB(sb); int offset = offsetof(struct ext4_super_block, s_checksum); __u32 csum; csum = ext4_chksum(sbi, ~0, (char *)es, offset); return cpu_to_le32(csum); } static int ext4_superblock_csum_verify(struct super_block *sb, struct ext4_super_block *es) { if (!ext4_has_metadata_csum(sb)) return 1; return es->s_checksum == ext4_superblock_csum(sb, es); } void ext4_superblock_csum_set(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (!ext4_has_metadata_csum(sb)) return; es->s_checksum = ext4_superblock_csum(sb, es); } ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_block_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_table_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); } __u32 ext4_free_group_clusters(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_blocks_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); } __u32 ext4_free_inodes_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_inodes_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); } __u32 ext4_used_dirs_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_used_dirs_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); } __u32 ext4_itable_unused_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_itable_unused_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); } void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_table_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); } void ext4_free_group_clusters_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); } void ext4_free_inodes_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); } void ext4_used_dirs_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); } void ext4_itable_unused_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); } static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) { time64_t now = ktime_get_real_seconds(); now = clamp_val(now, 0, (1ull << 40) - 1); *lo = cpu_to_le32(lower_32_bits(now)); *hi = upper_32_bits(now); } static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) { return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); } #define ext4_update_tstamp(es, tstamp) \ __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) #define ext4_get_tstamp(es, tstamp) \ __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) static void __save_error_info(struct super_block *sb, const char *func, unsigned int line) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; if (bdev_read_only(sb->s_bdev)) return; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); ext4_update_tstamp(es, s_last_error_time); strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); es->s_last_error_line = cpu_to_le32(line); if (es->s_last_error_errcode == 0) es->s_last_error_errcode = EXT4_ERR_EFSCORRUPTED; if (!es->s_first_error_time) { es->s_first_error_time = es->s_last_error_time; es->s_first_error_time_hi = es->s_last_error_time_hi; strncpy(es->s_first_error_func, func, sizeof(es->s_first_error_func)); es->s_first_error_line = cpu_to_le32(line); es->s_first_error_ino = es->s_last_error_ino; es->s_first_error_block = es->s_last_error_block; es->s_first_error_errcode = es->s_last_error_errcode; } /* * Start the daily error reporting function if it hasn't been * started already */ if (!es->s_error_count) mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); le32_add_cpu(&es->s_error_count, 1); } static void save_error_info(struct super_block *sb, const char *func, unsigned int line) { __save_error_info(sb, func, line); ext4_commit_super(sb, 1); } /* * The del_gendisk() function uninitializes the disk-specific data * structures, including the bdi structure, without telling anyone * else. Once this happens, any attempt to call mark_buffer_dirty() * (for example, by ext4_commit_super), will cause a kernel OOPS. * This is a kludge to prevent these oops until we can put in a proper * hook in del_gendisk() to inform the VFS and file system layers. */ static int block_device_ejected(struct super_block *sb) { struct inode *bd_inode = sb->s_bdev->bd_inode; struct backing_dev_info *bdi = inode_to_bdi(bd_inode); return bdi->dev == NULL; } static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); int error = is_journal_aborted(journal); struct ext4_journal_cb_entry *jce; BUG_ON(txn->t_state == T_FINISHED); ext4_process_freed_data(sb, txn->t_tid); spin_lock(&sbi->s_md_lock); while (!list_empty(&txn->t_private_list)) { jce = list_entry(txn->t_private_list.next, struct ext4_journal_cb_entry, jce_list); list_del_init(&jce->jce_list); spin_unlock(&sbi->s_md_lock); jce->jce_func(sb, jce, error); spin_lock(&sbi->s_md_lock); } spin_unlock(&sbi->s_md_lock); } static bool system_going_down(void) { return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || system_state == SYSTEM_RESTART; } /* Deal with the reporting of failure conditions on a filesystem such as * inconsistencies detected or read IO failures. * * On ext2, we can store the error state of the filesystem in the * superblock. That is not possible on ext4, because we may have other * write ordering constraints on the superblock which prevent us from * writing it out straight away; and given that the journal is about to * be aborted, we can't rely on the current, or future, transactions to * write out the superblock safely. * * We'll just use the jbd2_journal_abort() error code to record an error in * the journal instead. On recovery, the journal will complain about * that error until we've noted it down and cleared it. */ static void ext4_handle_error(struct super_block *sb) { if (test_opt(sb, WARN_ON_ERROR)) WARN_ON_ONCE(1); if (sb_rdonly(sb)) return; if (!test_opt(sb, ERRORS_CONT)) { journal_t *journal = EXT4_SB(sb)->s_journal; EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; if (journal) jbd2_journal_abort(journal, -EIO); } /* * We force ERRORS_RO behavior when system is rebooting. Otherwise we * could panic during 'reboot -f' as the underlying device got already * disabled. */ if (test_opt(sb, ERRORS_RO) || system_going_down()) { ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); /* * Make sure updated value of ->s_mount_flags will be visible * before ->s_flags update */ smp_wmb(); sb->s_flags |= SB_RDONLY; } else if (test_opt(sb, ERRORS_PANIC)) { if (EXT4_SB(sb)->s_journal && !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) return; panic("EXT4-fs (device %s): panic forced after error\n", sb->s_id); } } #define ext4_error_ratelimit(sb) \ ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ "EXT4-fs error") void __ext4_error(struct super_block *sb, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; trace_ext4_error(sb, function, line); if (ext4_error_ratelimit(sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", sb->s_id, function, line, current->comm, &vaf); va_end(args); } save_error_info(sb, function, line); ext4_handle_error(sb); } void __ext4_error_inode(struct inode *inode, const char *function, unsigned int line, ext4_fsblk_t block, const char *fmt, ...) { va_list args; struct va_format vaf; struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return; trace_ext4_error(inode->i_sb, function, line); es->s_last_error_ino = cpu_to_le32(inode->i_ino); es->s_last_error_block = cpu_to_le64(block); if (ext4_error_ratelimit(inode->i_sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (block) printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " "inode #%lu: block %llu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, block, current->comm, &vaf); else printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, &vaf); va_end(args); } save_error_info(inode->i_sb, function, line); ext4_handle_error(inode->i_sb); } void __ext4_error_file(struct file *file, const char *function, unsigned int line, ext4_fsblk_t block, const char *fmt, ...) { va_list args; struct va_format vaf; struct ext4_super_block *es; struct inode *inode = file_inode(file); char pathname[80], *path; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return; trace_ext4_error(inode->i_sb, function, line); es = EXT4_SB(inode->i_sb)->s_es; es->s_last_error_ino = cpu_to_le32(inode->i_ino); if (ext4_error_ratelimit(inode->i_sb)) { path = file_path(file, pathname, sizeof(pathname)); if (IS_ERR(path)) path = "(unknown)"; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (block) printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: " "block %llu: comm %s: path %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, block, current->comm, path, &vaf); else printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: " "comm %s: path %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, path, &vaf); va_end(args); } save_error_info(inode->i_sb, function, line); ext4_handle_error(inode->i_sb); } const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]) { char *errstr = NULL; switch (errno) { case -EFSCORRUPTED: errstr = "Corrupt filesystem"; break; case -EFSBADCRC: errstr = "Filesystem failed CRC"; break; case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: if (!sb || (EXT4_SB(sb)->s_journal && EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) errstr = "Journal has aborted"; else errstr = "Readonly filesystem"; break; default: /* If the caller passed in an extra buffer for unknown * errors, textualise them now. Else we just return * NULL. */ if (nbuf) { /* Check for truncated error codes... */ if (snprintf(nbuf, 16, "error %d", -errno) >= 0) errstr = nbuf; } break; } return errstr; } void ext4_set_errno(struct super_block *sb, int err) { if (err < 0) err = -err; switch (err) { case EIO: err = EXT4_ERR_EIO; break; case ENOMEM: err = EXT4_ERR_ENOMEM; break; case EFSBADCRC: err = EXT4_ERR_EFSBADCRC; break; case EFSCORRUPTED: err = EXT4_ERR_EFSCORRUPTED; break; case ENOSPC: err = EXT4_ERR_ENOSPC; break; case ENOKEY: err = EXT4_ERR_ENOKEY; break; case EROFS: err = EXT4_ERR_EROFS; break; case EFBIG: err = EXT4_ERR_EFBIG; break; case EEXIST: err = EXT4_ERR_EEXIST; break; case ERANGE: err = EXT4_ERR_ERANGE; break; case EOVERFLOW: err = EXT4_ERR_EOVERFLOW; break; case EBUSY: err = EXT4_ERR_EBUSY; break; case ENOTDIR: err = EXT4_ERR_ENOTDIR; break; case ENOTEMPTY: err = EXT4_ERR_ENOTEMPTY; break; case ESHUTDOWN: err = EXT4_ERR_ESHUTDOWN; break; case EFAULT: err = EXT4_ERR_EFAULT; break; default: err = EXT4_ERR_UNKNOWN; } EXT4_SB(sb)->s_es->s_last_error_errcode = err; } /* __ext4_std_error decodes expected errors from journaling functions * automatically and invokes the appropriate error response. */ void __ext4_std_error(struct super_block *sb, const char *function, unsigned int line, int errno) { char nbuf[16]; const char *errstr; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; /* Special case: if the error is EROFS, and we're not already * inside a transaction, then there's really no point in logging * an error. */ if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) return; if (ext4_error_ratelimit(sb)) { errstr = ext4_decode_error(sb, errno, nbuf); printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", sb->s_id, function, line, errstr); } ext4_set_errno(sb, -errno); save_error_info(sb, function, line); ext4_handle_error(sb); } /* * ext4_abort is a much stronger failure handler than ext4_error. The * abort function may be used to deal with unrecoverable failures such * as journal IO errors or ENOMEM at a critical moment in log management. * * We unconditionally force the filesystem into an ABORT|READONLY state, * unless the error response on the fs has been set to panic in which * case we take the easy way out and panic immediately. */ void __ext4_abort(struct super_block *sb, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; save_error_info(sb, function, line); va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", sb->s_id, function, line, &vaf); va_end(args); if (sb_rdonly(sb) == 0) { ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; /* * Make sure updated value of ->s_mount_flags will be visible * before ->s_flags update */ smp_wmb(); sb->s_flags |= SB_RDONLY; if (EXT4_SB(sb)->s_journal) jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); save_error_info(sb, function, line); } if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { if (EXT4_SB(sb)->s_journal && !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) return; panic("EXT4-fs panic from previous error\n"); } } void __ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) { struct va_format vaf; va_list args; if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); va_end(args); } #define ext4_warning_ratelimit(sb) \ ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ "EXT4-fs warning") void __ext4_warning(struct super_block *sb, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (!ext4_warning_ratelimit(sb)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", sb->s_id, function, line, &vaf); va_end(args); } void __ext4_warning_inode(const struct inode *inode, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (!ext4_warning_ratelimit(inode->i_sb)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, &vaf); va_end(args); } void __ext4_grp_locked_error(const char *function, unsigned int line, struct super_block *sb, ext4_group_t grp, unsigned long ino, ext4_fsblk_t block, const char *fmt, ...) __releases(bitlock) __acquires(bitlock) { struct va_format vaf; va_list args; struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; trace_ext4_error(sb, function, line); es->s_last_error_ino = cpu_to_le32(ino); es->s_last_error_block = cpu_to_le64(block); __save_error_info(sb, function, line); if (ext4_error_ratelimit(sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", sb->s_id, function, line, grp); if (ino) printk(KERN_CONT "inode %lu: ", ino); if (block) printk(KERN_CONT "block %llu:", (unsigned long long) block); printk(KERN_CONT "%pV\n", &vaf); va_end(args); } if (test_opt(sb, WARN_ON_ERROR)) WARN_ON_ONCE(1); if (test_opt(sb, ERRORS_CONT)) { ext4_commit_super(sb, 0); return; } ext4_unlock_group(sb, grp); ext4_commit_super(sb, 1); ext4_handle_error(sb); /* * We only get here in the ERRORS_RO case; relocking the group * may be dangerous, but nothing bad will happen since the * filesystem will have already been marked read/only and the * journal has been aborted. We return 1 as a hint to callers * who might what to use the return value from * ext4_grp_locked_error() to distinguish between the * ERRORS_CONT and ERRORS_RO case, and perhaps return more * aggressively from the ext4 function in question, with a * more appropriate error code. */ ext4_lock_group(sb, grp); return; } void ext4_mark_group_bitmap_corrupted(struct super_block *sb, ext4_group_t group, unsigned int flags) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); int ret; if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); if (!ret) percpu_counter_sub(&sbi->s_freeclusters_counter, grp->bb_free); } if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); if (!ret && gdp) { int count; count = ext4_free_inodes_count(sb, gdp); percpu_counter_sub(&sbi->s_freeinodes_counter, count); } } } void ext4_update_dynamic_rev(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) return; ext4_warning(sb, "updating to rev %d because of new feature flag, " "running e2fsck is recommended", EXT4_DYNAMIC_REV); es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); /* leave es->s_feature_*compat flags alone */ /* es->s_uuid will be set by e2fsck if empty */ /* * The rest of the superblock fields should be zero, and if not it * means they are likely already in use, so leave them alone. We * can leave it up to e2fsck to clean up any inconsistencies there. */ } /* * Open the external journal device */ static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) { struct block_device *bdev; bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); if (IS_ERR(bdev)) goto fail; return bdev; fail: ext4_msg(sb, KERN_ERR, "failed to open journal device unknown-block(%u,%u) %ld", MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); return NULL; } /* * Release the journal device */ static void ext4_blkdev_put(struct block_device *bdev) { blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } static void ext4_blkdev_remove(struct ext4_sb_info *sbi) { struct block_device *bdev; bdev = sbi->journal_bdev; if (bdev) { ext4_blkdev_put(bdev); sbi->journal_bdev = NULL; } } static inline struct inode *orphan_list_entry(struct list_head *l) { return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; } static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) { struct list_head *l; ext4_msg(sb, KERN_ERR, "sb orphan head is %d", le32_to_cpu(sbi->s_es->s_last_orphan)); printk(KERN_ERR "sb_info orphan list:\n"); list_for_each(l, &sbi->s_orphan) { struct inode *inode = orphan_list_entry(l); printk(KERN_ERR " " "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", inode->i_sb->s_id, inode->i_ino, inode, inode->i_mode, inode->i_nlink, NEXT_ORPHAN(inode)); } } #ifdef CONFIG_QUOTA static int ext4_quota_off(struct super_block *sb, int type); static inline void ext4_quota_off_umount(struct super_block *sb) { int type; /* Use our quota_off function to clear inode flags etc. */ for (type = 0; type < EXT4_MAXQUOTAS; type++) ext4_quota_off(sb, type); } /* * This is a helper function which is used in the mount/remount * codepaths (which holds s_umount) to fetch the quota file name. */ static inline char *get_qf_name(struct super_block *sb, struct ext4_sb_info *sbi, int type) { return rcu_dereference_protected(sbi->s_qf_names[type], lockdep_is_held(&sb->s_umount)); } #else static inline void ext4_quota_off_umount(struct super_block *sb) { } #endif static void ext4_put_super(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; struct buffer_head **group_desc; struct flex_groups **flex_groups; int aborted = 0; int i, err; ext4_unregister_li_request(sb); ext4_quota_off_umount(sb); destroy_workqueue(sbi->rsv_conversion_wq); if (sbi->s_journal) { aborted = is_journal_aborted(sbi->s_journal); err = jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; if ((err < 0) && !aborted) { ext4_set_errno(sb, -err); ext4_abort(sb, "Couldn't clean up the