/* * linux/fs/ext4/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <linux/module.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/time.h> #include <linux/jbd2.h> #include <linux/ext4_fs.h> #include <linux/ext4_jbd2.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/parser.h> #include <linux/smp_lock.h> #include <linux/buffer_head.h> #include <linux/vfs.h> #include <linux/random.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/seq_file.h> #include <asm/uaccess.h> #include "xattr.h" #include "acl.h" #include "namei.h" static int ext4_load_journal(struct super_block *, struct ext4_super_block *, unsigned long journal_devnum); static int ext4_create_journal(struct super_block *, struct ext4_super_block *, unsigned int); static void ext4_commit_super (struct super_block * sb, struct ext4_super_block * es, int sync); static void ext4_mark_recovery_complete(struct super_block * sb, struct ext4_super_block * es); static void ext4_clear_journal_err(struct super_block * sb, struct ext4_super_block * es); static int ext4_sync_fs(struct super_block *sb, int wait); static const char *ext4_decode_error(struct super_block * sb, int errno, char nbuf[16]); static int ext4_remount (struct super_block * sb, int * flags, char * data); static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf); static void ext4_unlockfs(struct super_block *sb); static void ext4_write_super (struct super_block * sb); static void ext4_write_super_lockfs(struct super_block *sb); ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_block_bitmap) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_bitmap) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_table) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); } void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_block_bitmap = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_bitmap = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_table = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); } /* * Wrappers for jbd2_journal_start/end. * * The only special thing we need to do here is to make sure that all * journal_end calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) { journal_t *journal; if (sb->s_flags & MS_RDONLY) return ERR_PTR(-EROFS); /* Special case here: if the journal has aborted behind our * backs (eg. EIO in the commit thread), then we still need to * take the FS itself readonly cleanly. */ journal = EXT4_SB(sb)->s_journal; if (is_journal_aborted(journal)) { ext4_abort(sb, __FUNCTION__, "Detected aborted journal"); return ERR_PTR(-EROFS); } return jbd2_journal_start(journal, nblocks); } /* * The only special thing we need to do here is to make sure that all * jbd2_journal_stop calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ int __ext4_journal_stop(const char *where, handle_t *handle) { struct super_block *sb; int err; int rc; sb = handle->h_transaction->t_journal->j_private; err = handle->h_err; rc = jbd2_journal_stop(handle); if (!err) err = rc; if (err) __ext4_std_error(sb, where, err); return err; } void ext4_journal_abort_handle(const char *caller, const char *err_fn, struct buffer_head *bh, handle_t *handle, int err) { char nbuf[16]; const char *errstr = ext4_decode_error(NULL, err, nbuf); if (bh) BUFFER_TRACE(bh, "abort"); if (!handle->h_err) handle->h_err = err; if (is_handle_aborted(handle)) return; printk(KERN_ERR "%s: aborting transaction: %s in %s\n", caller, errstr, err_fn); jbd2_journal_abort_handle(handle); } /* Deal with the reporting of failure conditions on a filesystem such as * inconsistencies detected or read IO failures. * * On ext2, we can store the error state of the filesystem in the * superblock. That is not possible on ext4, because we may have other * write ordering constraints on the superblock which prevent us from * writing it out straight away; and given that the journal is about to * be aborted, we can't rely on the current, or future, transactions to * write out the superblock safely. * * We'll just use the jbd2_journal_abort() error code to record an error in * the journal instead. On recovery, the journal will compain about * that error until we've noted it down and cleared it. */ static void ext4_handle_error(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); if (sb->s_flags & MS_RDONLY) return; if (!test_opt (sb, ERRORS_CONT)) { journal_t *journal = EXT4_SB(sb)->s_journal; EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; if (journal) jbd2_journal_abort(journal, -EIO); } if (test_opt (sb, ERRORS_RO)) { printk (KERN_CRIT "Remounting filesystem read-only\n"); sb->s_flags |= MS_RDONLY; } ext4_commit_super(sb, es, 1); if (test_opt(sb, ERRORS_PANIC)) panic("EXT4-fs (device %s): panic forced after error\n", sb->s_id); } void ext4_error (struct super_block * sb, const char * function, const char * fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); ext4_handle_error(sb); } static const char *ext4_decode_error(struct super_block * sb, int errno, char nbuf[16]) { char *errstr = NULL; switch (errno) { case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) errstr = "Journal has aborted"; else errstr = "Readonly filesystem"; break; default: /* If the caller passed in an extra buffer for unknown * errors, textualise them now. Else we just return * NULL. */ if (nbuf) { /* Check for truncated error codes... */ if (snprintf(nbuf, 16, "error %d", -errno) >= 0) errstr = nbuf; } break; } return errstr; } /* __ext4_std_error decodes expected errors from journaling functions * automatically and invokes the appropriate error response. */ void __ext4_std_error (struct super_block * sb, const char * function, int errno) { char nbuf[16]; const char *errstr; /* Special case: if the error is EROFS, and we're not already * inside a transaction, then there's really no point in logging * an error. */ if (errno == -EROFS && journal_current_handle() == NULL && (sb->s_flags & MS_RDONLY)) return; errstr = ext4_decode_error(sb, errno, nbuf); printk (KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", sb->s_id, function, errstr); ext4_handle_error(sb); } /* * ext4_abort is a much stronger failure handler than ext4_error. The * abort function may be used to deal with unrecoverable failures such * as journal IO errors or ENOMEM at a critical moment in log management. * * We unconditionally force the filesystem into an ABORT|READONLY state, * unless the error response on the fs has been set to panic in which * case we take the easy way out and panic immediately. */ void ext4_abort (struct super_block * sb, const char * function, const char * fmt, ...) { va_list args; printk (KERN_CRIT "ext4_abort called.