journal"); } } ext4_unregister_sysfs(sb); ext4_es_unregister_shrinker(sbi); del_timer_sync(&sbi->s_err_report); ext4_release_system_zone(sb); ext4_mb_release(sb); ext4_ext_release(sb); if (!sb_rdonly(sb) && !aborted) { ext4_clear_feature_journal_needs_recovery(sb); es->s_state = cpu_to_le16(sbi->s_mount_state); } if (!sb_rdonly(sb)) ext4_commit_super(sb, 1); rcu_read_lock(); group_desc = rcu_dereference(sbi->s_group_desc); for (i = 0; i < sbi->s_gdb_count; i++) brelse(group_desc[i]); kvfree(group_desc); flex_groups = rcu_dereference(sbi->s_flex_groups); if (flex_groups) { for (i = 0; i < sbi->s_flex_groups_allocated; i++) kvfree(flex_groups[i]); kvfree(flex_groups); } rcu_read_unlock(); percpu_counter_destroy(&sbi->s_freeclusters_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); percpu_counter_destroy(&sbi->s_dirtyclusters_counter); percpu_free_rwsem(&sbi->s_writepages_rwsem); #ifdef CONFIG_QUOTA for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(get_qf_name(sb, sbi, i)); #endif /* Debugging code just in case the in-memory inode orphan list * isn't empty. The on-disk one can be non-empty if we've * detected an error and taken the fs readonly, but the * in-memory list had better be clean by this point. */ if (!list_empty(&sbi->s_orphan)) dump_orphan_list(sb, sbi); J_ASSERT(list_empty(&sbi->s_orphan)); sync_blockdev(sb->s_bdev); invalidate_bdev(sb->s_bdev); if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { /* * Invalidate the journal device's buffers. We don't want them * floating about in memory - the physical journal device may * hotswapped, and it breaks the `ro-after' testing code. */ sync_blockdev(sbi->journal_bdev); invalidate_bdev(sbi->journal_bdev); ext4_blkdev_remove(sbi); } ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); sbi->s_ea_inode_cache = NULL; ext4_xattr_destroy_cache(sbi->s_ea_block_cache); sbi->s_ea_block_cache = NULL; if (sbi->s_mmp_tsk) kthread_stop(sbi->s_mmp_tsk); brelse(sbi->s_sbh); sb->s_fs_info = NULL; /* * Now that we are completely done shutting down the * superblock, we need to actually destroy the kobject. */ kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi->s_blockgroup_lock); fs_put_dax(sbi->s_daxdev); #ifdef CONFIG_UNICODE utf8_unload(sbi->s_encoding); #endif kfree(sbi); } static struct kmem_cache *ext4_inode_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *ext4_alloc_inode(struct super_block *sb) { struct ext4_inode_info *ei; ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); if (!ei) return NULL; inode_set_iversion(&ei->vfs_inode, 1); spin_lock_init(&ei->i_raw_lock); INIT_LIST_HEAD(&ei->i_prealloc_list); spin_lock_init(&ei->i_prealloc_lock); ext4_es_init_tree(&ei->i_es_tree); rwlock_init(&ei->i_es_lock); INIT_LIST_HEAD(&ei->i_es_list); ei->i_es_all_nr = 0; ei->i_es_shk_nr = 0; ei->i_es_shrink_lblk = 0; ei->i_reserved_data_blocks = 0; spin_lock_init(&(ei->i_block_reservation_lock)); ext4_init_pending_tree(&ei->i_pending_tree); #ifdef CONFIG_QUOTA ei->i_reserved_quota = 0; memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); #endif ei->jinode = NULL; INIT_LIST_HEAD(&ei->i_rsv_conversion_list); spin_lock_init(&ei->i_completed_io_lock); ei->i_sync_tid = 0; ei->i_datasync_tid = 0; atomic_set(&ei->i_unwritten, 0); INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); return &ei->vfs_inode; } static int ext4_drop_inode(struct inode *inode) { int drop = generic_drop_inode(inode); if (!drop) drop = fscrypt_drop_inode(inode); trace_ext4_drop_inode(inode, drop); return drop; } static void ext4_free_in_core_inode(struct inode *inode) { fscrypt_free_inode(inode); kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); } static void ext4_destroy_inode(struct inode *inode) { if (!list_empty(&(EXT4_I(inode)->i_orphan))) { ext4_msg(inode->i_sb, KERN_ERR, "Inode %lu (%p): orphan list check failed!", inode->i_ino, EXT4_I(inode)); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, EXT4_I(inode), sizeof(struct ext4_inode_info), true); dump_stack(); } } static void init_once(void *foo) { struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; INIT_LIST_HEAD(&ei->i_orphan); init_rwsem(&ei->xattr_sem); init_rwsem(&ei->i_data_sem); init_rwsem(&ei->i_mmap_sem); inode_init_once(&ei->vfs_inode); } static int __init init_inodecache(void) { ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", sizeof(struct ext4_inode_info), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| SLAB_ACCOUNT), offsetof(struct ext4_inode_info, i_data), sizeof_field(struct ext4_inode_info, i_data), init_once); if (ext4_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(ext4_inode_cachep); } void ext4_clear_inode(struct inode *inode) { invalidate_inode_buffers(inode); clear_inode(inode); ext4_discard_preallocations(inode); ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); dquot_drop(inode); if (EXT4_I(inode)->jinode) { jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), EXT4_I(inode)->jinode); jbd2_free_inode(EXT4_I(inode)->jinode); EXT4_I(inode)->jinode = NULL; } fscrypt_put_encryption_info(inode); fsverity_cleanup_inode(inode); } static struct inode *ext4_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; /* * Currently we don't know the generation for parent directory, so * a generation of 0 means "accept any" */ inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } static int ext4_nfs_commit_metadata(struct inode *inode) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL }; trace_ext4_nfs_commit_metadata(inode); return ext4_write_inode(inode, &wbc); } /* * Try to release metadata pages (indirect blocks, directories) which are * mapped via the block device. Since these pages could have journal heads * which would prevent try_to_free_buffers() from freeing them, we must use * jbd2 layer's try_to_free_buffers() function to release them. */ static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait) { journal_t *journal = EXT4_SB(sb)->s_journal; WARN_ON(PageChecked(page)); if (!page_has_buffers(page)) return 0; if (journal) return jbd2_journal_try_to_free_buffers(journal, page, wait & ~__GFP_DIRECT_RECLAIM); return try_to_free_buffers(page); } #ifdef CONFIG_FS_ENCRYPTION static int ext4_get_context(struct inode *inode, void *ctx, size_t len) { return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); } static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, void *fs_data) { handle_t *handle = fs_data; int res, res2, credits, retries = 0; /* * Encrypting the root directory is not allowed because e2fsck expects * lost+found to exist and be unencrypted, and encrypting the root * directory would imply encrypting the lost+found directory as well as * the filename "lost+found" itself. */ if (inode->i_ino == EXT4_ROOT_INO) return -EPERM; if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) return -EINVAL; res = ext4_convert_inline_data(inode); if (res) return res; /* * If a journal handle was specified, then the encryption context is * being set on a new inode via inheritance and is part of a larger * transaction to create the inode. Otherwise the encryption context is * being set on an existing inode in its own transaction. Only in the * latter case should the "retry on ENOSPC" logic be used. */ if (handle) { res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, 0); if (!res) { ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); /* * Update inode->i_flags - S_ENCRYPTED will be enabled, * S_DAX may be disabled */ ext4_set_inode_flags(inode); } return res; } res = dquot_initialize(inode); if (res) return res; retry: res = ext4_xattr_set_credits(inode, len, false /* is_create */, &credits); if (res) return res; handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); if (IS_ERR(handle)) return PTR_ERR(handle); res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, 0); if (!res) { ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); /* * Update inode->i_flags - S_ENCRYPTED will be enabled, * S_DAX may be disabled */ ext4_set_inode_flags(inode); res = ext4_mark_inode_dirty(handle, inode); if (res) EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); } res2 = ext4_journal_stop(handle); if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry; if (!res) res = res2; return res; } static bool ext4_dummy_context(struct inode *inode) { return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); } static bool ext4_has_stable_inodes(struct super_block *sb) { return ext4_has_feature_stable_inodes(sb); } static void ext4_get_ino_and_lblk_bits(struct super_block *sb, int *ino_bits_ret, int *lblk_bits_ret) { *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); } static const struct fscrypt_operations ext4_cryptops = { .key_prefix = "ext4:", .get_context = ext4_get_context, .set_context = ext4_set_context, .dummy_context = ext4_dummy_context, .empty_dir = ext4_empty_dir, .max_namelen = EXT4_NAME_LEN, .has_stable_inodes = ext4_has_stable_inodes, .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, }; #endif #ifdef CONFIG_QUOTA static const char * const quotatypes[] = INITQFNAMES; #define QTYPE2NAME(t) (quotatypes[t]) static int ext4_write_dquot(struct dquot *dquot); static int ext4_acquire_dquot(struct dquot *dquot); static int ext4_release_dquot(struct dquot *dquot); static int ext4_mark_dquot_dirty(struct dquot *dquot); static int ext4_write_info(struct super_block *sb, int type); static int ext4_quota_on(struct super_block *sb, int type, int format_id, const struct path *path); static int ext4_quota_on_mount(struct super_block *sb, int type); static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off); static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off); static int ext4_quota_enable(struct super_block *sb, int type, int format_id, unsigned int flags); static int ext4_enable_quotas(struct super_block *sb); static struct dquot **ext4_get_dquots(struct inode *inode) { return EXT4_I(inode)->i_dquot; } static const struct dquot_operations ext4_quota_operations = { .get_reserved_space = ext4_get_reserved_space, .write_dquot = ext4_write_dquot, .acquire_dquot = ext4_acquire_dquot, .release_dquot = ext4_release_dquot, .mark_dirty = ext4_mark_dquot_dirty, .write_info = ext4_write_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, .get_projid = ext4_get_projid, .get_inode_usage = ext4_get_inode_usage, .get_next_id = dquot_get_next_id, }; static const struct quotactl_ops ext4_qctl_operations = { .quota_on = ext4_quota_on, .quota_off = ext4_quota_off, .quota_sync = dquot_quota_sync, .get_state = dquot_get_state, .set_info = dquot_set_dqinfo, .get_dqblk = dquot_get_dqblk, .set_dqblk = dquot_set_dqblk, .get_nextdqblk = dquot_get_next_dqblk, }; #endif static const struct super_operations ext4_sops = { .alloc_inode = ext4_alloc_inode, .free_inode = ext4_free_in_core_inode, .destroy_inode = ext4_destroy_inode, .write_inode = ext4_write_inode, .dirty_inode = ext4_dirty_inode, .drop_inode = ext4_drop_inode, .evict_inode = ext4_evict_inode, .put_super = ext4_put_super, .sync_fs = ext4_sync_fs, .freeze_fs = ext4_freeze, .unfreeze_fs = ext4_unfreeze, .statfs = ext4_statfs, .remount_fs = ext4_remount, .show_options = ext4_show_options, #ifdef CONFIG_QUOTA .quota_read = ext4_quota_read, .quota_write = ext4_quota_write, .get_dquots = ext4_get_dquots, #endif .bdev_try_to_free_page = bdev_try_to_free_page, }; static const struct export_operations ext4_export_ops = { .fh_to_dentry = ext4_fh_to_dentry, .fh_to_parent = ext4_fh_to_parent, .get_parent = ext4_get_parent, .commit_metadata = ext4_nfs_commit_metadata, }; enum { Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, Opt_nouid32, Opt_debug, Opt_removed, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, Opt_inode_readahead_blks, Opt_journal_ioprio, Opt_dioread_nolock, Opt_dioread_lock, Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, }; static const match_table_t tokens = { {Opt_bsd_df, "bsddf"}, {Opt_minix_df, "minixdf"}, {Opt_grpid, "grpid"}, {Opt_grpid, "bsdgroups"}, {Opt_nogrpid, "nogrpid"}, {Opt_nogrpid, "sysvgroups"}, {Opt_resgid, "resgid=%u"}, {Opt_resuid, "resuid=%u"}, {Opt_sb, "sb=%u"}, {Opt_err_cont, "errors=continue"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_nouid32, "nouid32"}, {Opt_debug, "debug"}, {Opt_removed, "oldalloc"}, {Opt_removed, "orlov"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_noload, "norecovery"}, {Opt_noload, "noload"}, {Opt_removed, "nobh"}, {Opt_removed, "bh"}, {Opt_commit, "commit=%u"}, {Opt_min_batch_time, "min_batch_time=%u"}, {Opt_max_batch_time, "max_batch_time=%u"}, {Opt_journal_dev, "journal_dev=%u"}, {Opt_journal_path, "journal_path=%s"}, {Opt_journal_checksum, "journal_checksum"}, {Opt_nojournal_checksum, "nojournal_checksum"}, {Opt_journal_async_commit, "journal_async_commit"}, {Opt_abort, "abort"}, {Opt_data_journal, "data=journal"}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_data_err_abort, "data_err=abort"}, {Opt_data_err_ignore, "data_err=ignore"}, {Opt_offusrjquota, "usrjquota="}, {Opt_usrjquota, "usrjquota=%s"}, {Opt_offgrpjquota, "grpjquota="}, {Opt_grpjquota, "grpjquota=%s"}, {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, {Opt_grpquota, "grpquota"}, {Opt_noquota, "noquota"}, {Opt_quota, "quota"}, {Opt_usrquota, "usrquota"}, {Opt_prjquota, "prjquota"}, {Opt_barrier, "barrier=%u"}, {Opt_barrier, "barrier"}, {Opt_nobarrier, "nobarrier"}, {Opt_i_version, "i_version"}, {Opt_dax, "dax"}, {Opt_stripe, "stripe=%u"}, {Opt_delalloc, "delalloc"}, {Opt_warn_on_error, "warn_on_error"}, {Opt_nowarn_on_error, "nowarn_on_error"}, {Opt_lazytime, "lazytime"}, {Opt_nolazytime, "nolazytime"}, {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, {Opt_nodelalloc, "nodelalloc"}, {Opt_removed, "mblk_io_submit"}, {Opt_removed, "nomblk_io_submit"}, {Opt_block_validity, "block_validity"}, {Opt_noblock_validity, "noblock_validity"}, {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, {Opt_journal_ioprio, "journal_ioprio=%u"}, {Opt_auto_da_alloc, "auto_da_alloc=%u"}, {Opt_auto_da_alloc, "auto_da_alloc"}, {Opt_noauto_da_alloc, "noauto_da_alloc"}, {Opt_dioread_nolock, "dioread_nolock"}, {Opt_dioread_lock, "nodioread_nolock"}, {Opt_dioread_lock, "dioread_lock"}, {Opt_discard, "discard"}, {Opt_nodiscard, "nodiscard"}, {Opt_init_itable, "init_itable=%u"}, {Opt_init_itable, "init_itable"}, {Opt_noinit_itable, "noinit_itable"}, {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, {Opt_test_dummy_encryption, "test_dummy_encryption"}, {Opt_nombcache, "nombcache"}, {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ {Opt_removed, "check=none"}, /* mount option from ext2/3 */ {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ {Opt_removed, "reservation"}, /* mount option from ext2/3 */ {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ {Opt_err, NULL}, }; static ext4_fsblk_t get_sb_block(void **data) { ext4_fsblk_t sb_block; char *options = (char *) *data; if (!options || strncmp(options, "sb=", 3) != 0) return 1; /* Default location */ options += 3; /* TODO: use simple_strtoll with >32bit ext4 */ sb_block = simple_strtoul(options, &options, 0); if (*options && *options != ',') { printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", (char *) *data); return 1; } if (*options == ',') options++; *data = (void *) options; return sb_block; } #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) static const char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; #ifdef CONFIG_QUOTA static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) { struct ext4_sb_info *sbi = EXT4_SB(sb); char *qname, *old_qname = get_qf_name(sb, sbi, qtype); int ret = -1; if (sb_any_quota_loaded(sb) && !old_qname) { ext4_msg(sb, KERN_ERR, "Cannot change journaled " "quota options when quota turned on"); return -1; } if (ext4_has_feature_quota(sb)) { ext4_msg(sb, KERN_INFO, "Journaled quota options " "ignored when QUOTA feature is enabled"); return 1; } qname = match_strdup(args); if (!qname) { ext4_msg(sb, KERN_ERR, "Not enough memory for storing quotafile name"); return -1; } if (old_qname) { if (strcmp(old_qname, qname) == 0) ret = 1; else ext4_msg(sb, KERN_ERR, "%s quota file already specified", QTYPE2NAME(qtype)); goto errout; } if (strchr(qname, '/')) { ext4_msg(sb, KERN_ERR, "quotafile must be on filesystem root"); goto errout; } rcu_assign_pointer(sbi->s_qf_names[qtype], qname); set_opt(sb, QUOTA); return 1; errout: kfree(qname); return ret; } static int clear_qf_name(struct super_block *sb, int qtype) { struct ext4_sb_info *sbi = EXT4_SB(sb); char *old_qname = get_qf_name(sb, sbi, qtype); if (sb_any_quota_loaded(sb) && old_qname) { ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" " when quota turned on"); return -1; } rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); synchronize_rcu(); kfree(old_qname); return 1; } #endif #define MOPT_SET 0x0001 #define MOPT_CLEAR 0x0002 #define MOPT_NOSUPPORT 0x0004 #define MOPT_EXPLICIT 0x0008 #define MOPT_CLEAR_ERR 0x0010 #define MOPT_GTE0 0x0020 #ifdef CONFIG_QUOTA #define MOPT_Q 0 #define MOPT_QFMT 0x0040 #else #define MOPT_Q MOPT_NOSUPPORT #define MOPT_QFMT MOPT_NOSUPPORT #endif #define MOPT_DATAJ 0x0080 #define MOPT_NO_EXT2 0x0100 #define MOPT_NO_EXT3 0x0200 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) #define MOPT_STRING 0x0400 static const struct mount_opts { int token; int mount_opt; int flags; } ext4_mount_opts[] = { {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_EXT4_ONLY | MOPT_SET}, {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, {Opt_commit, 0, MOPT_GTE0}, {Opt_max_batch_time, 0, MOPT_GTE0}, {Opt_min_batch_time, 0, MOPT_GTE0}, {Opt_inode_readahead_blks, 0, MOPT_GTE0}, {Opt_init_itable, 0, MOPT_GTE0}, {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, {Opt_stripe, 0, MOPT_GTE0}, {Opt_resuid, 0, MOPT_GTE0}, {Opt_resgid, 0, MOPT_GTE0}, {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, #ifdef CONFIG_EXT4_FS_POSIX_ACL {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, #else {Opt_acl, 0, MOPT_NOSUPPORT}, {Opt_noacl, 0, MOPT_NOSUPPORT}, #endif {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, MOPT_SET | MOPT_Q}, {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, MOPT_SET | MOPT_Q}, {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), MOPT_CLEAR | MOPT_Q}, {Opt_usrjquota, 0, MOPT_Q}, {Opt_grpjquota, 0, MOPT_Q}, {Opt_offusrjquota, 0, MOPT_Q}, {Opt_offgrpjquota, 0, MOPT_Q}, {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, {Opt_max_dir_size_kb, 0, MOPT_GTE0}, {Opt_test_dummy_encryption, 0, MOPT_GTE0}, {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, {Opt_err, 0, 0} }; #ifdef CONFIG_UNICODE static const struct ext4_sb_encodings { __u16 magic; char *name; char *version; } ext4_sb_encoding_map[] = { {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, }; static int ext4_sb_read_encoding(const struct ext4_super_block *es, const struct ext4_sb_encodings **encoding, __u16 *flags) { __u16 magic = le16_to_cpu(es->s_encoding); int i; for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) if (magic == ext4_sb_encoding_map[i].magic) break; if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) return -EINVAL; *encoding = &ext4_sb_encoding_map[i]; *flags = le16_to_cpu(es->s_encoding_flags); return 0; } #endif static int handle_mount_opt(struct super_block *sb, char *opt, int token, substring_t *args, unsigned long *journal_devnum, unsigned int *journal_ioprio, int is_remount) { struct ext4_sb_info *sbi = EXT4_SB(sb); const struct mount_opts *m; kuid_t uid; kgid_t gid; int arg = 0; #ifdef CONFIG_QUOTA if (token == Opt_usrjquota) return set_qf_name(sb, USRQUOTA, &args[0]); else if (token == Opt_grpjquota) return set_qf_name(sb, GRPQUOTA, &args[0]); else if (token == Opt_offusrjquota) return clear_qf_name(sb, USRQUOTA); else if (token == Opt_offgrpjquota) return clear_qf_name(sb, GRPQUOTA); #endif switch (token) { case Opt_noacl: case Opt_nouser_xattr: ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); break; case Opt_sb: return 1; /* handled by get_sb_block() */ case Opt_removed: ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); return 1; case Opt_abort: sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; return 1; case Opt_i_version: sb->s_flags |= SB_I_VERSION; return 1; case Opt_lazytime: sb->s_flags |= SB_LAZYTIME; return 1; case Opt_nolazytime: sb->s_flags &= ~SB_LAZYTIME; return 1; } for (m = ext4_mount_opts; m->token != Opt_err; m++) if (token == m->token) break; if (m->token == Opt_err) { ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " "or missing value", opt); return -1; } if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { ext4_msg(sb, KERN_ERR, "Mount option \"%s\" incompatible with ext2", opt); return -1; } if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { ext4_msg(sb, KERN_ERR, "Mount option \"%s\" incompatible with ext3", opt); return -1; } if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) return -1; if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) return -1; if (m->flags & MOPT_EXPLICIT) { if (m->mount_opt & EXT4_MOUNT_DELALLOC) { set_opt2(sb, EXPLICIT_DELALLOC); } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); } else return -1; } if (m->flags & MOPT_CLEAR_ERR) clear_opt(sb, ERRORS_MASK); if (token == Opt_noquota && sb_any_quota_loaded(sb)) { ext4_msg(sb, KERN_ERR, "Cannot change quota " "options when quota turned on"); return -1; } if (m->flags & MOPT_NOSUPPORT) { ext4_msg(sb, KERN_ERR, "%s option not supported", opt); } else if (token == Opt_commit) { if (arg == 0) arg = JBD2_DEFAULT_MAX_COMMIT_AGE; else if (arg > INT_MAX / HZ) { ext4_msg(sb, KERN_ERR, "Invalid commit interval %d, " "must be smaller than %d", arg, INT_MAX / HZ); return -1; } sbi->s_commit_interval = HZ * arg; } else if (token == Opt_debug_want_extra_isize) { if ((arg & 1) || (arg < 4) || (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { ext4_msg(sb, KERN_ERR, "Invalid want_extra_isize %d", arg); return -1; } sbi->s_want_extra_isize = arg; } else if (token == Opt_max_batch_time) { sbi->s_max_batch_time = arg; } else if (token == Opt_min_batch_time) { sbi->s_min_batch_time = arg; } else if (token == Opt_inode_readahead_blks) { if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { ext4_msg(sb, KERN_ERR, "EXT4-fs: inode_readahead_blks must be " "0 or a power of 2 smaller than 2^31"); return -1; } sbi->s_inode_readahead_blks = arg; } else if (token == Opt_init_itable) { set_opt(sb, INIT_INODE_TABLE); if (!args->from) arg = EXT4_DEF_LI_WAIT_MULT; sbi->s_li_wait_mult = arg; } else if (token == Opt_max_dir_size_kb) { sbi->s_max_dir_size_kb = arg; } else if (token == Opt_stripe) { sbi->s_stripe = arg; } else if (token == Opt_resuid) { uid = make_kuid(current_user_ns(), arg); if (!uid_valid(uid)) { ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); return -1; } sbi->s_resuid = uid; } else if (token == Opt_resgid) { gid = make_kgid(current_user_ns(), arg); if (!gid_valid(gid)) { ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); return -1; } sbi->s_resgid = gid; } else if (token == Opt_journal_dev) { if (is_remount) { ext4_msg(sb, KERN_ERR, "Cannot specify journal on remount"); return -1; } *journal_devnum = arg; } else if (token == Opt_journal_path) { char *journal_path; struct inode *journal_inode; struct path path; int error; if (is_remount) { ext4_msg(sb, KERN_ERR, "Cannot specify journal on remount"); return -1; } journal_path = match_strdup(&args[0]); if (!journal_path) { ext4_msg(sb, KERN_ERR, "error: could not dup " "journal device string"); return -1; } error = kern_path(journal_path, LOOKUP_FOLLOW, &path); if (error) { ext4_msg(sb, KERN_ERR, "error: could not find " "journal device path: error %d", error); kfree(journal_path); return -1; } journal_inode = d_inode(path.dentry); if (!S_ISBLK(journal_inode->i_mode)) { ext4_msg(sb, KERN_ERR, "error: journal path %s " "is not a block device", journal_path); path_put(&path); kfree(journal_path); return -1; } *journal_devnum = new_encode_dev(journal_inode->i_rdev); path_put(&path); kfree(journal_path); } else if (token == Opt_journal_ioprio) { if (arg > 7) { ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" " (must be 0-7)"); return -1; } *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); } else if (token == Opt_test_dummy_encryption) { #ifdef CONFIG_FS_ENCRYPTION sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); #else ext4_msg(sb, KERN_WARNING, "Test dummy encryption mount option ignored"); #endif } else if (m->flags & MOPT_DATAJ) { if (is_remount) { if (!sbi->s_journal) ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { ext4_msg(sb, KERN_ERR, "Cannot change data mode on remount"); return -1; } } else { clear_opt(sb, DATA_FLAGS); sbi->s_mount_opt |= m->mount_opt; } #ifdef CONFIG_QUOTA } else if (m->flags & MOPT_QFMT) { if (sb_any_quota_loaded(sb) && sbi->s_jquota_fmt != m->mount_opt) { ext4_msg(sb, KERN_ERR, "Cannot change journaled " "quota options when quota turned on"); return -1; } if (ext4_has_feature_quota(sb)) { ext4_msg(sb, KERN_INFO, "Quota format mount options ignored " "when QUOTA feature is enabled"); return 1; } sbi->s_jquota_fmt = m->mount_opt; #endif } else if (token == Opt_dax) { #ifdef CONFIG_FS_DAX ext4_msg(sb, KERN_WARNING, "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); sbi->s_mount_opt |= m->mount_opt; #else ext4_msg(sb, KERN_INFO, "dax option not supported"); return -1; #endif } else if (token == Opt_data_err_abort) { sbi->s_mount_opt |= m->mount_opt; } else if (token == Opt_data_err_ignore) { sbi->s_mount_opt &= ~m->mount_opt; } else { if (!args->from) arg = 1; if (m->flags & MOPT_CLEAR) arg = !arg; else if (unlikely(!(m->flags & MOPT_SET))) { ext4_msg(sb, KERN_WARNING, "buggy handling of option %s", opt); WARN_ON(1); return -1; } if (arg != 0) sbi->s_mount_opt |= m->mount_opt; else sbi->s_mount_opt &= ~m->mount_opt; } return 1; } static int parse_options(char *options, struct super_block *sb, unsigned long *journal_devnum, unsigned int *journal_ioprio, int is_remount) { struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; substring_t args[MAX_OPT_ARGS]; int token; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { if (!*p) continue; /* * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ args[0].to = args[0].from = NULL; token = match_token(p, tokens, args); if (handle_mount_opt(sb, p, token, args, journal_devnum, journal_ioprio, is_remount) < 0) return 0; } #ifdef CONFIG_QUOTA /* * We do the test below only for project quotas. 'usrquota' and * 'grpquota' mount options are allowed even without quota feature * to support legacy quotas in quota files. */ if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " "Cannot enable project quota enforcement."); return 0; } usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); if (usr_qf_name || grp_qf_name) { if (test_opt(sb, USRQUOTA) && usr_qf_name) clear_opt(sb, USRQUOTA); if (test_opt(sb, GRPQUOTA) && grp_qf_name) clear_opt(sb, GRPQUOTA); if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { ext4_msg(sb, KERN_ERR, "old and new quota " "format mixing"); return 0; } if (!sbi->s_jquota_fmt) { ext4_msg(sb, KERN_ERR, "journaled quota format " "not specified"); return 0; } } #endif return 1; } static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) { #if defined(CONFIG_QUOTA) struct ext4_sb_info *sbi = EXT4_SB(sb); char *usr_qf_name, *grp_qf_name; if (sbi->s_jquota_fmt) { char *fmtname = ""; switch (sbi->s_jquota_fmt) { case QFMT_VFS_OLD: fmtname = "vfsold"; break; case QFMT_VFS_V0: fmtname = "vfsv0"; break; case QFMT_VFS_V1: fmtname = "vfsv1"; break; } seq_printf(seq, ",jqfmt=%s", fmtname); } rcu_read_lock(); usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); if (usr_qf_name) seq_show_option(seq, "usrjquota", usr_qf_name); if (grp_qf_name) seq_show_option(seq, "grpjquota", grp_qf_name); rcu_read_unlock(); #endif } static const char *token2str(int token) { const struct match_token *t; for (t = tokens; t->token != Opt_err; t++) if (t->token == token && !strchr(t->pattern, '=')) break; return t->pattern; } /* * Show an option if * - it's set to a non-default value OR * - if the per-sb default is different from the global default */ static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, int nodefs) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int def_errors, def_mount_opt = sbi->s_def_mount_opt; const struct mount_opts *m; char sep = nodefs ? '\n' : ','; #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) if (sbi->s_sb_block != 1) SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); for (m = ext4_mount_opts; m->token != Opt_err; m++) { int want_set = m->flags & MOPT_SET; if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || (m->flags & MOPT_CLEAR_ERR)) continue; if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) continue; /* skip if same as the default */ if ((want_set && (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || (!want_set && (sbi->s_mount_opt & m->mount_opt))) continue; /* select Opt_noFoo vs Opt_Foo */ SEQ_OPTS_PRINT("%s", token2str(m->token)); } if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) SEQ_OPTS_PRINT("resuid=%u", from_kuid_munged(&init_user_ns, sbi->s_resuid)); if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) SEQ_OPTS_PRINT("resgid=%u", from_kgid_munged(&init_user_ns, sbi->s_resgid)); def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) SEQ_OPTS_PUTS("errors=remount-ro"); if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) SEQ_OPTS_PUTS("errors=continue"); if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) SEQ_OPTS_PUTS("errors=panic"); if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); if (sb->s_flags & SB_I_VERSION) SEQ_OPTS_PUTS("i_version"); if (nodefs || sbi->s_stripe) SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); if (nodefs || EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) SEQ_OPTS_PUTS("data=journal"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) SEQ_OPTS_PUTS("data=ordered"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) SEQ_OPTS_PUTS("data=writeback"); } if (nodefs || sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) SEQ_OPTS_PRINT("inode_readahead_blks=%u", sbi->s_inode_readahead_blks); if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); if (nodefs || sbi->s_max_dir_size_kb) SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); if (test_opt(sb, DATA_ERR_ABORT)) SEQ_OPTS_PUTS("data_err=abort"); if (DUMMY_ENCRYPTION_ENABLED(sbi)) SEQ_OPTS_PUTS("test_dummy_encryption"); ext4_show_quota_options(seq, sb); return 0; } static int ext4_show_options(struct seq_file *seq, struct dentry *root) { return _ext4_show_options(seq, root->d_sb, 0); } int ext4_seq_options_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; int rc; seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); rc = _ext4_show_options(seq, sb, 1); seq_puts(seq, "\n"); return rc; } static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, int read_only) { struct ext4_sb_info *sbi = EXT4_SB(sb); int err = 0; if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { ext4_msg(sb, KERN_ERR, "revision level too high, " "forcing read-only mode"); err = -EROFS; } if (read_only) goto done; if (!(sbi->s_mount_state & EXT4_VALID_FS)) ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " "running e2fsck is recommended"); else if (sbi->s_mount_state & EXT4_ERROR_FS) ext4_msg(sb, KERN_WARNING, "warning: mounting fs with errors, " "running e2fsck is recommended"); else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && le16_to_cpu(es->s_mnt_count) >= (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) ext4_msg(sb, KERN_WARNING, "warning: maximal mount count reached, " "running e2fsck is recommended"); else if (le32_to_cpu(es->s_checkinterval) && (ext4_get_tstamp(es, s_lastcheck) + le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) ext4_msg(sb, KERN_WARNING, "warning: checktime reached, " "running e2fsck is recommended"); if (!sbi->s_journal) es->s_state &= cpu_to_le16(~EXT4_VALID_FS); if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); le16_add_cpu(&es->s_mnt_count, 1); ext4_update_tstamp(es, s_mtime); if (sbi->s_journal) ext4_set_feature_journal_needs_recovery(sb); err = ext4_commit_super(sb, 1); done: if (test_opt(sb, DEBUG)) printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", sb->s_blocksize, sbi->s_groups_count, EXT4_BLOCKS_PER_GROUP(sb), EXT4_INODES_PER_GROUP(sb), sbi->s_mount_opt, sbi->s_mount_opt2); cleancache_init_fs(sb); return err; } int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct flex_groups **old_groups, **new_groups; int size, i, j; if (!sbi->s_log_groups_per_flex) return 0; size = ext4_flex_group(sbi, ngroup - 1) + 1; if (size <= sbi->s_flex_groups_allocated) return 0; new_groups = kvzalloc(roundup_pow_of_two(size * sizeof(*sbi->s_flex_groups)), GFP_KERNEL); if (!new_groups) { ext4_msg(sb, KERN_ERR, "not enough memory for %d flex group pointers", size); return -ENOMEM; } for (i = sbi->s_flex_groups_allocated; i < size; i++) { new_groups[i] = kvzalloc(roundup_pow_of_two( sizeof(struct flex_groups)), GFP_KERNEL); if (!new_groups[i]) { for (j = sbi->s_flex_groups_allocated; j < i; j++) kvfree(new_groups[j]); kvfree(new_groups); ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", size); return -ENOMEM; } } rcu_read_lock(); old_groups = rcu_dereference(sbi->s_flex_groups); if (old_groups) memcpy(new_groups, old_groups, (sbi->s_flex_groups_allocated * sizeof(struct flex_groups *))); rcu_read_unlock(); rcu_assign_pointer(sbi->s_flex_groups, new_groups); sbi->s_flex_groups_allocated = size; if (old_groups) ext4_kvfree_array_rcu(old_groups); return 0; } static int ext4_fill_flex_info(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *gdp = NULL; struct flex_groups *fg; ext4_group_t flex_group; int i, err; sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { sbi->s_log_groups_per_flex = 0; return 1; } err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); if (err) goto failed; for (i = 0; i < sbi->s_groups_count; i++) { gdp = ext4_get_group_desc(sb, i, NULL); flex_group = ext4_flex_group(sbi, i); fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); atomic64_add(ext4_free_group_clusters(sb, gdp), &fg->free_clusters); atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); } return 1; failed: return 0; } static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { int offset = offsetof(struct ext4_group_desc, bg_checksum); __u16 crc = 0; __le32 le_group = cpu_to_le32(block_group); struct ext4_sb_info *sbi = EXT4_SB(sb); if (ext4_has_metadata_csum(sbi->s_sb)) { /* Use new metadata_csum algorithm */ __u32 csum32; __u16 dummy_csum = 0; csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, sizeof(le_group)); csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, sizeof(dummy_csum)); offset += sizeof(dummy_csum); if (offset < sbi->s_desc_size) csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, sbi->s_desc_size - offset); crc = csum32 & 0xFFFF; goto out; } /* old crc16 code */ if (!ext4_has_feature_gdt_csum(sb)) return 0; crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); crc = crc16(crc, (__u8 *)gdp, offset); offset += sizeof(gdp->bg_checksum); /* skip checksum */ /* for checksum of struct ext4_group_desc do the rest...*/ if (ext4_has_feature_64bit(sb) && offset < le16_to_cpu(sbi->s_es->s_desc_size)) crc = crc16(crc, (__u8 *)gdp + offset, le16_to_cpu(sbi->s_es->s_desc_size) - offset); out: return cpu_to_le16(crc); } int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { if (ext4_has_group_desc_csum(sb) && (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) return 0; return 1; } void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { if (!ext4_has_group_desc_csum(sb)) return; gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); } /* Called at mount-time, super-block is locked */ static int ext4_check_descriptors(struct super_block *sb, ext4_fsblk_t sb_block, ext4_group_t *first_not_zeroed) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); ext4_fsblk_t last_block; ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); ext4_fsblk_t block_bitmap; ext4_fsblk_t inode_bitmap; ext4_fsblk_t inode_table; int flexbg_flag = 0; ext4_group_t i, grp = sbi->s_groups_count; if (ext4_has_feature_flex_bg(sb)) flexbg_flag = 1; ext4_debug("Checking group descriptors"); for (i = 0; i < sbi->s_groups_count; i++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); if (i == sbi->s_groups_count - 1 || flexbg_flag) last_block = ext4_blocks_count(sbi->s_es) - 1; else last_block = first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); if ((grp == sbi->s_groups_count) && !