\n"); va_start(args, fmt); printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); if (test_opt(sb, ERRORS_PANIC)) panic("EXT4-fs panic from previous error\n"); if (sb->s_flags & MS_RDONLY) return; printk(KERN_CRIT "Remounting filesystem read-only\n"); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; sb->s_flags |= MS_RDONLY; EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); } void ext4_warning (struct super_block * sb, const char * function, const char * fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); } void ext4_update_dynamic_rev(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) return; ext4_warning(sb, __FUNCTION__, "updating to rev %d because of new feature flag, " "running e2fsck is recommended", EXT4_DYNAMIC_REV); es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); /* leave es->s_feature_*compat flags alone */ /* es->s_uuid will be set by e2fsck if empty */ /* * The rest of the superblock fields should be zero, and if not it * means they are likely already in use, so leave them alone. We * can leave it up to e2fsck to clean up any inconsistencies there. */ } /* * Open the external journal device */ static struct block_device *ext4_blkdev_get(dev_t dev) { struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); if (IS_ERR(bdev)) goto fail; return bdev; fail: printk(KERN_ERR "EXT4: failed to open journal device %s: %ld\n", __bdevname(dev, b), PTR_ERR(bdev)); return NULL; } /* * Release the journal device */ static int ext4_blkdev_put(struct block_device *bdev) { bd_release(bdev); return blkdev_put(bdev); } static int ext4_blkdev_remove(struct ext4_sb_info *sbi) { struct block_device *bdev; int ret = -ENODEV; bdev = sbi->journal_bdev; if (bdev) { ret = ext4_blkdev_put(bdev); sbi->journal_bdev = NULL; } return ret; } static inline struct inode *orphan_list_entry(struct list_head *l) { return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; } static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) { struct list_head *l; printk(KERN_ERR "sb orphan head is %d\n", le32_to_cpu(sbi->s_es->s_last_orphan)); printk(KERN_ERR "sb_info orphan list:\n"); list_for_each(l, &sbi->s_orphan) { struct inode *inode = orphan_list_entry(l); printk(KERN_ERR " " "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", inode->i_sb->s_id, inode->i_ino, inode, inode->i_mode, inode->i_nlink, NEXT_ORPHAN(inode)); } } static void ext4_put_super (struct super_block * sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int i; ext4_ext_release(sb); ext4_xattr_put_super(sb); jbd2_journal_destroy(sbi->s_journal); if (!(sb->s_flags & MS_RDONLY)) { EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); es->s_state = cpu_to_le16(sbi->s_mount_state); BUFFER_TRACE(sbi->s_sbh, "marking dirty"); mark_buffer_dirty(sbi->s_sbh); ext4_commit_super(sb, es, 1); } for (i = 0; i < sbi->s_gdb_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); brelse(sbi->s_sbh); #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif /* Debugging code just in case the in-memory inode orphan list * isn't empty. The on-disk one can be non-empty if we've * detected an error and taken the fs readonly, but the * in-memory list had better be clean by this point. */ if (!list_empty(&sbi->s_orphan)) dump_orphan_list(sb, sbi); J_ASSERT(list_empty(&sbi->s_orphan)); invalidate_bdev(sb->s_bdev, 0); if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { /* * Invalidate the journal device's buffers. We don't want them * floating about in memory - the physical journal device may * hotswapped, and it breaks the `ro-after' testing code. */ sync_blockdev(sbi->journal_bdev); invalidate_bdev(sbi->journal_bdev, 0); ext4_blkdev_remove(sbi); } sb->s_fs_info = NULL; kfree(sbi); return; } static struct kmem_cache *ext4_inode_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *ext4_alloc_inode(struct super_block *sb) { struct ext4_inode_info *ei; ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); if (!ei) return NULL; #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL ei->i_acl = EXT4_ACL_NOT_CACHED; ei->i_default_acl = EXT4_ACL_NOT_CACHED; #endif ei->i_block_alloc_info = NULL; ei->vfs_inode.i_version = 1; memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); return &ei->vfs_inode; } static void ext4_destroy_inode(struct inode *inode) { kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); } static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) { struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { INIT_LIST_HEAD(&ei->i_orphan); #ifdef CONFIG_EXT4DEV_FS_XATTR init_rwsem(&ei->xattr_sem); #endif mutex_init(&ei->truncate_mutex); inode_init_once(&ei->vfs_inode); } } static int init_inodecache(void) { ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", sizeof(struct ext4_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once, NULL); if (ext4_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(ext4_inode_cachep); } static void ext4_clear_inode(struct inode *inode) { struct ext4_block_alloc_info *rsv = EXT4_I(inode)->i_block_alloc_info; #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL if (EXT4_I(inode)->i_acl && EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { posix_acl_release(EXT4_I(inode)->i_acl); EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; } if (EXT4_I(inode)->i_default_acl && EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { posix_acl_release(EXT4_I(inode)->i_default_acl); EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; } #endif ext4_discard_reservation(inode); EXT4_I(inode)->i_block_alloc_info = NULL; if (unlikely(rsv)) kfree(rsv); } static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) { #if defined(CONFIG_QUOTA) struct ext4_sb_info *sbi = EXT4_SB(sb); if (sbi->s_jquota_fmt) seq_printf(seq, ",jqfmt=%s", (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold": "vfsv0"); if (sbi->s_qf_names[USRQUOTA]) seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); if (sbi->s_qf_names[GRPQUOTA]) seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) seq_puts(seq, ",usrquota"); if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) seq_puts(seq, ",grpquota"); #endif } static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) { struct super_block *sb = vfs->mnt_sb; if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) seq_puts(seq, ",data=journal"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) seq_puts(seq, ",data=ordered"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) seq_puts(seq, ",data=writeback"); ext4_show_quota_options(seq, sb); return 0; } static struct dentry *ext4_get_dentry(struct super_block *sb, void *vobjp) { __u32 *objp = vobjp; unsigned long ino = objp[0]; __u32 generation = objp[1]; struct inode *inode; struct dentry *result; if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) return ERR_PTR(-ESTALE); if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) return ERR_PTR(-ESTALE); /* iget isn't really right if the inode is currently unallocated!! * * ext4_read_inode will return a bad_inode if the inode had been * deleted, so we should be safe. * * Currently we don't know the generation for parent directory, so * a generation of 0 means "accept any" */ inode = iget(sb, ino); if (inode == NULL) return ERR_PTR(-ENOMEM); if (is_bad_inode(inode) || (generation && inode->i_generation != generation)) { iput(inode); return ERR_PTR(-ESTALE); } /* now to find a dentry. * If possible, get a well-connected one */ result = d_alloc_anon(inode); if (!result) { iput(inode); return ERR_PTR(-ENOMEM); } return result; } #ifdef CONFIG_QUOTA #define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group") #define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) static int ext4_dquot_initialize(struct inode *inode, int type); static int ext4_dquot_drop(struct inode *inode); static int ext4_write_dquot(struct dquot *dquot); static int ext4_acquire_dquot(struct dquot *dquot); static int ext4_release_dquot(struct dquot *dquot); static int ext4_mark_dquot_dirty(struct dquot *dquot); static int ext4_write_info(struct super_block *sb, int type); static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path); static int ext4_quota_on_mount(struct super_block *sb, int type); static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off); static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off); static struct dquot_operations ext4_quota_operations = { .initialize = ext4_dquot_initialize, .drop = ext4_dquot_drop, .alloc_space = dquot_alloc_space, .alloc_inode = dquot_alloc_inode, .free_space = dquot_free_space, .free_inode = dquot_free_inode, .transfer = dquot_transfer, .write_dquot = ext4_write_dquot, .acquire_dquot = ext4_acquire_dquot, .release_dquot = ext4_release_dquot, .mark_dirty = ext4_mark_dquot_dirty, .write_info = ext4_write_info }; static struct quotactl_ops ext4_qctl_operations = { .quota_on = ext4_quota_on, .quota_off = vfs_quota_off, .quota_sync = vfs_quota_sync, .get_info = vfs_get_dqinfo, .set_info = vfs_set_dqinfo, .get_dqblk = vfs_get_dqblk, .set_dqblk = vfs_set_dqblk }; #endif static struct super_operations ext4_sops = { .alloc_inode = ext4_alloc_inode, .destroy_inode = ext4_destroy_inode, .read_inode = ext4_read_inode, .write_inode = ext4_write_inode, .dirty_inode = ext4_dirty_inode, .delete_inode = ext4_delete_inode, .put_super = ext4_put_super, .write_super = ext4_write_super, .sync_fs = ext4_sync_fs, .write_super_lockfs = ext4_write_super_lockfs, .unlockfs = ext4_unlockfs, .statfs = ext4_statfs, .remount_fs = ext4_remount, .clear_inode = ext4_clear_inode, .show_options = ext4_show_options, #ifdef CONFIG_QUOTA .quota_read = ext4_quota_read, .quota_write = ext4_quota_write, #endif }; static struct export_operations ext4_export_ops = { .get_parent = ext4_get_parent, .get_dentry = ext4_get_dentry, }; enum { Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh, Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev, Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota, Opt_grpquota, Opt_extents, }; static match_table_t tokens = { {Opt_bsd_df, "bsddf"}, {Opt_minix_df, "minixdf"}, {Opt_grpid, "grpid"}, {Opt_grpid, "bsdgroups"}, {Opt_nogrpid, "nogrpid"}, {Opt_nogrpid, "sysvgroups"}, {Opt_resgid, "resgid=%u"}, {Opt_resuid, "resuid=%u"}, {Opt_sb, "sb=%u"}, {Opt_err_cont, "errors=continue"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_nouid32, "nouid32"}, {Opt_nocheck, "nocheck"}, {Opt_nocheck, "check=none"}, {Opt_debug, "debug"}, {Opt_oldalloc, "oldalloc"}, {Opt_orlov, "orlov"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_reservation, "reservation"}, {Opt_noreservation, "noreservation"}, {Opt_noload, "noload"}, {Opt_nobh, "nobh"}, {Opt_bh, "bh"}, {Opt_commit, "commit=%u"}, {Opt_journal_update, "journal=update"}, {Opt_journal_inum, "journal=%u"}, {Opt_journal_dev, "journal_dev=%u"}, {Opt_abort, "abort"}, {Opt_data_journal, "data=journal"}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_offusrjquota, "usrjquota="}, {Opt_usrjquota, "usrjquota=%s"}, {Opt_offgrpjquota, "grpjquota="}, {Opt_grpjquota, "grpjquota=%s"}, {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, {Opt_grpquota, "grpquota"}, {Opt_noquota, "noquota"}, {Opt_quota, "quota"}, {Opt_usrquota, "usrquota"}, {Opt_barrier, "barrier=%u"}, {Opt_extents, "extents"}, {Opt_err, NULL}, {Opt_resize, "resize"}, }; static ext4_fsblk_t get_sb_block(void **data) { ext4_fsblk_t sb_block; char *options = (char *) *data; if (!options || strncmp(options, "sb=", 3) != 0) return 1; /* Default location */ options += 3; /*todo: use simple_strtoll with >32bit ext4 */ sb_block = simple_strtoul(options, &options, 0); if (*options && *options != ',') { printk("EXT4-fs: Invalid sb specification: %s\n", (char *) *data); return 1; } if (*options == ',') options++; *data = (void *) options; return sb_block; } static int parse_options (char *options, struct super_block *sb, unsigned int *inum, unsigned long *journal_devnum, ext4_fsblk_t *n_blocks_count, int is_remount) { struct ext4_sb_info *sbi = EXT4_SB(sb); char * p; substring_t args[MAX_OPT_ARGS]; int data_opt = 0; int option; #ifdef CONFIG_QUOTA int qtype; char *qname; #endif if (!options) return 1; while ((p = strsep (&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_bsd_df: clear_opt (sbi->s_mount_opt, MINIX_DF); break; case Opt_minix_df: set_opt (sbi->s_mount_opt, MINIX_DF); break; case Opt_grpid: set_opt (sbi->s_mount_opt, GRPID); break; case Opt_nogrpid: clear_opt (sbi->s_mount_opt, GRPID); break; case Opt_resuid: if (match_int(&args[0], &option)) return 0; sbi->s_resuid = option; break; case Opt_resgid: if (match_int(&args[0], &option)) return 0; sbi->s_resgid = option; break; case Opt_sb: /* handled by get_sb_block() instead of here */ /* *sb_block = match_int(&args[0]); */ break; case Opt_err_panic: clear_opt (sbi->s_mount_opt, ERRORS_CONT); clear_opt (sbi->s_mount_opt, ERRORS_RO); set_opt (sbi->s_mount_opt, ERRORS_PANIC); break; case Opt_err_ro: clear_opt (sbi->s_mount_opt, ERRORS_CONT); clear_opt (sbi->s_mount_opt, ERRORS_PANIC); set_opt (sbi->s_mount_opt, ERRORS_RO); break; case Opt_err_cont: clear_opt (sbi->s_mount_opt, ERRORS_RO); clear_opt (sbi->s_mount_opt, ERRORS_PANIC); set_opt (sbi->s_mount_opt, ERRORS_CONT); break; case Opt_nouid32: set_opt (sbi->s_mount_opt, NO_UID32); break; case Opt_nocheck: clear_opt (sbi->s_mount_opt, CHECK); break; case Opt_debug: set_opt (sbi->s_mount_opt, DEBUG); break; case Opt_oldalloc: set_opt (sbi->s_mount_opt, OLDALLOC); break; case Opt_orlov: clear_opt (sbi->s_mount_opt, OLDALLOC); break; #ifdef CONFIG_EXT4DEV_FS_XATTR case Opt_user_xattr: set_opt (sbi->s_mount_opt, XATTR_USER); break; case Opt_nouser_xattr: clear_opt (sbi->s_mount_opt, XATTR_USER); break; #else case Opt_user_xattr: case Opt_nouser_xattr: printk("EXT4 (no)user_xattr options not supported\n"); break; #endif #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL case Opt_acl: set_opt(sbi->s_mount_opt, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi->s_mount_opt, POSIX_ACL); break; #else case Opt_acl: case Opt_noacl: printk("EXT4 (no)acl options not supported\n"); break; #endif case Opt_reservation: set_opt(sbi->s_mount_opt, RESERVATION); break; case Opt_noreservation: clear_opt(sbi->s_mount_opt, RESERVATION); break; case Opt_journal_update: /* @@@ FIXME */ /* Eventually we will want to be able to create a journal file here. For now, only allow the user to specify an existing inode to be the journal file. */ if (is_remount) { printk(KERN_ERR "EXT4-fs: cannot specify " "journal on remount\n"); return 0; } set_opt (sbi->s_mount_opt, UPDATE_JOURNAL); break; case Opt_journal_inum: if (is_remount) { printk(KERN_ERR "EXT4-fs: cannot specify " "journal on remount\n"); return 0; } if (match_int(&args[0], &option)) return 0; *inum = option; break; case Opt_journal_dev: if (is_remount) { printk(KERN_ERR "EXT4-fs: cannot specify " "journal on remount\n"); return 0; } if (match_int(&args[0], &option)) return 0; *journal_devnum = option; break; case Opt_noload: set_opt (sbi->s_mount_opt, NOLOAD); break; case Opt_commit: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; if (option == 0) option = JBD_DEFAULT_MAX_COMMIT_AGE; sbi->s_commit_interval = HZ * option; break; case Opt_data_journal: data_opt = EXT4_MOUNT_JOURNAL_DATA; goto datacheck; case Opt_data_ordered: data_opt = EXT4_MOUNT_ORDERED_DATA; goto datacheck; case Opt_data_writeback: data_opt = EXT4_MOUNT_WRITEBACK_DATA; datacheck: if (is_remount) { if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) != data_opt) { printk(KERN_ERR "EXT4-fs: cannot change data " "mode on remount\n"); return 0; } } else { sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; sbi->s_mount_opt |= data_opt; } break; #ifdef CONFIG_QUOTA case Opt_usrjquota: qtype = USRQUOTA; goto set_qf_name; case Opt_grpjquota: qtype = GRPQUOTA; set_qf_name: if (sb_any_quota_enabled(sb)) { printk(KERN_ERR "EXT4-fs: Cannot change journalled " "quota options when quota turned on.\n"); return 0; } qname = match_strdup(&args[0]); if (!qname) { printk(KERN_ERR "EXT4-fs: not enough memory for " "storing quotafile name.\n"); return 0; } if (sbi->s_qf_names[qtype] && strcmp(sbi->s_qf_names[qtype], qname)) { printk(KERN_ERR "EXT4-fs: %s quota file already " "specified.\n", QTYPE2NAME(qtype)); kfree(qname); return 0; } sbi->s_qf_names[qtype] = qname; if (strchr(sbi->s_qf_names[qtype], '/')) { printk(KERN_ERR "EXT4-fs: quotafile must be on " "filesystem root.\n"); kfree(sbi->s_qf_names[qtype]); sbi->s_qf_names[qtype] = NULL; return 0; } set_opt(sbi->s_mount_opt, QUOTA); break; case Opt_offusrjquota: qtype = USRQUOTA; goto clear_qf_name; case Opt_offgrpjquota: qtype = GRPQUOTA; clear_qf_name: if (sb_any_quota_enabled(sb)) { printk(KERN_ERR "EXT4-fs: Cannot change " "journalled quota options when " "quota turned on.\n"); return 0; } /* * The space will be released later when all options * are confirmed to be correct */ sbi->s_qf_names[qtype] = NULL; break; case Opt_jqfmt_vfsold: sbi->s_jquota_fmt = QFMT_VFS_OLD; break; case Opt_jqfmt_vfsv0: sbi->s_jquota_fmt = QFMT_VFS_V0; break; case Opt_quota: case Opt_usrquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, USRQUOTA); break; case Opt_grpquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, GRPQUOTA); break; case Opt_noquota: if (sb_any_quota_enabled(sb)) { printk(KERN_ERR "EXT4-fs: Cannot change quota " "options when quota turned on.\n"); return 0; } clear_opt(sbi->s_mount_opt, QUOTA); clear_opt(sbi->s_mount_opt, USRQUOTA); clear_opt(sbi->s_mount_opt, GRPQUOTA); break; #else case Opt_quota: case Opt_usrquota: case Opt_grpquota: case Opt_usrjquota: case Opt_grpjquota: case Opt_offusrjquota: case Opt_offgrpjquota: case Opt_jqfmt_vfsold: case Opt_jqfmt_vfsv0: printk(KERN_ERR "EXT4-fs: journalled quota options not " "supported.