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) grp = i; block_bitmap = ext4_block_bitmap(sb, gdp); if (block_bitmap == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (block_bitmap >= sb_block + 1 && block_bitmap <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (block_bitmap < first_block || block_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u not in group " "(block %llu)!", i, block_bitmap); return 0; } inode_bitmap = ext4_inode_bitmap(sb, gdp); if (inode_bitmap == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (inode_bitmap >= sb_block + 1 && inode_bitmap <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (inode_bitmap < first_block || inode_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u not in group " "(block %llu)!", i, inode_bitmap); return 0; } inode_table = ext4_inode_table(sb, gdp); if (inode_table == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (inode_table >= sb_block + 1 && inode_table <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (inode_table < first_block || inode_table + sbi->s_itb_per_group - 1 > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u not in group " "(block %llu)!", i, inode_table); return 0; } ext4_lock_group(sb, i); if (!ext4_group_desc_csum_verify(sb, i, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Checksum for group %u failed (%u!=%u)", i, le16_to_cpu(ext4_group_desc_csum(sb, i, gdp)), le16_to_cpu(gdp->bg_checksum)); if (!sb_rdonly(sb)) { ext4_unlock_group(sb, i); return 0; } } ext4_unlock_group(sb, i); if (!flexbg_flag) first_block += EXT4_BLOCKS_PER_GROUP(sb); } if (NULL != first_not_zeroed) *first_not_zeroed = grp; return 1; } /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at * the superblock) which were deleted from all directories, but held open by * a process at the time of a crash. We walk the list and try to delete these * inodes at recovery time (only with a read-write filesystem). * * In order to keep the orphan inode chain consistent during traversal (in * case of crash during recovery), we link each inode into the superblock * orphan list_head and handle it the same way as an inode deletion during * normal operation (which journals the operations for us). * * We only do an iget() and an iput() on each inode, which is very safe if we * accidentally point at an in-use or already deleted inode. The worst that * can happen in this case is that we get a "bit already cleared" message from * ext4_free_inode(). The only reason we would point at a wrong inode is if * e2fsck was run on this filesystem, and it must have already done the orphan * inode cleanup for us, so we can safely abort without any further action. */ static void ext4_orphan_cleanup(struct super_block *sb, struct ext4_super_block *es) { unsigned int s_flags = sb->s_flags; int ret, nr_orphans = 0, nr_truncates = 0; #ifdef CONFIG_QUOTA int quota_update = 0; int i; #endif if (!es->s_last_orphan) { jbd_debug(4, "no orphan inodes to clean up\n"); return; } if (bdev_read_only(sb->s_bdev)) { ext4_msg(sb, KERN_ERR, "write access " "unavailable, skipping orphan cleanup"); return; } /* Check if feature set would not allow a r/w mount */ if (!ext4_feature_set_ok(sb, 0)) { ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " "unknown ROCOMPAT features"); return; } if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { /* don't clear list on RO mount w/ errors */ if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { ext4_msg(sb, KERN_INFO, "Errors on filesystem, " "clearing orphan list.\n"); es->s_last_orphan = 0; } jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); return; } if (s_flags & SB_RDONLY) { ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); sb->s_flags &= ~SB_RDONLY; } #ifdef CONFIG_QUOTA /* Needed for iput() to work correctly and not trash data */ sb->s_flags |= SB_ACTIVE; /* * Turn on quotas which were not enabled for read-only mounts if * filesystem has quota feature, so that they are updated correctly. */ if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { int ret = ext4_enable_quotas(sb); if (!ret) quota_update = 1; else ext4_msg(sb, KERN_ERR, "Cannot turn on quotas: error %d", ret); } /* Turn on journaled quotas used for old sytle */ for (i = 0; i < EXT4_MAXQUOTAS; i++) { if (EXT4_SB(sb)->s_qf_names[i]) { int ret = ext4_quota_on_mount(sb, i); if (!ret) quota_update = 1; else ext4_msg(sb, KERN_ERR, "Cannot turn on journaled " "quota: type %d: error %d", i, ret); } } #endif while (es->s_last_orphan) { struct inode *inode; /* * We may have encountered an error during cleanup; if * so, skip the rest. */ if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); es->s_last_orphan = 0; break; } inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); if (IS_ERR(inode)) { es->s_last_orphan = 0; break; } list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); dquot_initialize(inode); if (inode->i_nlink) { if (test_opt(sb, DEBUG)) ext4_msg(sb, KERN_DEBUG, "%s: truncating inode %lu to %lld bytes", __func__, inode->i_ino, inode->i_size); jbd_debug(2, "truncating inode %lu to %lld bytes\n", inode->i_ino, inode->i_size); inode_lock(inode); truncate_inode_pages(inode->i_mapping, inode->i_size); ret = ext4_truncate(inode); if (ret) ext4_std_error(inode->i_sb, ret); inode_unlock(inode); nr_truncates++; } else { if (test_opt(sb, DEBUG)) ext4_msg(sb, KERN_DEBUG, "%s: deleting unreferenced inode %lu", __func__, inode->i_ino); jbd_debug(2, "deleting unreferenced inode %lu\n", inode->i_ino); nr_orphans++; } iput(inode); /* The delete magic happens here! */ } #define PLURAL(x) (x), ((x) == 1) ? "" : "s" if (nr_orphans) ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", PLURAL(nr_orphans)); if (nr_truncates) ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", PLURAL(nr_truncates)); #ifdef CONFIG_QUOTA /* Turn off quotas if they were enabled for orphan cleanup */ if (quota_update) { for (i = 0; i < EXT4_MAXQUOTAS; i++) { if (sb_dqopt(sb)->files[i]) dquot_quota_off(sb, i); } } #endif sb->s_flags = s_flags; /* Restore SB_RDONLY status */ } /* * Maximal extent format file size. * Resulting logical blkno at s_maxbytes must fit in our on-disk * extent format containers, within a sector_t, and within i_blocks * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, * so that won't be a limiting factor. * * However there is other limiting factor. We do store extents in the form * of starting block and length, hence the resulting length of the extent * covering maximum file size must fit into on-disk format containers as * well. Given that length is always by 1 unit bigger than max unit (because * we count 0 as well) we have to lower the s_maxbytes by one fs block. * * Note, this does *not* consider any metadata overhead for vfs i_blocks. */ static loff_t ext4_max_size(int blkbits, int has_huge_files) { loff_t res; loff_t upper_limit = MAX_LFS_FILESIZE; BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); if (!has_huge_files) { upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (blkbits - 9); upper_limit <<= blkbits; } /* * 32-bit extent-start container, ee_block. We lower the maxbytes * by one fs block, so ee_len can cover the extent of maximum file * size */ res = (1LL << 32) - 1; res <<= blkbits; /* Sanity check against vm- & vfs- imposed limits */ if (res > upper_limit) res = upper_limit; return res; } /* * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. * We need to be 1 filesystem block less than the 2^48 sector limit. */ static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) { loff_t res = EXT4_NDIR_BLOCKS; int meta_blocks; loff_t upper_limit; /* This is calculated to be the largest file size for a dense, block * mapped file such that the file's total number of 512-byte sectors, * including data and all indirect blocks, does not exceed (2^48 - 1). * * __u32 i_blocks_lo and _u16 i_blocks_high represent the total * number of 512-byte sectors of the file. */ if (!has_huge_files) { /* * !has_huge_files or implies that the inode i_block field * represents total file blocks in 2^32 512-byte sectors == * size of vfs inode i_blocks * 8 */ upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (bits - 9); } else { /* * We use 48 bit ext4_inode i_blocks * With EXT4_HUGE_FILE_FL set the i_blocks * represent total number of blocks in * file system block size */ upper_limit = (1LL << 48) - 1; } /* indirect blocks */ meta_blocks = 1; /* double indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)); /* tripple indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); upper_limit -= meta_blocks; upper_limit <<= bits; res += 1LL << (bits-2); res += 1LL << (2*(bits-2)); res += 1LL << (3*(bits-2)); res <<= bits; if (res > upper_limit) res = upper_limit; if (res > MAX_LFS_FILESIZE) res = MAX_LFS_FILESIZE; return res; } static ext4_fsblk_t descriptor_loc(struct super_block *sb, ext4_fsblk_t logical_sb_block, int nr) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t bg, first_meta_bg; int has_super = 0; first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) return logical_sb_block + nr + 1; bg = sbi->s_desc_per_block * nr; if (ext4_bg_has_super(sb, bg)) has_super = 1; /* * If we have a meta_bg fs with 1k blocks, group 0's GDT is at * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled * on modern mke2fs or blksize > 1k on older mke2fs) then we must * compensate. */ if (sb->s_blocksize == 1024 && nr == 0 && le32_to_cpu(sbi->s_es->s_first_data_block) == 0) has_super++; return (has_super + ext4_group_first_block_no(sb, bg)); } /** * ext4_get_stripe_size: Get the stripe size. * @sbi: In memory super block info * * If we have specified it via mount option, then * use the mount option value. If the value specified at mount time is * greater than the blocks per group use the super block value. * If the super block value is greater than blocks per group return 0. * Allocator needs it be less than blocks per group. * */ static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) { unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); unsigned long stripe_width = le32_to_cpu(sbi->s_es->s_raid_stripe_width); int ret; if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) ret = sbi->s_stripe; else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) ret = stripe_width; else if (stride && stride <= sbi->s_blocks_per_group) ret = stride; else ret = 0; /* * If the stripe width is 1, this makes no sense and * we set it to 0 to turn off stripe handling code. */ if (ret <= 1) ret = 0; return ret; } /* * Check whether this filesystem can be mounted based on * the features present and the RDONLY/RDWR mount requested. * Returns 1 if this filesystem can be mounted as requested, * 0 if it cannot be. */ static int ext4_feature_set_ok(struct super_block *sb, int readonly) { if (ext4_has_unknown_ext4_incompat_features(sb)) { ext4_msg(sb, KERN_ERR, "Couldn't mount because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & ~EXT4_FEATURE_INCOMPAT_SUPP)); return 0; } #ifndef CONFIG_UNICODE if (ext4_has_feature_casefold(sb)) { ext4_msg(sb, KERN_ERR, "Filesystem with casefold feature cannot be " "mounted without CONFIG_UNICODE"); return 0; } #endif if (readonly) return 1; if (ext4_has_feature_readonly(sb)) { ext4_msg(sb, KERN_INFO, "filesystem is read-only"); sb->s_flags |= SB_RDONLY; return 1; } /* Check that feature set is OK for a read-write mount */ if (ext4_has_unknown_ext4_ro_compat_features(sb)) { ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & ~EXT4_FEATURE_RO_COMPAT_SUPP)); return 0; } if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { ext4_msg(sb, KERN_ERR, "Can't support bigalloc feature without " "extents feature\n"); return 0; } #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) if (!readonly && (ext4_has_feature_quota(sb) || ext4_has_feature_project(sb))) { ext4_msg(sb, KERN_ERR, "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); return 0; } #endif /* CONFIG_QUOTA */ return 1; } /* * This function is called once a day if we have errors logged * on the file system */ static void print_daily_error_info(struct timer_list *t) { struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); struct super_block *sb = sbi->s_sb; struct ext4_super_block *es = sbi->s_es; if (es->s_error_count) /* fsck newer than v1.41.13 is needed to clean this condition. */ ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", le32_to_cpu(es->s_error_count)); if (es->s_first_error_time) { printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", sb->s_id, ext4_get_tstamp(es, s_first_error_time), (int) sizeof(es->s_first_error_func), es->s_first_error_func, le32_to_cpu(es->s_first_error_line)); if (es->s_first_error_ino) printk(KERN_CONT ": inode %u", le32_to_cpu(es->s_first_error_ino)); if (es->s_first_error_block) printk(KERN_CONT ": block %llu", (unsigned long long) le64_to_cpu(es->s_first_error_block)); printk(KERN_CONT "\n"); } if (es->s_last_error_time) { printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", sb->s_id, ext4_get_tstamp(es, s_last_error_time), (int) sizeof(es->s_last_error_func), es->s_last_error_func, le32_to_cpu(es->s_last_error_line)); if (es->s_last_error_ino) printk(KERN_CONT ": inode %u", le32_to_cpu(es->s_last_error_ino)); if (es->s_last_error_block) printk(KERN_CONT ": block %llu", (unsigned long long) le64_to_cpu(es->s_last_error_block)); printk(KERN_CONT "\n"); } mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ } /* Find next suitable group and run ext4_init_inode_table */ static int ext4_run_li_request(struct ext4_li_request *elr) { struct ext4_group_desc *gdp = NULL; ext4_group_t group, ngroups; struct super_block *sb; unsigned long timeout = 0; int ret = 0; sb = elr->lr_super; ngroups = EXT4_SB(sb)->s_groups_count; for (group = elr->lr_next_group; group < ngroups; group++) { gdp = ext4_get_group_desc(sb, group, NULL); if (!gdp) { ret = 1; break; } if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) break; } if (group >= ngroups) ret = 1; if (!ret) { timeout = jiffies; ret = ext4_init_inode_table(sb, group, elr->lr_timeout ? 0 : 1); if (elr->lr_timeout == 0) { timeout = (jiffies - timeout) * elr->lr_sbi->s_li_wait_mult; elr->lr_timeout = timeout; } elr->lr_next_sched = jiffies + elr->lr_timeout; elr->lr_next_group = group + 1; } return ret; } /* * Remove lr_request from the list_request and free the * request structure. Should be called with li_list_mtx held */ static void ext4_remove_li_request(struct ext4_li_request *elr) { struct ext4_sb_info *sbi; if (!elr) return; sbi = elr->lr_sbi; list_del(&elr->lr_request); sbi->s_li_request = NULL; kfree(elr); } static void ext4_unregister_li_request(struct super_block *sb) { mutex_lock(&ext4_li_mtx); if (!ext4_li_info) { mutex_unlock(&ext4_li_mtx); return; } mutex_lock(&ext4_li_info->li_list_mtx); ext4_remove_li_request(EXT4_SB(sb)->s_li_request); mutex_unlock(&ext4_li_info->li_list_mtx); mutex_unlock(&ext4_li_mtx); } static struct task_struct *ext4_lazyinit_task; /* * This is the function where ext4lazyinit thread lives. It walks * through the request list searching for next scheduled filesystem. * When such a fs is found, run the lazy initialization request * (ext4_rn_li_request) and keep track of the time spend in this * function. Based on that time we compute next schedule time of * the request. When walking through the list is complete, compute * next waking time and put itself into sleep. */ static int ext4_lazyinit_thread(void *arg) { struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; struct list_head *pos, *n; struct ext4_li_request *elr; unsigned long next_wakeup, cur; BUG_ON(NULL == eli); cont_thread: while (true) { next_wakeup = MAX_JIFFY_OFFSET; mutex_lock(&eli->li_list_mtx); if (list_empty(&eli->li_request_list)) { mutex_unlock(&eli->li_list_mtx); goto exit_thread; } list_for_each_safe(pos, n, &eli->li_request_list) { int err = 0; int progress = 0; elr = list_entry(pos, struct ext4_li_request, lr_request); if (time_before(jiffies, elr->lr_next_sched)) { if (time_before(elr->lr_next_sched, next_wakeup)) next_wakeup = elr->lr_next_sched; continue; } if (down_read_trylock(&elr->lr_super->s_umount)) { if (sb_start_write_trylock(elr->lr_super)) { progress = 1; /* * We hold sb->s_umount, sb can not * be removed from the list, it is * now safe to drop li_list_mtx */ mutex_unlock(&eli->li_list_mtx); err = ext4_run_li_request(elr); sb_end_write(elr->lr_super); mutex_lock(&eli->li_list_mtx); n = pos->next; } up_read((&elr->lr_super->s_umount)); } /* error, remove the lazy_init job */ if (err) { ext4_remove_li_request(elr); continue; } if (!progress) { elr->lr_next_sched = jiffies + (prandom_u32() % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); } if (time_before(elr->lr_next_sched, next_wakeup)) next_wakeup = elr->lr_next_sched; } mutex_unlock(&eli->li_list_mtx); try_to_freeze(); cur = jiffies; if ((time_after_eq(cur, next_wakeup)) || (MAX_JIFFY_OFFSET == next_wakeup)) { cond_resched(); continue; } schedule_timeout_interruptible(next_wakeup - cur); if (kthread_should_stop()) { ext4_clear_request_list(); goto exit_thread; } } exit_thread: /* * It looks like the request list is empty, but we need * to check it under the li_list_mtx lock, to prevent any * additions into it, and of course we should lock ext4_li_mtx * to atomically free the list and ext4_li_info, because at * this point another ext4 filesystem could be registering * new one. */ mutex_lock(&ext4_li_mtx); mutex_lock(&eli->li_list_mtx); if (!list_empty(&eli->li_request_list)) { mutex_unlock(&eli->li_list_mtx); mutex_unlock(&ext4_li_mtx); goto cont_thread; } mutex_unlock(&eli->li_list_mtx); kfree(ext4_li_info); ext4_li_info = NULL; mutex_unlock(&ext4_li_mtx); return 0; } static void ext4_clear_request_list(void) { struct list_head *pos, *n; struct ext4_li_request *elr; mutex_lock(&ext4_li_info->li_list_mtx); list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { elr = list_entry(pos, struct ext4_li_request, lr_request); ext4_remove_li_request(elr); } mutex_unlock(&ext4_li_info->li_list_mtx); } static int ext4_run_lazyinit_thread(void) { ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit"); if (IS_ERR(ext4_lazyinit_task)) { int err = PTR_ERR(ext4_lazyinit_task); ext4_clear_request_list(); kfree(ext4_li_info); ext4_li_info = NULL; printk(KERN_CRIT "EXT4-fs: error %d creating inode table " "initialization thread\n", err); return err; } ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; return 0; } /* * Check whether it make sense to run itable init. thread or not. * If there is at least one uninitialized inode table, return * corresponding group number, else the loop goes through all * groups and return total number of groups. */ static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) { ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; struct ext4_group_desc *gdp = NULL; if (!ext4_has_group_desc_csum(sb)) return ngroups; for (group = 0; group < ngroups; group++) { gdp = ext4_get_group_desc(sb, group, NULL); if (!gdp) continue; if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) break; } return group; } static int ext4_li_info_new(void) { struct ext4_lazy_init *eli = NULL; eli = kzalloc(sizeof(*eli), GFP_KERNEL); if (!eli) return -ENOMEM; INIT_LIST_HEAD(&eli->li_request_list); mutex_init(&eli->li_list_mtx); eli->li_state |= EXT4_LAZYINIT_QUIT; ext4_li_info = eli; return 0; } static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, ext4_group_t start) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_li_request *elr; elr = kzalloc(sizeof(*elr), GFP_KERNEL); if (!elr) return NULL; elr->lr_super = sb; elr->lr_sbi = sbi; elr->lr_next_group = start; /* * Randomize first schedule time of the request to * spread the inode table initialization requests * better. */ elr->lr_next_sched = jiffies + (prandom_u32() % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); return elr; } int ext4_register_li_request(struct super_block *sb, ext4_group_t first_not_zeroed) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_li_request *elr = NULL; ext4_group_t ngroups = sbi->s_groups_count; int ret = 0; mutex_lock(&ext4_li_mtx); if (sbi->s_li_request != NULL) { /* * Reset timeout so it can be computed again, because * s_li_wait_mult might have changed. */ sbi->s_li_request->lr_timeout = 0; goto out; } if (first_not_zeroed == ngroups || sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) goto out; elr = ext4_li_request_new(sb, first_not_zeroed); if (!elr) { ret = -ENOMEM; goto out; } if (NULL == ext4_li_info) { ret = ext4_li_info_new(); if (ret) goto out; } mutex_lock(&ext4_li_info->li_list_mtx); list_add(&elr->lr_request, &ext4_li_info->li_request_list); mutex_unlock(&ext4_li_info->li_list_mtx); sbi->s_li_request = elr; /* * set elr to NULL here since it has been inserted to * the request_list and the removal and free of it is * handled by ext4_clear_request_list from now on. */ elr = NULL; if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { ret = ext4_run_lazyinit_thread(); if (ret) goto out; } out: mutex_unlock(&ext4_li_mtx); if (ret) kfree(elr); return ret; } /* * We do not need to lock anything since this is called on * module unload. */ static void ext4_destroy_lazyinit_thread(void) { /* * If thread exited earlier * there's nothing to be done. */ if (!ext4_li_info || !ext4_lazyinit_task) return; kthread_stop(ext4_lazyinit_task); } static int set_journal_csum_feature_set(struct super_block *sb) { int ret = 1; int compat, incompat; struct ext4_sb_info *sbi = EXT4_SB(sb); if (ext4_has_metadata_csum(sb)) { /* journal checksum v3 */ compat = 0; incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; } else { /* journal checksum v1 */ compat = JBD2_FEATURE_COMPAT_CHECKSUM; incompat = 0; } jbd2_journal_clear_features(sbi->s_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_CSUM_V3 | JBD2_FEATURE_INCOMPAT_CSUM_V2); if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ret = jbd2_journal_set_features(sbi->s_journal, compat, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | incompat); } else if (test_opt(sb, JOURNAL_CHECKSUM)) { ret = jbd2_journal_set_features(sbi->s_journal, compat, 0, incompat); jbd2_journal_clear_features(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } else { jbd2_journal_clear_features(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } return ret; } /* * Note: calculating the overhead so we can be compatible with * historical BSD practice is quite difficult in the face of * clusters/bigalloc. This is because multiple metadata blocks from * different block group can end up in the same allocation cluster. * Calculating the exact overhead in the face of clustered allocation * requires either O(all block bitmaps) in memory or O(number of block * groups**2) in time. We will still calculate the superblock for * older file systems --- and if we come across with a bigalloc file * system with zero in s_overhead_clusters the estimate will be close to * correct especially for very large cluster sizes --- but for newer * file systems, it's better to calculate this figure once at mkfs * time, and store it in the superblock. If the superblock value is * present (even for non-bigalloc file systems), we will use it. */ static int count_overhead(struct super_block *sb, ext4_group_t grp, char *buf) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *gdp; ext4_fsblk_t first_block, last_block, b; ext4_group_t i, ngroups = ext4_get_groups_count(sb); int s, j, count = 0; if (!ext4_has_feature_bigalloc(sb)) return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + sbi->s_itb_per_group + 2); first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + (grp * EXT4_BLOCKS_PER_GROUP(sb)); last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; for (i = 0; i < ngroups; i++) { gdp = ext4_get_group_desc(sb, i, NULL); b = ext4_block_bitmap(sb, gdp); if (b >= first_block && b <= last_block) { ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); count++; } b = ext4_inode_bitmap(sb, gdp); if (b >= first_block && b <= last_block) { ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); count++; } b = ext4_inode_table(sb, gdp); if (b >= first_block && b + sbi->s_itb_per_group <= last_block) for (j = 0; j < sbi->s_itb_per_group; j++, b++) { int c = EXT4_B2C(sbi, b - first_block); ext4_set_bit(c, buf); count++; } if (i != grp) continue; s = 0; if (ext4_bg_has_super(sb, grp)) { ext4_set_bit(s++, buf); count++; } j = ext4_bg_num_gdb(sb, grp); if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { ext4_error(sb, "Invalid number of block group " "descriptor blocks: %d", j); j = EXT4_BLOCKS_PER_GROUP(sb) - s; } count += j; for (; j > 0; j--) ext4_set_bit(EXT4_B2C(sbi, s++), buf); } if (!count) return 0; return EXT4_CLUSTERS_PER_GROUP(sb) - ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); } /* * Compute the overhead and stash it in sbi->s_overhead */ int ext4_calculate_overhead(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; struct inode *j_inode; unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); ext4_group_t i, ngroups = ext4_get_groups_count(sb); ext4_fsblk_t overhead = 0; char *buf = (char *) get_zeroed_page(GFP_NOFS); if (!buf) return -ENOMEM; /* * Compute the overhead (FS structures). This is constant * for a given filesystem unless the number of block groups * changes so we cache the previous value until it does. */ /* * All of the blocks before first_data_block are overhead */ overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); /* * Add the overhead found in each block group */ for (i = 0; i < ngroups; i++) { int blks; blks = count_overhead(sb, i, buf); overhead += blks; if (blks) memset(buf, 0, PAGE_SIZE); cond_resched(); } /* * Add the internal journal blocks whether the journal has been * loaded or not */ if (sbi->s_journal && !sbi->journal_bdev) overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { j_inode = ext4_get_journal_inode(sb, j_inum); if (j_inode) { j_blocks = j_inode->i_size >> sb->s_blocksize_bits; overhead += EXT4_NUM_B2C(sbi, j_blocks); iput(j_inode); } else { ext4_msg(sb, KERN_ERR, "can't get journal size"); } } sbi->s_overhead = overhead; smp_wmb(); free_page((unsigned long) buf); return 0; } static void ext4_set_resv_clusters(struct super_block *sb) { ext4_fsblk_t resv_clusters; struct ext4_sb_info *sbi = EXT4_SB(sb); /* * There's no need to reserve anything when we aren't using extents. * The space estimates are exact, there are no unwritten extents, * hole punching doesn't need new metadata... This is needed especially * to keep ext2/3 backward compatibility. */ if (!ext4_has_feature_extents(sb)) return; /* * By default we reserve 2% or 4096 clusters, whichever is smaller. * This should cover the situations where we can not afford to run * out of space like for example punch hole, or converting * unwritten extents in delalloc path. In most cases such * allocation would require 1, or 2 blocks, higher numbers are * very rare. */ resv_clusters = (ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits); do_div(resv_clusters, 50); resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); atomic64_set(&sbi->s_resv_clusters, resv_clusters); } static int ext4_fill_super(struct super_block *sb, void *data, int silent) { struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); char *orig_data = kstrdup(data, GFP_KERNEL); struct buffer_head *bh, **group_desc; struct ext4_super_block *es = NULL; struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); struct flex_groups **flex_groups; ext4_fsblk_t block; ext4_fsblk_t sb_block = get_sb_block(&data); ext4_fsblk_t logical_sb_block; unsigned long offset = 0; unsigned long journal_devnum = 0; unsigned long def_mount_opts; struct inode *root; const char *descr; int ret = -ENOMEM; int blocksize, clustersize; unsigned int db_count; unsigned int i; int needs_recovery, has_huge_files, has_bigalloc; __u64 blocks_count; int err = 0; unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; ext4_group_t first_not_zeroed; if ((data && !orig_data) || !sbi) goto out_free_base; sbi->s_daxdev = dax_dev; sbi->s_blockgroup_lock = kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); if (!sbi->s_blockgroup_lock) goto out_free_base; sb->s_fs_info = sbi; sbi->s_sb = sb; sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; sbi->s_sb_block = sb_block; if (sb->s_bdev->bd_part) sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); /* Cleanup superblock name */ strreplace(sb->s_id, '/', '!'); /* -EINVAL is default */ ret = -EINVAL; blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); if (!blocksize) { ext4_msg(sb, KERN_ERR, "unable to set blocksize"); goto out_fail; } /* * The ext4 superblock will not be buffer aligned for other than 1kB * block sizes. We need to calculate the offset from buffer start. */ if (blocksize != EXT4_MIN_BLOCK_SIZE) { logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); } else { logical_sb_block = sb_block; } if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { ext4_msg(sb, KERN_ERR, "unable to read superblock"); goto out_fail; } /* * Note: s_es must be initialized as soon as possible because * some ext4 macro-instructions depend on its value */ es = (struct ext4_super_block *) (bh->b_data + offset); sbi->s_es = es; sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT4_SUPER_MAGIC) goto cantfind_ext4; sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); /* Warn if metadata_csum and gdt_csum are both set. */ if (ext4_has_feature_metadata_csum(sb) && ext4_has_feature_gdt_csum(sb)) ext4_warning(sb, "metadata_csum and uninit_bg are " "redundant flags; please run fsck."); /* Check for a known checksum algorithm */ if (!ext4_verify_csum_type(sb, es)) { ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " "unknown checksum algorithm."); silent = 1; goto cantfind_ext4; } /* Load the checksum driver */ sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); if (IS_ERR(sbi->s_chksum_driver)) { ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); ret = PTR_ERR(sbi->s_chksum_driver); sbi->s_chksum_driver = NULL; goto failed_mount; } /* Check superblock checksum */ if (!ext4_superblock_csum_verify(sb, es)) { ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " "invalid superblock checksum. Run e2fsck?"); silent = 1; ret = -EFSBADCRC; goto cantfind_ext4; } /* Precompute checksum seed for all metadata */ if (ext4_has_feature_csum_seed(sb)) sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, sizeof(es->s_uuid)); /* Set defaults before we parse the mount options */ def_mount_opts = le32_to_cpu(es->s_default_mount_opts); set_opt(sb, INIT_INODE_TABLE); if (def_mount_opts & EXT4_DEFM_DEBUG) set_opt(sb, DEBUG); if (def_mount_opts & EXT4_DEFM_BSDGROUPS) set_opt(sb, GRPID); if (def_mount_opts & EXT4_DEFM_UID16) set_opt(sb, NO_UID32); /* xattr user namespace & acls are now defaulted on */ set_opt(sb, XATTR_USER); set_opt(sb, DIOREAD_NOLOCK); #ifdef CONFIG_EXT4_FS_POSIX_ACL set_opt(sb, POSIX_ACL); #endif /* don't forget to enable journal_csum when metadata_csum is enabled. */ if (ext4_has_metadata_csum(sb)) set_opt(sb, JOURNAL_CHECKSUM); if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) set_opt(sb, JOURNAL_DATA); else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) set_opt(sb, ORDERED_DATA); else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) set_opt(sb, WRITEBACK_DATA); if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) set_opt(sb, ERRORS_PANIC); else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) set_opt(sb, ERRORS_CONT); else set_opt(sb, ERRORS_RO); /* block_validity enabled by default; disable with noblock_validity */ set_opt(sb, BLOCK_VALIDITY); if (def_mount_opts & EXT4_DEFM_DISCARD) set_opt(sb, DISCARD); sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) set_opt(sb, BARRIER); /* * enable delayed allocation by default * Use -o nodelalloc to turn it off */ if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) set_opt(sb, DELALLOC); /* * set default s_li_wait_mult for lazyinit, for the case there is * no mount option specified. */ sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); if (blocksize < EXT4_MIN_BLOCK_SIZE || blocksize > EXT4_MAX_BLOCK_SIZE) { ext4_msg(sb, KERN_ERR, "Unsupported filesystem blocksize %d (%d log_block_size)", blocksize, le32_to_cpu(es->s_log_block_size)); goto failed_mount; } if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; } else { sbi->s_inode_size = le16_to_cpu(es->s_inode_size); sbi->s_first_ino = le32_to_cpu(es->s_first_ino); if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { ext4_msg(sb, KERN_ERR, "invalid first ino: %u", sbi->s_first_ino); goto failed_mount; } if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || (!is_power_of_2(sbi->s_inode_size)) || (sbi->s_inode_size > blocksize)) { ext4_msg(sb, KERN_ERR, "unsupported inode size: %d", sbi->s_inode_size); ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); goto failed_mount; } /* * i_atime_extra is the last extra field available for * [acm]times in struct ext4_inode. Checking for that * field should suffice to ensure we have extra space * for all three. */ if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + sizeof(((struct ext4_inode *)0)->i_atime_extra)) { sb->s_time_gran = 1; sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; } else { sb->s_time_gran = NSEC_PER_SEC; sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; } sb->s_time_min = EXT4_TIMESTAMP_MIN; } if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { sbi->s_want_extra_isize = sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE; if (ext4_has_feature_extra_isize(sb)) { unsigned v, max = (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE); v = le16_to_cpu(es->s_want_extra_isize); if (v > max) { ext4_msg(sb, KERN_ERR, "bad s_want_extra_isize: %d", v); goto failed_mount; } if (sbi->s_want_extra_isize < v) sbi->s_want_extra_isize = v; v = le16_to_cpu(es->s_min_extra_isize); if (v > max) { ext4_msg(sb, KERN_ERR, "bad s_min_extra_isize: %d", v); goto failed_mount; } if (sbi->s_want_extra_isize < v) sbi->s_want_extra_isize = v; } } if (sbi->s_es->s_mount_opts[0]) { char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, sizeof(sbi->s_es->s_mount_opts), GFP_KERNEL); if (!s_mount_opts) goto failed_mount; if (!parse_options(s_mount_opts, sb, &journal_devnum, &journal_ioprio, 0)) { ext4_msg(sb, KERN_WARNING, "failed to parse options in superblock: %s", s_mount_opts); } kfree(s_mount_opts); } sbi->s_def_mount_opt = sbi->s_mount_opt; if (!parse_options((char *) data, sb, &journal_devnum, &journal_ioprio, 0)) goto failed_mount; #ifdef CONFIG_UNICODE if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { const struct ext4_sb_encodings *encoding_info; struct unicode_map *encoding; __u16 encoding_flags; if (ext4_has_feature_encrypt(sb)) { ext4_msg(sb, KERN_ERR, "Can't mount with encoding and encryption"); goto failed_mount; } if (ext4_sb_read_encoding(es, &encoding_info, &encoding_flags)) { ext4_msg(sb, KERN_ERR, "Encoding requested by superblock is unknown"); goto failed_mount; } encoding = utf8_load(encoding_info->version); if (IS_ERR(encoding)) { ext4_msg(sb, KERN_ERR, "can't mount with superblock charset: %s-%s " "not supported by the kernel. flags: 0x%x.", encoding_info->name, encoding_info->version, encoding_flags); goto failed_mount; } ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " "%s-%s with flags 0x%hx", encoding_info->name, encoding_info->version?:"\b", encoding_flags); sbi->s_encoding = encoding; sbi->s_encoding_flags = encoding_flags; } #endif if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); clear_opt(sb, DIOREAD_NOLOCK); if (test_opt2(sb, EXPLICIT_DELALLOC)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and delalloc"); goto failed_mount; } if (test_opt(sb, DIOREAD_NOLOCK)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dioread_nolock"); goto failed_mount; } if (test_opt(sb, DAX)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dax"); goto