\n"); break; case Opt_noquota: break; #endif case Opt_abort: set_opt(sbi->s_mount_opt, ABORT); break; case Opt_barrier: if (match_int(&args[0], &option)) return 0; if (option) set_opt(sbi->s_mount_opt, BARRIER); else clear_opt(sbi->s_mount_opt, BARRIER); break; case Opt_ignore: break; case Opt_resize: if (!is_remount) { printk("EXT4-fs: resize option only available " "for remount\n"); return 0; } if (match_int(&args[0], &option) != 0) return 0; *n_blocks_count = option; break; case Opt_nobh: set_opt(sbi->s_mount_opt, NOBH); break; case Opt_bh: clear_opt(sbi->s_mount_opt, NOBH); break; case Opt_extents: set_opt (sbi->s_mount_opt, EXTENTS); break; default: printk (KERN_ERR "EXT4-fs: Unrecognized mount option \"%s\" " "or missing value\n", p); return 0; } } #ifdef CONFIG_QUOTA if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && sbi->s_qf_names[USRQUOTA]) clear_opt(sbi->s_mount_opt, USRQUOTA); if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) clear_opt(sbi->s_mount_opt, GRPQUOTA); if ((sbi->s_qf_names[USRQUOTA] && (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || (sbi->s_qf_names[GRPQUOTA] && (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { printk(KERN_ERR "EXT4-fs: old and new quota " "format mixing.\n"); return 0; } if (!sbi->s_jquota_fmt) { printk(KERN_ERR "EXT4-fs: journalled quota format " "not specified.\n"); return 0; } } else { if (sbi->s_jquota_fmt) { printk(KERN_ERR "EXT4-fs: journalled quota format " "specified with no journalling " "enabled.\n"); return 0; } } #endif return 1; } static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, int read_only) { struct ext4_sb_info *sbi = EXT4_SB(sb); int res = 0; if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { printk (KERN_ERR "EXT4-fs warning: revision level too high, " "forcing read-only mode\n"); res = MS_RDONLY; } if (read_only) return res; if (!(sbi->s_mount_state & EXT4_VALID_FS)) printk (KERN_WARNING "EXT4-fs warning: mounting unchecked fs, " "running e2fsck is recommended\n"); else if ((sbi->s_mount_state & EXT4_ERROR_FS)) printk (KERN_WARNING "EXT4-fs warning: mounting fs with errors, " "running e2fsck is recommended\n"); else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && le16_to_cpu(es->s_mnt_count) >= (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) printk (KERN_WARNING "EXT4-fs warning: maximal mount count reached, " "running e2fsck is recommended\n"); else if (le32_to_cpu(es->s_checkinterval) && (le32_to_cpu(es->s_lastcheck) + le32_to_cpu(es->s_checkinterval) <= get_seconds())) printk (KERN_WARNING "EXT4-fs warning: checktime reached, " "running e2fsck is recommended\n"); #if 0 /* @@@ We _will_ want to clear the valid bit if we find * inconsistencies, to force a fsck at reboot. But for * a plain journaled filesystem we can keep it set as * valid forever! :) */ es->s_state = cpu_to_le16(le16_to_cpu(es->s_state) & ~EXT4_VALID_FS); #endif if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); es->s_mnt_count=cpu_to_le16(le16_to_cpu(es->s_mnt_count) + 1); es->s_mtime = cpu_to_le32(get_seconds()); ext4_update_dynamic_rev(sb); EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, es, 1); if (test_opt(sb, DEBUG)) printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%lu, " "bpg=%lu, ipg=%lu, mo=%04lx]\n", sb->s_blocksize, sbi->s_groups_count, EXT4_BLOCKS_PER_GROUP(sb), EXT4_INODES_PER_GROUP(sb), sbi->s_mount_opt); printk(KERN_INFO "EXT4 FS on %s, ", sb->s_id); if (EXT4_SB(sb)->s_journal->j_inode == NULL) { char b[BDEVNAME_SIZE]; printk("external journal on %s\n", bdevname(EXT4_SB(sb)->s_journal->j_dev, b)); } else { printk("internal journal\n"); } return res; } /* Called at mount-time, super-block is locked */ static int ext4_check_descriptors (struct super_block * sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); ext4_fsblk_t last_block; ext4_fsblk_t block_bitmap; ext4_fsblk_t inode_bitmap; ext4_fsblk_t inode_table; struct ext4_group_desc * gdp = NULL; int desc_block = 0; int i; ext4_debug ("Checking group descriptors"); for (i = 0; i < sbi->s_groups_count; i++) { if (i == sbi->s_groups_count - 1) last_block = ext4_blocks_count(sbi->s_es) - 1; else last_block = first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); if ((i % EXT4_DESC_PER_BLOCK(sb)) == 0) gdp = (struct ext4_group_desc *) sbi->s_group_desc[desc_block++]->b_data; block_bitmap = ext4_block_bitmap(sb, gdp); if (block_bitmap < first_block || block_bitmap > last_block) { ext4_error (sb, "ext4_check_descriptors", "Block bitmap for group %d" " not in group (block %llu)!", i, block_bitmap); return 0; } inode_bitmap = ext4_inode_bitmap(sb, gdp); if (inode_bitmap < first_block || inode_bitmap > last_block) { ext4_error (sb, "ext4_check_descriptors", "Inode bitmap for group %d" " not in group (block %llu)!", i, inode_bitmap); return 0; } inode_table = ext4_inode_table(sb, gdp); if (inode_table < first_block || inode_table + sbi->s_itb_per_group > last_block) { ext4_error (sb, "ext4_check_descriptors", "Inode table for group %d" " not in group (block %llu)!", i, inode_table); return 0; } first_block += EXT4_BLOCKS_PER_GROUP(sb); gdp = (struct ext4_group_desc *) ((__u8 *)gdp + EXT4_DESC_SIZE(sb)); } ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); sbi->s_es->s_free_inodes_count=cpu_to_le32(ext4_count_free_inodes(sb)); return 1; } /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at * the superblock) which were deleted from all directories, but held open by * a process at the time of a crash. We walk the list and try to delete these * inodes at recovery time (only with a read-write filesystem). * * In order to keep the orphan inode chain consistent during traversal (in * case of crash during recovery), we link each inode into the superblock * orphan list_head and handle it the same way as an inode deletion during * normal operation (which journals the operations for us). * * We only do an iget() and an iput() on each inode, which is very safe if we * accidentally point at an in-use or already deleted inode. The worst that * can happen in this case is that we get a "bit already cleared" message from * ext4_free_inode(). The only reason we would point at a wrong inode is if * e2fsck was run on this filesystem, and it must have already done the orphan * inode cleanup for us, so we can safely abort without any further action. */ static void ext4_orphan_cleanup (struct super_block * sb, struct ext4_super_block * es) { unsigned int s_flags = sb->s_flags; int nr_orphans = 0, nr_truncates = 0; #ifdef CONFIG_QUOTA int i; #endif if (!es->s_last_orphan) { jbd_debug(4, "no orphan inodes to clean up\n"); return; } if (bdev_read_only(sb->s_bdev)) { printk(KERN_ERR "EXT4-fs: write access " "unavailable, skipping orphan cleanup.