failed_mount; } if (ext4_has_feature_encrypt(sb)) { ext4_msg(sb, KERN_WARNING, "encrypted files will use data=ordered " "instead of data journaling mode"); } if (test_opt(sb, DELALLOC)) clear_opt(sb, DELALLOC); } else { sb->s_iflags |= SB_I_CGROUPWB; } sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && (ext4_has_compat_features(sb) || ext4_has_ro_compat_features(sb) || ext4_has_incompat_features(sb))) ext4_msg(sb, KERN_WARNING, "feature flags set on rev 0 fs, " "running e2fsck is recommended"); if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { set_opt2(sb, HURD_COMPAT); if (ext4_has_feature_64bit(sb)) { ext4_msg(sb, KERN_ERR, "The Hurd can't support 64-bit file systems"); goto failed_mount; } /* * ea_inode feature uses l_i_version field which is not * available in HURD_COMPAT mode. */ if (ext4_has_feature_ea_inode(sb)) { ext4_msg(sb, KERN_ERR, "ea_inode feature is not supported for Hurd"); goto failed_mount; } } if (IS_EXT2_SB(sb)) { if (ext2_feature_set_ok(sb)) ext4_msg(sb, KERN_INFO, "mounting ext2 file system " "using the ext4 subsystem"); else { /* * If we're probing be silent, if this looks like * it's actually an ext[34] filesystem. */ if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) goto failed_mount; ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " "to feature incompatibilities"); goto failed_mount; } } if (IS_EXT3_SB(sb)) { if (ext3_feature_set_ok(sb)) ext4_msg(sb, KERN_INFO, "mounting ext3 file system " "using the ext4 subsystem"); else { /* * If we're probing be silent, if this looks like * it's actually an ext4 filesystem. */ if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) goto failed_mount; ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " "to feature incompatibilities"); goto failed_mount; } } /* * Check feature flags regardless of the revision level, since we * previously didn't change the revision level when setting the flags, * so there is a chance incompat flags are set on a rev 0 filesystem. */ if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) goto failed_mount; if (le32_to_cpu(es->s_log_block_size) > (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { ext4_msg(sb, KERN_ERR, "Invalid log block size: %u", le32_to_cpu(es->s_log_block_size)); goto failed_mount; } if (le32_to_cpu(es->s_log_cluster_size) > (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { ext4_msg(sb, KERN_ERR, "Invalid log cluster size: %u", le32_to_cpu(es->s_log_cluster_size)); goto failed_mount; } if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { ext4_msg(sb, KERN_ERR, "Number of reserved GDT blocks insanely large: %d", le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); goto failed_mount; } if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { if (ext4_has_feature_inline_data(sb)) { ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" " that may contain inline data"); goto failed_mount; } if (!bdev_dax_supported(sb->s_bdev, blocksize)) { ext4_msg(sb, KERN_ERR, "DAX unsupported by block device."); goto failed_mount; } } if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", es->s_encryption_level); goto failed_mount; } if (sb->s_blocksize != blocksize) { /* Validate the filesystem blocksize */ if (!sb_set_blocksize(sb, blocksize)) { ext4_msg(sb, KERN_ERR, "bad block size %d", blocksize); goto failed_mount; } brelse(bh); logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); bh = sb_bread_unmovable(sb, logical_sb_block); if (!bh) { ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); goto failed_mount; } es = (struct ext4_super_block *)(bh->b_data + offset); sbi->s_es = es; if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); goto failed_mount; } } has_huge_files = ext4_has_feature_huge_file(sb); sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, has_huge_files); sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); sbi->s_desc_size = le16_to_cpu(es->s_desc_size); if (ext4_has_feature_64bit(sb)) { if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || sbi->s_desc_size > EXT4_MAX_DESC_SIZE || !is_power_of_2(sbi->s_desc_size)) { ext4_msg(sb, KERN_ERR, "unsupported descriptor size %lu", sbi->s_desc_size); goto failed_mount; } } else sbi->s_desc_size = EXT4_MIN_DESC_SIZE; sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); if (sbi->s_inodes_per_block == 0) goto cantfind_ext4; if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || sbi->s_inodes_per_group > blocksize * 8) { ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", sbi->s_blocks_per_group); goto failed_mount; } sbi->s_itb_per_group = sbi->s_inodes_per_group / sbi->s_inodes_per_block; sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); sbi->s_sbh = bh; sbi->s_mount_state = le16_to_cpu(es->s_state); sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); for (i = 0; i < 4; i++) sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); sbi->s_def_hash_version = es->s_def_hash_version; if (ext4_has_feature_dir_index(sb)) { i = le32_to_cpu(es->s_flags); if (i & EXT2_FLAGS_UNSIGNED_HASH) sbi->s_hash_unsigned = 3; else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { #ifdef __CHAR_UNSIGNED__ if (!sb_rdonly(sb)) es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); sbi->s_hash_unsigned = 3; #else if (!sb_rdonly(sb)) es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); #endif } } /* Handle clustersize */ clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); has_bigalloc = ext4_has_feature_bigalloc(sb); if (has_bigalloc) { if (clustersize < blocksize) { ext4_msg(sb, KERN_ERR, "cluster size (%d) smaller than " "block size (%d)", clustersize, blocksize); goto failed_mount; } sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - le32_to_cpu(es->s_log_block_size); sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); if (sbi->s_clusters_per_group > blocksize * 8) { ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", sbi->s_clusters_per_group); goto failed_mount; } if (sbi->s_blocks_per_group != (sbi->s_clusters_per_group * (clustersize / blocksize))) { ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " "clusters per group (%lu) inconsistent", sbi->s_blocks_per_group, sbi->s_clusters_per_group); goto failed_mount; } } else { if (clustersize != blocksize) { ext4_msg(sb, KERN_ERR, "fragment/cluster size (%d) != " "block size (%d)", clustersize, blocksize); goto failed_mount; } if (sbi->s_blocks_per_group > blocksize * 8) { ext4_msg(sb, KERN_ERR, "#blocks per group too big: %lu", sbi->s_blocks_per_group); goto failed_mount; } sbi->s_clusters_per_group = sbi->s_blocks_per_group; sbi->s_cluster_bits = 0; } sbi->s_cluster_ratio = clustersize / blocksize; /* Do we have standard group size of clustersize * 8 blocks ? */ if (sbi->s_blocks_per_group == clustersize << 3) set_opt2(sb, STD_GROUP_SIZE); /* * Test whether we have more sectors than will fit in sector_t, * and whether the max offset is addressable by the page cache. */ err = generic_check_addressable(sb->s_blocksize_bits, ext4_blocks_count(es)); if (err) { ext4_msg(sb, KERN_ERR, "filesystem" " too large to mount safely on this system"); goto failed_mount; } if (EXT4_BLOCKS_PER_GROUP(sb) == 0) goto cantfind_ext4; /* check blocks count against device size */ blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; if (blocks_count && ext4_blocks_count(es) > blocks_count) { ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " "exceeds size of device (%llu blocks)", ext4_blocks_count(es), blocks_count); goto failed_mount; } /* * It makes no sense for the first data block to be beyond the end * of the filesystem. */ if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { ext4_msg(sb, KERN_WARNING, "bad geometry: first data " "block %u is beyond end of filesystem (%llu)", le32_to_cpu(es->s_first_data_block), ext4_blocks_count(es)); goto failed_mount; } if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && (sbi->s_cluster_ratio == 1)) { ext4_msg(sb, KERN_WARNING, "bad geometry: first data " "block is 0 with a 1k block and cluster size"); goto failed_mount; } blocks_count = (ext4_blocks_count(es) - le32_to_cpu(es->s_first_data_block) + EXT4_BLOCKS_PER_GROUP(sb) - 1); do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { ext4_msg(sb, KERN_WARNING, "groups count too large: %u " "(block count %llu, first data block %u, " "blocks per group %lu)", sbi->s_groups_count, ext4_blocks_count(es), le32_to_cpu(es->s_first_data_block), EXT4_BLOCKS_PER_GROUP(sb)); goto failed_mount; } sbi->s_groups_count = blocks_count; sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != le32_to_cpu(es->s_inodes_count)) { ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", le32_to_cpu(es->s_inodes_count), ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); ret = -EINVAL; goto failed_mount; } db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / EXT4_DESC_PER_BLOCK(sb); if (ext4_has_feature_meta_bg(sb)) { if (le32_to_cpu(es->s_first_meta_bg) > db_count) { ext4_msg(sb, KERN_WARNING, "first meta block group too large: %u " "(group descriptor block count %u)", le32_to_cpu(es->s_first_meta_bg), db_count); goto failed_mount; } } rcu_assign_pointer(sbi->s_group_desc, kvmalloc_array(db_count, sizeof(struct buffer_head *), GFP_KERNEL)); if (sbi->s_group_desc == NULL) { ext4_msg(sb, KERN_ERR, "not enough memory"); ret = -ENOMEM; goto failed_mount; } bgl_lock_init(sbi->s_blockgroup_lock); /* Pre-read the descriptors into the buffer cache */ for (i = 0; i < db_count; i++) { block = descriptor_loc(sb, logical_sb_block, i); sb_breadahead(sb, block); } for (i = 0; i < db_count; i++) { struct buffer_head *bh; block = descriptor_loc(sb, logical_sb_block, i); bh = sb_bread_unmovable(sb, block); if (!bh) { ext4_msg(sb, KERN_ERR, "can't read group descriptor %d", i); db_count = i; goto failed_mount2; } rcu_read_lock(); rcu_dereference(sbi->s_group_desc)[i] = bh; rcu_read_unlock(); } sbi->s_gdb_count = db_count; if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); ret = -EFSCORRUPTED; goto failed_mount2; } timer_setup(&sbi->s_err_report, print_daily_error_info, 0); /* Register extent status tree shrinker */ if (ext4_es_register_shrinker(sbi)) goto failed_mount3; sbi->s_stripe = ext4_get_stripe_size(sbi); sbi->s_extent_max_zeroout_kb = 32; /* * set up enough so that it can read an inode */ sb->s_op = &ext4_sops; sb->s_export_op = &ext4_export_ops; sb->s_xattr = ext4_xattr_handlers; #ifdef CONFIG_FS_ENCRYPTION sb->s_cop = &ext4_cryptops; #endif #ifdef CONFIG_FS_VERITY sb->s_vop = &ext4_verityops; #endif #ifdef CONFIG_QUOTA sb->dq_op = &ext4_quota_operations; if (ext4_has_feature_quota(sb)) sb->s_qcop = &dquot_quotactl_sysfile_ops; else sb->s_qcop = &ext4_qctl_operations; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; #endif memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ mutex_init(&sbi->s_orphan_lock); sb->s_root = NULL; needs_recovery = (es->s_last_orphan != 0 || ext4_has_feature_journal_needs_recovery(sb)); if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) goto failed_mount3a; /* * The first inode we look at is the journal inode. Don't try * root first: it may be modified in the journal! */ if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { err = ext4_load_journal(sb, es, journal_devnum); if (err) goto failed_mount3a; } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && ext4_has_feature_journal_needs_recovery(sb)) { ext4_msg(sb, KERN_ERR, "required journal recovery " "suppressed and not mounted read-only"); goto failed_mount_wq; } else { /* Nojournal mode, all journal mount options are illegal */ if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_checksum, fs mounted w/o journal"); goto failed_mount_wq; } if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit, fs mounted w/o journal"); goto failed_mount_wq; } if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { ext4_msg(sb, KERN_ERR, "can't mount with " "commit=%lu, fs mounted w/o journal", sbi->s_commit_interval / HZ); goto failed_mount_wq; } if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { ext4_msg(sb, KERN_ERR, "can't mount with " "data=, fs mounted w/o journal"); goto failed_mount_wq; } sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; clear_opt(sb, JOURNAL_CHECKSUM); clear_opt(sb, DATA_FLAGS); sbi->s_journal = NULL; needs_recovery = 0; goto no_journal; } if (ext4_has_feature_64bit(sb) && !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_64BIT)) { ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); goto failed_mount_wq; } if (!set_journal_csum_feature_set(sb)) { ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " "feature set"); goto failed_mount_wq; } /* We have now updated the journal if required, so we can * validate the data journaling mode. */ switch (test_opt(sb, DATA_FLAGS)) { case 0: /* No mode set, assume a default based on the journal * capabilities: ORDERED_DATA if the journal can * cope, else JOURNAL_DATA */ if (jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { set_opt(sb, ORDERED_DATA); sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; } else { set_opt(sb, JOURNAL_DATA); sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; } break; case EXT4_MOUNT_ORDERED_DATA: case EXT4_MOUNT_WRITEBACK_DATA: if (!jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { ext4_msg(sb, KERN_ERR, "Journal does not support " "requested data journaling mode"); goto failed_mount_wq; } default: break; } if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit in data=ordered mode"); goto failed_mount_wq; } set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; no_journal: if (!test_opt(sb, NO_MBCACHE)) { sbi->s_ea_block_cache = ext4_xattr_create_cache(); if (!sbi->s_ea_block_cache) { ext4_msg(sb, KERN_ERR, "Failed to create ea_block_cache"); goto failed_mount_wq; } if (ext4_has_feature_ea_inode(sb)) { sbi->s_ea_inode_cache = ext4_xattr_create_cache(); if (!sbi->s_ea_inode_cache) { ext4_msg(sb, KERN_ERR, "Failed to create ea_inode_cache"); goto failed_mount_wq; } } } if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); goto failed_mount_wq; } if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && !ext4_has_feature_encrypt(sb)) { ext4_set_feature_encrypt(sb); ext4_commit_super(sb, 1); } /* * Get the # of file system overhead blocks from the * superblock if present. */ if (es->s_overhead_clusters) sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); else { err = ext4_calculate_overhead(sb); if (err) goto failed_mount_wq; } /* * The maximum number of concurrent works can be high and * concurrency isn't really necessary. Limit it to 1. */ EXT4_SB(sb)->rsv_conversion_wq = alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); if (!EXT4_SB(sb)->rsv_conversion_wq) { printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); ret = -ENOMEM; goto failed_mount4; } /* * The jbd2_journal_load will have done any necessary log recovery, * so we can safely mount the rest of the filesystem now. */ root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); if (IS_ERR(root)) { ext4_msg(sb, KERN_ERR, "get root inode failed"); ret = PTR_ERR(root); root = NULL; goto failed_mount4; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); iput(root); goto failed_mount4; } #ifdef CONFIG_UNICODE if (sbi->s_encoding) sb->s_d_op = &ext4_dentry_ops; #endif sb->s_root = d_make_root(root); if (!sb->s_root) { ext4_msg(sb, KERN_ERR, "get root dentry failed"); ret = -ENOMEM; goto failed_mount4; } ret = ext4_setup_super(sb, es, sb_rdonly(sb)); if (ret == -EROFS) { sb->s_flags |= SB_RDONLY; ret = 0; } else if (ret) goto failed_mount4a; ext4_set_resv_clusters(sb); err = ext4_setup_system_zone(sb); if (err) { ext4_msg(sb, KERN_ERR, "failed to initialize system " "zone (%d)", err); goto failed_mount4a; } ext4_ext_init(sb); err = ext4_mb_init(sb); if (err) { ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", err); goto failed_mount5; } block = ext4_count_free_clusters(sb); ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); ext4_superblock_csum_set(sb); err = percpu_counter_init(&sbi->s_freeclusters_counter, block, GFP_KERNEL); if (!err) { unsigned long freei = ext4_count_free_inodes(sb); sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); ext4_superblock_csum_set(sb); err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, GFP_KERNEL); } if (!err) err = percpu_counter_init(&sbi->s_dirs_counter, ext4_count_dirs(sb), GFP_KERNEL); if (!err) err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, GFP_KERNEL); if (!err) err = percpu_init_rwsem(&sbi->s_writepages_rwsem); if (err) { ext4_msg(sb, KERN_ERR, "insufficient memory"); goto failed_mount6; } if (ext4_has_feature_flex_bg(sb)) if (!ext4_fill_flex_info(sb)) { ext4_msg(sb, KERN_ERR, "unable to initialize " "flex_bg meta info!"); goto failed_mount6; } err = ext4_register_li_request(sb, first_not_zeroed); if (err) goto failed_mount6; err = ext4_register_sysfs(sb); if (err) goto failed_mount7; #ifdef CONFIG_QUOTA /* Enable quota usage during mount. */ if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { err = ext4_enable_quotas(sb); if (err) goto failed_mount8; } #endif /* CONFIG_QUOTA */ EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; ext4_orphan_cleanup(sb, es); EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; if (needs_recovery) { ext4_msg(sb, KERN_INFO, "recovery complete"); ext4_mark_recovery_complete(sb, es); } if (EXT4_SB(sb)->s_journal) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) descr = " journalled data mode"; else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) descr = " ordered data mode"; else descr = " writeback data mode"; } else descr = "out journal"; if (test_opt(sb, DISCARD)) { struct request_queue *q = bdev_get_queue(sb->s_bdev); if (!blk_queue_discard(q)) ext4_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but " "the device does not support discard"); } if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " "Opts: %.*s%s%s", descr, (int) sizeof(sbi->s_es->s_mount_opts), sbi->s_es->s_mount_opts, *sbi->s_es->s_mount_opts ? "; " : "", orig_data); if (es->s_error_count) mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); kfree(orig_data); return 0; cantfind_ext4: if (!silent) ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); goto failed_mount; #ifdef CONFIG_QUOTA failed_mount8: ext4_unregister_sysfs(sb); #endif failed_mount7: ext4_unregister_li_request(sb); failed_mount6: ext4_mb_release(sb); rcu_read_lock(); flex_groups = rcu_dereference(sbi->s_flex_groups); if (flex_groups) { for (i = 0; i < sbi->s_flex_groups_allocated; i++) kvfree(flex_groups[i]); kvfree(flex_groups); } rcu_read_unlock(); percpu_counter_destroy(&sbi->s_freeclusters_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); percpu_counter_destroy(&sbi->s_dirtyclusters_counter); percpu_free_rwsem(&sbi->s_writepages_rwsem); failed_mount5: ext4_ext_release(sb); ext4_release_system_zone(sb); failed_mount4a: dput(sb->s_root); sb->s_root = NULL; failed_mount4: ext4_msg(sb, KERN_ERR, "mount failed"); if (EXT4_SB(sb)->rsv_conversion_wq) destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); failed_mount_wq: ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); sbi->s_ea_inode_cache = NULL; ext4_xattr_destroy_cache(sbi->s_ea_block_cache); sbi->s_ea_block_cache = NULL; if (sbi->s_journal) { jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; } failed_mount3a: ext4_es_unregister_shrinker(sbi); failed_mount3: del_timer_sync(&sbi->s_err_report); if (sbi->s_mmp_tsk) kthread_stop(sbi->s_mmp_tsk); failed_mount2: rcu_read_lock(); group_desc = rcu_dereference(sbi->s_group_desc); for (i = 0; i < db_count; i++) brelse(group_desc[i]); kvfree(group_desc); rcu_read_unlock(); failed_mount: if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); #ifdef CONFIG_UNICODE utf8_unload(sbi->s_encoding); #endif #ifdef CONFIG_QUOTA for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(get_qf_name(sb, sbi, i)); #endif ext4_blkdev_remove(sbi); brelse(bh); out_fail: sb->s_fs_info = NULL; kfree(sbi->s_blockgroup_lock); out_free_base: kfree(sbi); kfree(orig_data); fs_put_dax(dax_dev); return err ? err : ret; } /* * Setup any per-fs journal parameters now. We'll do this both on * initial mount, once the journal has been initialised but before we've * done any recovery; and again on any subsequent remount. */ static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) { struct ext4_sb_info *sbi = EXT4_SB(sb); journal->j_commit_interval = sbi->s_commit_interval; journal->j_min_batch_time = sbi->s_min_batch_time; journal->j_max_batch_time = sbi->s_max_batch_time; write_lock(&journal->j_state_lock); if (test_opt(sb, BARRIER)) journal->j_flags |= JBD2_BARRIER; else journal->j_flags &= ~JBD2_BARRIER; if (test_opt(sb, DATA_ERR_ABORT)) journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; else journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; write_unlock(&journal->j_state_lock); } static struct inode *ext4_get_journal_inode(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; /* * Test for the existence of a valid inode on disk. Bad things * happen if we iget() an unused inode, as the subsequent iput() * will try to delete it. */ journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); if (IS_ERR(journal_inode)) { ext4_msg(sb, KERN_ERR, "no journal found"); return NULL; } if (!journal_inode->i_nlink) { make_bad_inode(journal_inode); iput(journal_inode); ext4_msg(sb, KERN_ERR, "journal inode is deleted"); return NULL; } jbd_debug(2, "Journal inode found at %p: %lld bytes\n", journal_inode, journal_inode->i_size); if (!S_ISREG(journal_inode->i_mode)) { ext4_msg(sb, KERN_ERR, "invalid journal inode"); iput(journal_inode); return NULL; } return journal_inode; } static journal_t *ext4_get_journal(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; journal_t *journal; BUG_ON(!ext4_has_feature_journal(sb)); journal_inode = ext4_get_journal_inode(sb, journal_inum); if (!journal_inode) return NULL; journal = jbd2_journal_init_inode(journal_inode); if (!journal) { ext4_msg(sb, KERN_ERR, "Could not load journal inode"); iput(journal_inode); return NULL; } journal->j_private = sb; ext4_init_journal_params(sb, journal); return journal; } static journal_t *ext4_get_dev_journal(struct super_block *sb, dev_t j_dev) { struct buffer_head *bh; journal_t *journal; ext4_fsblk_t start; ext4_fsblk_t len; int hblock, blocksize; ext4_fsblk_t sb_block; unsigned long offset; struct ext4_super_block *es; struct block_device *bdev; BUG_ON(!ext4_has_feature_journal(sb)); bdev = ext4_blkdev_get(j_dev, sb); if (bdev == NULL) return NULL; blocksize = sb->s_blocksize; hblock = bdev_logical_block_size(bdev); if (blocksize < hblock) { ext4_msg(sb, KERN_ERR, "blocksize too small for journal device"); goto out_bdev; } sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; offset = EXT4_MIN_BLOCK_SIZE % blocksize; set_blocksize(bdev, blocksize); if (!(bh = __bread(bdev, sb_block, blocksize))) { ext4_msg(sb, KERN_ERR, "couldn't read superblock of " "external journal"); goto out_bdev; } es = (struct ext4_super_block *) (bh->b_data + offset); if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || !(le32_to_cpu(es->s_feature_incompat) & EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { ext4_msg(sb, KERN_ERR, "external journal has " "bad superblock"); brelse(bh); goto out_bdev; } if ((le32_to_cpu(es->s_feature_ro_compat) & EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && es->s_checksum != ext4_superblock_csum(sb, es)) { ext4_msg(sb, KERN_ERR, "external journal has " "corrupt superblock"); brelse(bh); goto out_bdev; } if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { ext4_msg(sb, KERN_ERR, "journal UUID does not match"); brelse(bh); goto out_bdev; } len = ext4_blocks_count(es); start = sb_block + 1; brelse(bh); /* we're done with the superblock */ journal = jbd2_journal_init_dev(bdev, sb->s_bdev, start, len, blocksize); if (!journal) { ext4_msg(sb, KERN_ERR, "failed to create device journal"); goto out_bdev; } journal->j_private = sb; ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); wait_on_buffer(journal->j_sb_buffer); if (!buffer_uptodate(journal->j_sb_buffer)) { ext4_msg(sb, KERN_ERR, "I/O error on journal device"); goto out_journal; } if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { ext4_msg(sb, KERN_ERR, "External journal has more than one " "user (unsupported) - %d", be32_to_cpu(journal->j_superblock->s_nr_users)); goto out_journal; } EXT4_SB(sb)->journal_bdev = bdev; ext4_init_journal_params(sb, journal); return journal; out_journal: jbd2_journal_destroy(journal); out_bdev: ext4_blkdev_put(bdev); return NULL; } static int ext4_load_journal(struct super_block *sb, struct ext4_super_block *es, unsigned long journal_devnum) { journal_t *journal; unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); dev_t journal_dev; int err = 0; int really_read_only; BUG_ON(!ext4_has_feature_journal(sb)); if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { ext4_msg(sb, KERN_INFO, "external journal device major/minor " "numbers have changed"); journal_dev = new_decode_dev(journal_devnum); } else journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); really_read_only = bdev_read_only(sb->s_bdev); /* * Are we loading a blank journal or performing recovery after a * crash? For recovery, we need to check in advance whether we * can get read-write access to the device. */ if (ext4_has_feature_journal_needs_recovery(sb)) { if (sb_rdonly(sb)) { ext4_msg(sb, KERN_INFO, "INFO: recovery " "required on readonly filesystem"); if (really_read_only) { ext4_msg(sb, KERN_ERR, "write access " "unavailable, cannot proceed " "(try mounting with noload)"); return -EROFS; } ext4_msg(sb, KERN_INFO, "write access will " "be enabled during recovery"); } } if (journal_inum && journal_dev) { ext4_msg(sb, KERN_ERR, "filesystem has both journal " "and inode journals!"); return -EINVAL; } if (journal_inum) { if (!(journal = ext4_get_journal(sb, journal_inum))) return -EINVAL; } else { if (!(journal = ext4_get_dev_journal(sb, journal_dev))) return -EINVAL; } if (!(journal->j_flags & JBD2_BARRIER)) ext4_msg(sb, KERN_INFO, "barriers disabled"); if (!ext4_has_feature_journal_needs_recovery(sb)) err = jbd2_journal_wipe(journal, !really_read_only); if (!err) { char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); if (save) memcpy(save, ((char *) es) + EXT4_S_ERR_START, EXT4_S_ERR_LEN); err = jbd2_journal_load(journal); if (save) memcpy(((char *) es) + EXT4_S_ERR_START, save, EXT4_S_ERR_LEN); kfree(save); } if (err) { ext4_msg(sb, KERN_ERR, "error loading journal"); jbd2_journal_destroy(journal); return err; } EXT4_SB(sb)->s_journal = journal; ext4_clear_journal_err(sb, es); if (!really_read_only && journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { es->s_journal_dev = cpu_to_le32(journal_devnum); /* Make sure we flush the recovery flag to disk. */ ext4_commit_super(sb, 1); } return 0; } static int ext4_commit_super(struct super_block *sb, int sync) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; int error = 0; if (!sbh || block_device_ejected(sb)) return error; /* * The superblock bh should be mapped, but it might not be if the * device was hot-removed. Not much we can do but fail the I/O. */ if (!buffer_mapped(sbh)) return error; /* * If the file system is mounted read-only, don't update the * superblock write time. This avoids updating the superblock * write time when we are mounting the root file system * read/only but we need to replay the journal; at that point, * for people who are east of GMT and who make their clock * tick in localtime for Windows bug-for-bug compatibility, * the clock is set in the future, and this will cause e2fsck * to complain and force a full file system check. */ if (!(sb->s_flags & SB_RDONLY)) ext4_update_tstamp(es, s_wtime); if (sb->s_bdev->bd_part) es->s_kbytes_written = cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + ((part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]) - EXT4_SB(sb)->s_sectors_written_start) >> 1)); else es->s_kbytes_written = cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) ext4_free_blocks_count_set(es, EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( &EXT4_SB(sb)->s_freeclusters_counter))); if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( &EXT4_SB(sb)->s_freeinodes_counter)); BUFFER_TRACE(sbh, "marking dirty"); ext4_superblock_csum_set(sb); if (sync) lock_buffer(sbh); if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { /* * Oh, dear. A previous attempt to write the * superblock failed. This could happen because the * USB device was yanked out. Or it could happen to * be a transient write error and maybe the block will * be remapped. Nothing we can do but to retry the * write and hope for the best. */ ext4_msg(sb, KERN_ERR, "previous I/O error to " "superblock detected"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } mark_buffer_dirty(sbh); if (sync) { unlock_buffer(sbh); error = __sync_dirty_buffer(sbh, REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); if (buffer_write_io_error(sbh)) { ext4_msg(sb, KERN_ERR, "I/O error while writing " "superblock"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } } return error; } /* * Have we just finished recovery? If so, and if we are mounting (or * remounting) the filesystem readonly, then we will end up with a * consistent fs on disk. Record that fact. */ static void ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es) { journal_t *journal = EXT4_SB(sb)->s_journal; if (!ext4_has_feature_journal(sb)) { BUG_ON(journal != NULL); return; } jbd2_journal_lock_updates(journal); if (jbd2_journal_flush(journal) < 0) goto out; if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { ext4_clear_feature_journal_needs_recovery(sb); ext4_commit_super(sb, 1); } out: jbd2_journal_unlock_updates(journal); } /* * If we are mounting (or read-write remounting) a filesystem whose journal * has recorded an error from a previous lifetime, move that error to the * main filesystem now. */ static void ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es) { journal_t *journal; int j_errno; const char *errstr; BUG_ON(!ext4_has_feature_journal(sb)); journal = EXT4_SB(sb)->s_journal; /* * Now check for any error status which may have been recorded in the * journal by a prior ext4_error() or ext4_abort() */ j_errno = jbd2_journal_errno(journal); if (j_errno) { char nbuf[16]; errstr = ext4_decode_error(sb, j_errno, nbuf); ext4_warning(sb, "Filesystem error recorded " "from previous mount: %s", errstr); ext4_warning(sb, "Marking fs in need of filesystem check."); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); ext4_commit_super(sb, 1); jbd2_journal_clear_err(journal); jbd2_journal_update_sb_errno(journal); } } /* * Force the running and committing transactions to commit, * and wait on the commit. */ int ext4_force_commit(struct super_block *sb) { journal_t *journal; if (sb_rdonly(sb)) return 0; journal = EXT4_SB(sb)->s_journal; return ext4_journal_force_commit(journal); } static int ext4_sync_fs(struct super_block *sb, int wait) { int ret = 0; tid_t target; bool needs_barrier = false; struct ext4_sb_info *sbi = EXT4_SB(sb); if (unlikely(ext4_forced_shutdown(sbi))) return 0; trace_ext4_sync_fs(sb, wait); flush_workqueue(sbi->rsv_conversion_wq); /* * Writeback quota in non-journalled quota case - journalled quota has * no dirty dquots */ dquot_writeback_dquots(sb, -1); /* * Data writeback is possible w/o journal transaction, so barrier must * being sent at the end of the function. But we can skip it if * transaction_commit will do it for us. */ if (sbi->s_journal) { target = jbd2_get_latest_transaction(sbi->s_journal); if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) needs_barrier = true; if (jbd2_journal_start_commit(sbi->s_journal, &target)) { if (wait) ret = jbd2_log_wait_commit(sbi->s_journal, target); } } else if (wait && test_opt(sb, BARRIER)) needs_barrier = true; if (needs_barrier) { int err; err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); if (!ret) ret = err; } return ret; } /* * LVM calls this function before a (read-only) snapshot is created. This * gives us a chance to flush the journal completely and mark the fs clean. * * Note that only this function cannot bring a filesystem to be in a clean * state independently. It relies on upper layer to stop all data & metadata * modifications. */ static int ext4_freeze(struct super_block *sb) { int error = 0; journal_t *journal; if (sb_rdonly(sb)) return 0; journal = EXT4_SB(sb)->s_journal; if (journal) { /* Now we set up the journal barrier. */ jbd2_journal_lock_updates(journal); /* * Don't clear the needs_recovery flag if we failed to * flush the journal. */ error = jbd2_journal_flush(journal); if (error < 0) goto out; /* Journal blocked and flushed, clear needs_recovery flag. */ ext4_clear_feature_journal_needs_recovery(sb); } error = ext4_commit_super(sb, 1); out: if (journal) /* we rely on upper layer to stop further updates */ jbd2_journal_unlock_updates(journal); return error; } /* * Called by LVM after the snapshot is done. We need to reset the RECOVER * flag here, even though the filesystem is not technically dirty yet. */ static int ext4_unfreeze(struct super_block *sb) { if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) return 0; if (EXT4_SB(sb)->s_journal) { /* Reset the needs_recovery flag before the fs is unlocked. */ ext4_set_feature_journal_needs_recovery(sb); } ext4_commit_super(sb, 1); return 0; } /* * Structure to save mount options for ext4_remount's benefit */ struct ext4_mount_options { unsigned long s_mount_opt; unsigned long s_mount_opt2; kuid_t s_resuid; kgid_t s_resgid; unsigned long s_commit_interval; u32 s_min_batch_time, s_max_batch_time; #ifdef CONFIG_QUOTA int s_jquota_fmt; char *s_qf_names[EXT4_MAXQUOTAS]; #endif }; static int ext4_remount(struct super_block *sb, int *flags, char *data) { struct ext4_super_block *es; struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned long old_sb_flags; struct ext4_mount_options old_opts; int enable_quota = 0; ext4_group_t g; unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; int err = 0; #ifdef CONFIG_QUOTA int i, j; char *to_free[EXT4_MAXQUOTAS]; #endif char *orig_data = kstrdup(data, GFP_KERNEL); if (data && !orig_data) return -ENOMEM; /* Store the original options */ old_sb_flags = sb->s_flags; old_opts.s_mount_opt = sbi->s_mount_opt; old_opts.s_mount_opt2 = sbi->s_mount_opt2; old_opts.s_resuid = sbi->s_resuid; old_opts.s_resgid = sbi->s_resgid; old_opts.s_commit_interval = sbi->s_commit_interval; old_opts.s_min_batch_time = sbi->s_min_batch_time; old_opts.s_max_batch_time = sbi->s_max_batch_time; #ifdef CONFIG_QUOTA old_opts.s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < EXT4_MAXQUOTAS; i++) if (sbi->s_qf_names[i]) { char *qf_name = get_qf_name(sb, sbi, i); old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); if (!old_opts.s_qf_names[i]) { for (j = 0; j < i; j++) kfree(old_opts.s_qf_names[j]); kfree(orig_data); return -ENOMEM; } } else old_opts.s_qf_names[i] = NULL; #endif if (sbi->s_journal && sbi->s_journal->j_task->io_context) journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { err = -EINVAL; goto restore_opts; } if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ test_opt(sb, JOURNAL_CHECKSUM)) { ext4_msg(sb, KERN_ERR, "changing journal_checksum " "during remount not supported; ignoring"); sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; } if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { if (test_opt2(sb, EXPLICIT_DELALLOC)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and delalloc"); err = -EINVAL; goto restore_opts; } if (test_opt(sb, DIOREAD_NOLOCK)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dioread_nolock"); err = -EINVAL; goto restore_opts; } if (test_opt(sb, DAX)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dax"); err = -EINVAL; goto restore_opts; } } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit in data=ordered mode"); err = -EINVAL; goto restore_opts; } } if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); err = -EINVAL; goto restore_opts; } if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { ext4_msg(sb, KERN_WARNING, "warning: refusing change of " "dax flag with busy inodes while remounting"); sbi->s_mount_opt ^= EXT4_MOUNT_DAX; } if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) ext4_abort(sb, "Abort forced by user"); sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); es = sbi->s_es; if (sbi->s_journal) { ext4_init_journal_params(sb, sbi->s_journal); set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); } if (*flags & SB_LAZYTIME) sb->s_flags |= SB_LAZYTIME; if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { err = -EROFS; goto restore_opts; } if (*flags & SB_RDONLY) { err = sync_filesystem(sb); if (err < 0) goto restore_opts; err = dquot_suspend(sb, -1); if (err < 0) goto restore_opts; /* * First of all, the unconditional stuff we have to do * to disable replay of the journal when we next remount */ sb->s_flags |= SB_RDONLY; /* * OK, test if we are remounting a valid rw partition * readonly, and if so set the rdonly flag and then * mark the partition as valid again. */ if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && (sbi->s_mount_state & EXT4_VALID_FS)) es->s_state = cpu_to_le16(sbi->s_mount_state); if (sbi->s_journal) ext4_mark_recovery_complete(sb, es); if (sbi->s_mmp_tsk) kthread_stop(sbi->s_mmp_tsk); } else { /* Make sure we can mount this feature set readwrite */ if (ext4_has_feature_readonly(sb) || !ext4_feature_set_ok(sb, 0)) { err = -EROFS; goto restore_opts; } /* * Make sure the group descriptor checksums * are sane. If they aren't, refuse to remount r/w. */ for (g = 0; g < sbi->s_groups_count; g++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, g, NULL); if (!ext4_group_desc_csum_verify(sb, g, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_remount: Checksum for group %u failed (%u!