\n"); return; } if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { if (es->s_last_orphan) jbd_debug(1, "Errors on filesystem, " "clearing orphan list.\n"); es->s_last_orphan = 0; jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); return; } if (s_flags & MS_RDONLY) { printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n", sb->s_id); sb->s_flags &= ~MS_RDONLY; } #ifdef CONFIG_QUOTA /* Needed for iput() to work correctly and not trash data */ sb->s_flags |= MS_ACTIVE; /* Turn on quotas so that they are updated correctly */ for (i = 0; i < MAXQUOTAS; i++) { if (EXT4_SB(sb)->s_qf_names[i]) { int ret = ext4_quota_on_mount(sb, i); if (ret < 0) printk(KERN_ERR "EXT4-fs: Cannot turn on journalled " "quota: error %d\n", ret); } } #endif while (es->s_last_orphan) { struct inode *inode; if (!(inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)))) { es->s_last_orphan = 0; break; } list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); DQUOT_INIT(inode); if (inode->i_nlink) { printk(KERN_DEBUG "%s: truncating inode %lu to %Ld bytes\n", __FUNCTION__, inode->i_ino, inode->i_size); jbd_debug(2, "truncating inode %lu to %Ld bytes\n", inode->i_ino, inode->i_size); ext4_truncate(inode); nr_truncates++; } else { printk(KERN_DEBUG "%s: deleting unreferenced inode %lu\n", __FUNCTION__, inode->i_ino); jbd_debug(2, "deleting unreferenced inode %lu\n", inode->i_ino); nr_orphans++; } iput(inode); /* The delete magic happens here! */ } #define PLURAL(x) (x), ((x)==1) ? "" : "s" if (nr_orphans) printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n", sb->s_id, PLURAL(nr_orphans)); if (nr_truncates) printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n", sb->s_id, PLURAL(nr_truncates)); #ifdef CONFIG_QUOTA /* Turn quotas off */ for (i = 0; i < MAXQUOTAS; i++) { if (sb_dqopt(sb)->files[i]) vfs_quota_off(sb, i); } #endif sb->s_flags = s_flags; /* Restore MS_RDONLY status */ } #define log2(n) ffz(~(n)) /* * Maximal file size. There is a direct, and {,double-,triple-}indirect * block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks. * We need to be 1 filesystem block less than the 2^32 sector limit. */ static loff_t ext4_max_size(int bits) { loff_t res = EXT4_NDIR_BLOCKS; /* This constant is calculated to be the largest file size for a * dense, 4k-blocksize file such that the total number of * sectors in the file, including data and all indirect blocks, * does not exceed 2^32. */ const loff_t upper_limit = 0x1ff7fffd000LL; res += 1LL << (bits-2); res += 1LL << (2*(bits-2)); res += 1LL << (3*(bits-2)); res <<= bits; if (res > upper_limit) res = upper_limit; return res; } static ext4_fsblk_t descriptor_loc(struct super_block *sb, ext4_fsblk_t logical_sb_block, int nr) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned long bg, first_meta_bg; int has_super = 0; first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || nr < first_meta_bg) return logical_sb_block + nr + 1; bg = sbi->s_desc_per_block * nr; if (ext4_bg_has_super(sb, bg)) has_super = 1; return (has_super + ext4_group_first_block_no(sb, bg)); } static int ext4_fill_super (struct super_block *sb, void *data, int silent) { struct buffer_head * bh; struct ext4_super_block *es = NULL; struct ext4_sb_info *sbi; ext4_fsblk_t block; ext4_fsblk_t sb_block = get_sb_block(&data); ext4_fsblk_t logical_sb_block; unsigned long offset = 0; unsigned int journal_inum = 0; unsigned long journal_devnum = 0; unsigned long def_mount_opts; struct inode *root; int blocksize; int hblock; int db_count; int i; int needs_recovery; __le32 features; __u64 blocks_count; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; sbi->s_mount_opt = 0; sbi->s_resuid = EXT4_DEF_RESUID; sbi->s_resgid = EXT4_DEF_RESGID; unlock_kernel(); blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); if (!blocksize) { printk(KERN_ERR "EXT4-fs: unable to set blocksize\n"); goto out_fail; } /* * The ext4 superblock will not be buffer aligned for other than 1kB * block sizes. We need to calculate the offset from buffer start. */ if (blocksize != EXT4_MIN_BLOCK_SIZE) { logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); } else { logical_sb_block = sb_block; } if (!(bh = sb_bread(sb, logical_sb_block))) { printk (KERN_ERR "EXT4-fs: unable to read superblock\n"); goto out_fail; } /* * Note: s_es must be initialized as soon as possible because * some ext4 macro-instructions depend on its value */ es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); sbi->s_es = es; sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT4_SUPER_MAGIC) goto cantfind_ext4; /* Set defaults before we parse the mount options */ def_mount_opts = le32_to_cpu(es->s_default_mount_opts); if (def_mount_opts & EXT4_DEFM_DEBUG) set_opt(sbi->s_mount_opt, DEBUG); if (def_mount_opts & EXT4_DEFM_BSDGROUPS) set_opt(sbi->s_mount_opt, GRPID); if (def_mount_opts & EXT4_DEFM_UID16) set_opt(sbi->s_mount_opt, NO_UID32); #ifdef CONFIG_EXT4DEV_FS_XATTR if (def_mount_opts & EXT4_DEFM_XATTR_USER) set_opt(sbi->s_mount_opt, XATTR_USER); #endif #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL if (def_mount_opts & EXT4_DEFM_ACL) set_opt(sbi->s_mount_opt, POSIX_ACL); #endif if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) set_opt(sbi->s_mount_opt, ERRORS_PANIC); else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_RO) set_opt(sbi->s_mount_opt, ERRORS_RO); else set_opt(sbi->s_mount_opt, ERRORS_CONT); sbi->s_resuid = le16_to_cpu(es->s_def_resuid); sbi->s_resgid = le16_to_cpu(es->s_def_resgid); set_opt(sbi->s_mount_opt, RESERVATION); if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum, NULL, 0)) goto failed_mount; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) printk(KERN_WARNING "EXT4-fs warning: feature flags set on rev 0 fs, " "running e2fsck is recommended\n"); /* * Check feature flags regardless of the revision level, since we * previously didn't change the revision level when setting the flags, * so there is a chance incompat flags are set on a rev 0 filesystem. */ features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); if (features) { printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of " "unsupported optional features (%x).