=%u)", g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), le16_to_cpu(gdp->bg_checksum)); err = -EFSBADCRC; goto restore_opts; } } /* * If we have an unprocessed orphan list hanging * around from a previously readonly bdev mount, * require a full umount/remount for now. */ if (es->s_last_orphan) { ext4_msg(sb, KERN_WARNING, "Couldn't " "remount RDWR because of unprocessed " "orphan inode list. Please " "umount/remount instead"); err = -EINVAL; goto restore_opts; } /* * Mounting a RDONLY partition read-write, so reread * and store the current valid flag. (It may have * been changed by e2fsck since we originally mounted * the partition.) */ if (sbi->s_journal) ext4_clear_journal_err(sb, es); sbi->s_mount_state = le16_to_cpu(es->s_state); err = ext4_setup_super(sb, es, 0); if (err) goto restore_opts; sb->s_flags &= ~SB_RDONLY; if (ext4_has_feature_mmp(sb)) if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) { err = -EROFS; goto restore_opts; } enable_quota = 1; } } /* * Reinitialize lazy itable initialization thread based on * current settings */ if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) ext4_unregister_li_request(sb); else { ext4_group_t first_not_zeroed; first_not_zeroed = ext4_has_uninit_itable(sb); ext4_register_li_request(sb, first_not_zeroed); } ext4_setup_system_zone(sb); if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { err = ext4_commit_super(sb, 1); if (err) goto restore_opts; } #ifdef CONFIG_QUOTA /* Release old quota file names */ for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(old_opts.s_qf_names[i]); if (enable_quota) { if (sb_any_quota_suspended(sb)) dquot_resume(sb, -1); else if (ext4_has_feature_quota(sb)) { err = ext4_enable_quotas(sb); if (err) goto restore_opts; } } #endif *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); kfree(orig_data); return 0; restore_opts: sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.s_mount_opt; sbi->s_mount_opt2 = old_opts.s_mount_opt2; sbi->s_resuid = old_opts.s_resuid; sbi->s_resgid = old_opts.s_resgid; sbi->s_commit_interval = old_opts.s_commit_interval; sbi->s_min_batch_time = old_opts.s_min_batch_time; sbi->s_max_batch_time = old_opts.s_max_batch_time; #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = old_opts.s_jquota_fmt; for (i = 0; i < EXT4_MAXQUOTAS; i++) { to_free[i] = get_qf_name(sb, sbi, i); rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); } synchronize_rcu(); for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(to_free[i]); #endif kfree(orig_data); return err; } #ifdef CONFIG_QUOTA static int ext4_statfs_project(struct super_block *sb, kprojid_t projid, struct kstatfs *buf) { struct kqid qid; struct dquot *dquot; u64 limit; u64 curblock; qid = make_kqid_projid(projid); dquot = dqget(sb, qid); if (IS_ERR(dquot)) return PTR_ERR(dquot); spin_lock(&dquot->dq_dqb_lock); limit = dquot->dq_dqb.dqb_bsoftlimit; if (dquot->dq_dqb.dqb_bhardlimit && (!limit || dquot->dq_dqb.dqb_bhardlimit < limit)) limit = dquot->dq_dqb.dqb_bhardlimit; limit >>= sb->s_blocksize_bits; if (limit && buf->f_blocks > limit) { curblock = (dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; buf->f_blocks = limit; buf->f_bfree = buf->f_bavail = (buf->f_blocks > curblock) ? (buf->f_blocks - curblock) : 0; } limit = dquot->dq_dqb.dqb_isoftlimit; if (dquot->dq_dqb.dqb_ihardlimit && (!limit || dquot->dq_dqb.dqb_ihardlimit < limit)) limit = dquot->dq_dqb.dqb_ihardlimit; if (limit && buf->f_files > limit) { buf->f_files = limit; buf->f_ffree = (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; } spin_unlock(&dquot->dq_dqb_lock); dqput(dquot); return 0; } #endif static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_fsblk_t overhead = 0, resv_blocks; u64 fsid; s64 bfree; resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); if (!test_opt(sb, MINIX_DF)) overhead = sbi->s_overhead; buf->f_type = EXT4_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); /* prevent underflow in case that few free space is available */ buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); buf->f_bavail = buf->f_bfree - (ext4_r_blocks_count(es) + resv_blocks); if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) buf->f_bavail = 0; buf->f_files = le32_to_cpu(es->s_inodes_count); buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); buf->f_namelen = EXT4_NAME_LEN; fsid = le64_to_cpup((void *)es->s_uuid) ^ le64_to_cpup((void *)es->s_uuid + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; #ifdef CONFIG_QUOTA if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && sb_has_quota_limits_enabled(sb, PRJQUOTA)) ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); #endif return 0; } #ifdef CONFIG_QUOTA /* * Helper functions so that transaction is started before we acquire dqio_sem * to keep correct lock ordering of transaction > dqio_sem */ static inline struct inode *dquot_to_inode(struct dquot *dquot) { return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; } static int ext4_write_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; struct inode *inode; inode = dquot_to_inode(dquot); handle = ext4_journal_start(inode, EXT4_HT_QUOTA, EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_acquire_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_acquire(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_release_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) { /* Release dquot anyway to avoid endless cycle in dqput() */ dquot_release(dquot); return PTR_ERR(handle); } ret = dquot_release(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_mark_dquot_dirty(struct dquot *dquot) { struct super_block *sb = dquot->dq_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); /* Are we journaling quotas? */ if (ext4_has_feature_quota(sb) || sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { dquot_mark_dquot_dirty(dquot); return ext4_write_dquot(dquot); } else { return dquot_mark_dquot_dirty(dquot); } } static int ext4_write_info(struct super_block *sb, int type) { int ret, err; handle_t *handle; /* Data block + inode block */ handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit_info(sb, type); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } /* * Turn on quotas during mount time - we need to find * the quota file and such... */ static int ext4_quota_on_mount(struct super_block *sb, int type) { return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), EXT4_SB(sb)->s_jquota_fmt, type); } static void lockdep_set_quota_inode(struct inode *inode, int subclass) { struct ext4_inode_info *ei = EXT4_I(inode); /* The first argument of lockdep_set_subclass has to be * *exactly* the same as the argument to init_rwsem() --- in * this case, in init_once() --- or lockdep gets unhappy * because the name of the lock is set using the * stringification of the argument to init_rwsem(). */ (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ lockdep_set_subclass(&ei->i_data_sem, subclass); } /* * Standard function to be called on quota_on */ static int ext4_quota_on(struct super_block *sb, int type, int format_id, const struct path *path) { int err; if (!test_opt(sb, QUOTA)) return -EINVAL; /* Quotafile not on the same filesystem? */ if (path->dentry->d_sb != sb) return -EXDEV; /* Journaling quota? */ if (EXT4_SB(sb)->s_qf_names[type]) { /* Quotafile not in fs root? */ if (path->dentry->d_parent != sb->s_root) ext4_msg(sb, KERN_WARNING, "Quota file not on filesystem root. " "Journaled quota will not work"); sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; } else { /* * Clear the flag just in case mount options changed since * last time. */ sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; } /* * When we journal data on quota file, we have to flush journal to see * all updates to the file when we bypass pagecache... */ if (EXT4_SB(sb)->s_journal && ext4_should_journal_data(d_inode(path->dentry))) { /* * We don't need to lock updates but journal_flush() could * otherwise be livelocked... */ jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); if (err) return err; } lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); err = dquot_quota_on(sb, type, format_id, path); if (err) { lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_NORMAL); } else { struct inode *inode = d_inode(path->dentry); handle_t *handle; /* * Set inode flags to prevent userspace from messing with quota * files. If this fails, we return success anyway since quotas * are already enabled and this is not a hard failure. */ inode_lock(inode); handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); if (IS_ERR(handle)) goto unlock_inode; EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, S_NOATIME | S_IMMUTABLE); ext4_mark_inode_dirty(handle, inode); ext4_journal_stop(handle); unlock_inode: inode_unlock(inode); } return err; } static int ext4_quota_enable(struct super_block *sb, int type, int format_id, unsigned int flags) { int err; struct inode *qf_inode; unsigned long qf_inums[EXT4_MAXQUOTAS] = { le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) }; BUG_ON(!ext4_has_feature_quota(sb)); if (!qf_inums[type]) return -EPERM; qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); if (IS_ERR(qf_inode)) { ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); return PTR_ERR(qf_inode); } /* Don't account quota for quota files to avoid recursion */ qf_inode->i_flags |= S_NOQUOTA; lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); err = dquot_load_quota_inode(qf_inode, type, format_id, flags); if (err) lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); iput(qf_inode); return err; } /* Enable usage tracking for all quota types. */ static int ext4_enable_quotas(struct super_block *sb) { int type, err = 0; unsigned long qf_inums[EXT4_MAXQUOTAS] = { le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) }; bool quota_mopt[EXT4_MAXQUOTAS] = { test_opt(sb, USRQUOTA), test_opt(sb, GRPQUOTA), test_opt(sb, PRJQUOTA), }; sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; for (type = 0; type < EXT4_MAXQUOTAS; type++) { if (qf_inums[type]) { err = ext4_quota_enable(sb, type, QFMT_VFS_V1, DQUOT_USAGE_ENABLED | (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); if (err) { ext4_warning(sb, "Failed to enable quota tracking " "(type=%d, err=%d). Please run " "e2fsck to fix.", type, err); for (type--; type >= 0; type--) dquot_quota_off(sb, type); return err; } } } return 0; } static int ext4_quota_off(struct super_block *sb, int type) { struct inode *inode = sb_dqopt(sb)->files[type]; handle_t *handle; int err; /* Force all delayed allocation blocks to be allocated. * Caller already holds s_umount sem */ if (test_opt(sb, DELALLOC)) sync_filesystem(sb); if (!inode || !igrab(inode)) goto out; err = dquot_quota_off(sb, type); if (err || ext4_has_feature_quota(sb)) goto out_put; inode_lock(inode); /* * Update modification times of quota files when userspace can * start looking at them. If we fail, we return success anyway since * this is not a hard failure and quotas are already disabled. */ handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); if (IS_ERR(handle)) goto out_unlock; EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); inode->i_mtime = inode->i_ctime = current_time(inode); ext4_mark_inode_dirty(handle, inode); ext4_journal_stop(handle); out_unlock: inode_unlock(inode); out_put: lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); iput(inode); return err; out: return dquot_quota_off(sb, type); } /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and no one else should touch the files) * we don't have to be afraid of races */ static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = sb->s_blocksize - offset < toread ? sb->s_blocksize - offset : toread; bh = ext4_bread(NULL, inode, blk, 0); if (IS_ERR(bh)) return PTR_ERR(bh); if (!bh) /* A hole? */ memset(data, 0, tocopy); else memcpy(data, bh->b_data+offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err, offset = off & (sb->s_blocksize - 1); int retries = 0; struct buffer_head *bh; handle_t *handle = journal_current_handle(); if (EXT4_SB(sb)->s_journal && !handle) { ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because transaction is not started", (unsigned long long)off, (unsigned long long)len); return -EIO; } /* * Since we account only one data block in transaction credits, * then it is impossible to cross a block boundary. */ if (sb->s_blocksize - offset < len) { ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because not block aligned", (unsigned long long)off, (unsigned long long)len); return -EIO; } do { bh = ext4_bread(handle, inode, blk, EXT4_GET_BLOCKS_CREATE | EXT4_GET_BLOCKS_METADATA_NOFAIL); } while (PTR_ERR(bh) == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)); if (IS_ERR(bh)) return PTR_ERR(bh); if (!bh) goto out; BUFFER_TRACE(bh, "get write access"); err = ext4_journal_get_write_access(handle, bh); if (err) { brelse(bh); return err; } lock_buffer(bh); memcpy(bh->b_data+offset, data, len); flush_dcache_page(bh->b_page); unlock_buffer(bh); err = ext4_handle_dirty_metadata(handle, NULL, bh); brelse(bh); out: if (inode->i_size < off + len) { i_size_write(inode, off + len); EXT4_I(inode)->i_disksize = inode->i_size; ext4_mark_inode_dirty(handle, inode); } return len; } #endif static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); } #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) static inline void register_as_ext2(void) { int err = register_filesystem(&ext2_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext2 (%d)\n", err); } static inline void unregister_as_ext2(void) { unregister_filesystem(&ext2_fs_type); } static inline int ext2_feature_set_ok(struct super_block *sb) { if (ext4_has_unknown_ext2_incompat_features(sb)) return 0; if (sb_rdonly(sb)) return 1; if (ext4_has_unknown_ext2_ro_compat_features(sb)) return 0; return 1; } #else static inline void register_as_ext2(void) { } static inline void unregister_as_ext2(void) { } static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } #endif static inline void register_as_ext3(void) { int err = register_filesystem(&ext3_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext3 (%d)\n", err); } static inline void unregister_as_ext3(void) { unregister_filesystem(&ext3_fs_type); } static inline int ext3_feature_set_ok(struct super_block *sb) { if (ext4_has_unknown_ext3_incompat_features(sb)) return 0; if (!ext4_has_feature_journal(sb)) return 0; if (sb_rdonly(sb)) return 1; if (ext4_has_unknown_ext3_ro_compat_features(sb)) return 0; return 1; } static struct file_system_type ext4_fs_type = { .owner = THIS_MODULE, .name = "ext4", .mount = ext4_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext4"); /* Shared across all ext4 file systems */ wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; static int __init ext4_init_fs(void) { int i, err; ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); ext4_li_info = NULL; mutex_init(&ext4_li_mtx); /* Build-time check for flags consistency */ ext4_check_flag_values(); for (i = 0; i < EXT4_WQ_HASH_SZ; i++) init_waitqueue_head(&ext4__ioend_wq[i]); err = ext4_init_es(); if (err) return err; err = ext4_init_pending(); if (err) goto out7; err = ext4_init_post_read_processing(); if (err) goto out6; err = ext4_init_pageio(); if (err) goto out5; err = ext4_init_system_zone(); if (err) goto out4; err = ext4_init_sysfs(); if (err) goto out3; err = ext4_init_mballoc(); if (err) goto out2; err = init_inodecache(); if (err) goto out1; register_as_ext3(); register_as_ext2(); err = register_filesystem(&ext4_fs_type); if (err) goto out; return 0; out: unregister_as_ext2(); unregister_as_ext3(); destroy_inodecache(); out1: ext4_exit_mballoc(); out2: ext4_exit_sysfs(); out3: ext4_exit_system_zone(); out4: ext4_exit_pageio(); out5: ext4_exit_post_read_processing(); out6: ext4_exit_pending(); out7: ext4_exit_es(); return err; } static void __exit ext4_exit_fs(void) { ext4_destroy_lazyinit_thread(); unregister_as_ext2(); unregister_as_ext3(); unregister_filesystem(&ext4_fs_type); destroy_inodecache(); ext4_exit_mballoc(); ext4_exit_sysfs(); ext4_exit_system_zone(); ext4_exit_pageio(); ext4_exit_post_read_processing(); ext4_exit_es(); ext4_exit_pending(); } MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); MODULE_DESCRIPTION("Fourth Extended Filesystem"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc32c"); module_init(ext4_init_fs) module_exit(ext4_exit_fs)