\n", sb->s_id, le32_to_cpu(features)); goto failed_mount; } features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); if (!(sb->s_flags & MS_RDONLY) && features) { printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of " "unsupported optional features (%x).\n", sb->s_id, le32_to_cpu(features)); goto failed_mount; } blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); if (blocksize < EXT4_MIN_BLOCK_SIZE || blocksize > EXT4_MAX_BLOCK_SIZE) { printk(KERN_ERR "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n", blocksize, sb->s_id); goto failed_mount; } hblock = bdev_hardsect_size(sb->s_bdev); if (sb->s_blocksize != blocksize) { /* * Make sure the blocksize for the filesystem is larger * than the hardware sectorsize for the machine. */ if (blocksize < hblock) { printk(KERN_ERR "EXT4-fs: blocksize %d too small for " "device blocksize %d.\n", blocksize, hblock); goto failed_mount; } brelse (bh); sb_set_blocksize(sb, blocksize); logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); bh = sb_bread(sb, logical_sb_block); if (!bh) { printk(KERN_ERR "EXT4-fs: Can't read superblock on 2nd try.\n"); goto failed_mount; } es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); sbi->s_es = es; if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { printk (KERN_ERR "EXT4-fs: Magic mismatch, very weird !\n"); goto failed_mount; } } sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; } else { sbi->s_inode_size = le16_to_cpu(es->s_inode_size); sbi->s_first_ino = le32_to_cpu(es->s_first_ino); if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || (sbi->s_inode_size & (sbi->s_inode_size - 1)) || (sbi->s_inode_size > blocksize)) { printk (KERN_ERR "EXT4-fs: unsupported inode size: %d\n", sbi->s_inode_size); goto failed_mount; } } sbi->s_frag_size = EXT4_MIN_FRAG_SIZE << le32_to_cpu(es->s_log_frag_size); if (blocksize != sbi->s_frag_size) { printk(KERN_ERR "EXT4-fs: fragsize %lu != blocksize %u (unsupported)\n", sbi->s_frag_size, blocksize); goto failed_mount; } sbi->s_desc_size = le16_to_cpu(es->s_desc_size); if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || sbi->s_desc_size > EXT4_MAX_DESC_SIZE || sbi->s_desc_size & (sbi->s_desc_size - 1)) { printk(KERN_ERR "EXT4-fs: unsupported descriptor size %lu\n", sbi->s_desc_size); goto failed_mount; } } else sbi->s_desc_size = EXT4_MIN_DESC_SIZE; sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group); sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); if (EXT4_INODE_SIZE(sb) == 0) goto cantfind_ext4; sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); if (sbi->s_inodes_per_block == 0) goto cantfind_ext4; sbi->s_itb_per_group = sbi->s_inodes_per_group / sbi->s_inodes_per_block; sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); sbi->s_sbh = bh; sbi->s_mount_state = le16_to_cpu(es->s_state); sbi->s_addr_per_block_bits = log2(EXT4_ADDR_PER_BLOCK(sb)); sbi->s_desc_per_block_bits = log2(EXT4_DESC_PER_BLOCK(sb)); for (i=0; i < 4; i++) sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); sbi->s_def_hash_version = es->s_def_hash_version; if (sbi->s_blocks_per_group > blocksize * 8) { printk (KERN_ERR "EXT4-fs: #blocks per group too big: %lu\n", sbi->s_blocks_per_group); goto failed_mount; } if (sbi->s_frags_per_group > blocksize * 8) { printk (KERN_ERR "EXT4-fs: #fragments per group too big: %lu\n", sbi->s_frags_per_group); goto failed_mount; } if (sbi->s_inodes_per_group > blocksize * 8) { printk (KERN_ERR "EXT4-fs: #inodes per group too big: %lu\n", sbi->s_inodes_per_group); goto failed_mount; } if (ext4_blocks_count(es) > (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { printk(KERN_ERR "EXT4-fs: filesystem on %s:" " too large to mount safely\n", sb->s_id); if (sizeof(sector_t) < 8) printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not " "enabled\n"); goto failed_mount; } if (EXT4_BLOCKS_PER_GROUP(sb) == 0) goto cantfind_ext4; blocks_count = (ext4_blocks_count(es) - le32_to_cpu(es->s_first_data_block) + EXT4_BLOCKS_PER_GROUP(sb) - 1); do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); sbi->s_groups_count = blocks_count; db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / EXT4_DESC_PER_BLOCK(sb); sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *), GFP_KERNEL); if (sbi->s_group_desc == NULL) { printk (KERN_ERR "EXT4-fs: not enough memory\n"); goto failed_mount; } bgl_lock_init(&sbi->s_blockgroup_lock); for (i = 0; i < db_count; i++) { block = descriptor_loc(sb, logical_sb_block, i); sbi->s_group_desc[i] = sb_bread(sb, block); if (!sbi->s_group_desc[i]) { printk (KERN_ERR "EXT4-fs: " "can't read group descriptor %d\n", i); db_count = i; goto failed_mount2; } } if (!ext4_check_descriptors (sb)) { printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n"); goto failed_mount2; } sbi->s_gdb_count = db_count; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); percpu_counter_init(&sbi->s_freeblocks_counter, ext4_count_free_blocks(sb)); percpu_counter_init(&sbi->s_freeinodes_counter, ext4_count_free_inodes(sb)); percpu_counter_init(&sbi->s_dirs_counter, ext4_count_dirs(sb)); /* per fileystem reservation list head & lock */ spin_lock_init(&sbi->s_rsv_window_lock); sbi->s_rsv_window_root = RB_ROOT; /* Add a single, static dummy reservation to the start of the * reservation window list --- it gives us a placeholder for * append-at-start-of-list which makes the allocation logic * _much_ simpler. */ sbi->s_rsv_window_head.rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; sbi->s_rsv_window_head.rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; sbi->s_rsv_window_head.rsv_alloc_hit = 0; sbi->s_rsv_window_head.rsv_goal_size = 0; ext4_rsv_window_add(sb, &sbi->s_rsv_window_head); /* * set up enough so that it can read an inode */ sb->s_op = &ext4_sops; sb->s_export_op = &ext4_export_ops; sb->s_xattr = ext4_xattr_handlers; #ifdef CONFIG_QUOTA sb->s_qcop = &ext4_qctl_operations; sb->dq_op = &ext4_quota_operations; #endif INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ sb->s_root = NULL; needs_recovery = (es->s_last_orphan != 0 || EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)); /* * The first inode we look at is the journal inode. Don't try * root first: it may be modified in the journal! */ if (!test_opt(sb, NOLOAD) && EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { if (ext4_load_journal(sb, es, journal_devnum)) goto failed_mount3; } else if (journal_inum) { if (ext4_create_journal(sb, es, journal_inum)) goto failed_mount3; } else { if (!silent) printk (KERN_ERR "ext4: No journal on filesystem on %s\n", sb->s_id); goto failed_mount3; } /* We have now updated the journal if required, so we can * validate the data journaling mode. */ switch (test_opt(sb, DATA_FLAGS)) { case 0: /* No mode set, assume a default based on the journal * capabilities: ORDERED_DATA if the journal can * cope, else JOURNAL_DATA */ if (jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) set_opt(sbi->s_mount_opt, ORDERED_DATA); else set_opt(sbi->s_mount_opt, JOURNAL_DATA); break; case EXT4_MOUNT_ORDERED_DATA: case EXT4_MOUNT_WRITEBACK_DATA: if (!jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { printk(KERN_ERR "EXT4-fs: Journal does not support " "requested data journaling mode\n"); goto failed_mount4; } default: break; } if (test_opt(sb, NOBH)) { if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - " "its supported only with writeback mode\n"); clear_opt(sbi->s_mount_opt, NOBH); } } /* * The jbd2_journal_load will have done any necessary log recovery, * so we can safely mount the rest of the filesystem now. */ root = iget(sb, EXT4_ROOT_INO); sb->s_root = d_alloc_root(root); if (!sb->s_root) { printk(KERN_ERR "EXT4-fs: get root inode failed\n"); iput(root); goto failed_mount4; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { dput(sb->s_root); sb->s_root = NULL; printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n"); goto failed_mount4; } ext4_setup_super (sb, es, sb->s_flags & MS_RDONLY); /* * akpm: core read_super() calls in here with the superblock locked. * That deadlocks, because orphan cleanup needs to lock the superblock * in numerous places. Here we just pop the lock - it's relatively * harmless, because we are now ready to accept write_super() requests, * and aviro says that's the only reason for hanging onto the * superblock lock. */ EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; ext4_orphan_cleanup(sb, es); EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; if (needs_recovery) printk (KERN_INFO "EXT4-fs: recovery complete.\n"); ext4_mark_recovery_complete(sb, es); printk (KERN_INFO "EXT4-fs: mounted filesystem with %s data mode.\n", test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ? "journal": test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA ? "ordered": "writeback"); ext4_ext_init(sb); lock_kernel(); return 0; cantfind_ext4: if (!silent) printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n", sb->s_id); goto failed_mount; failed_mount4: jbd2_journal_destroy(sbi->s_journal); failed_mount3: percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); failed_mount2: for (i = 0; i < db_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); failed_mount: #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif ext4_blkdev_remove(sbi); brelse(bh); out_fail: sb->s_fs_info = NULL; kfree(sbi); lock_kernel(); return -EINVAL; } /* * Setup any per-fs journal parameters now. We'll do this both on * initial mount, once the journal has been initialised but before we've * done any recovery; and again on any subsequent remount. */ static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (sbi->s_commit_interval) journal->j_commit_interval = sbi->s_commit_interval; /* We could also set up an ext4-specific default for the commit * interval here, but for now we'll just fall back to the jbd * default. */ spin_lock(&journal->j_state_lock); if (test_opt(sb, BARRIER)) journal->j_flags |= JBD2_BARRIER; else journal->j_flags &= ~JBD2_BARRIER; spin_unlock(&journal->j_state_lock); } static journal_t *ext4_get_journal(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; journal_t *journal; /* First, test for the existence of a valid inode on disk. Bad * things happen if we iget() an unused inode, as the subsequent * iput() will try to delete it. */ journal_inode = iget(sb, journal_inum); if (!journal_inode) { printk(KERN_ERR "EXT4-fs: no journal found.\n"); return NULL; } if (!journal_inode->i_nlink) { make_bad_inode(journal_inode); iput(journal_inode); printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n"); return NULL; } jbd_debug(2, "Journal inode found at %p: %Ld bytes\n", journal_inode, journal_inode->i_size); if (is_bad_inode(journal_inode) || !S_ISREG(journal_inode->i_mode)) { printk(KERN_ERR "EXT4-fs: invalid journal inode.\n"); iput(journal_inode); return NULL; } journal = jbd2_journal_init_inode(journal_inode); if (!journal) { printk(KERN_ERR "EXT4-fs: Could not load journal inode\n"); iput(journal_inode); return NULL; } journal->j_private = sb; ext4_init_journal_params(sb, journal); return journal; } static journal_t *ext4_get_dev_journal(struct super_block *sb, dev_t j_dev) { struct buffer_head * bh; journal_t *journal; ext4_fsblk_t start; ext4_fsblk_t len; int hblock, blocksize; ext4_fsblk_t sb_block; unsigned long offset; struct ext4_super_block * es; struct block_device *bdev; bdev = ext4_blkdev_get(j_dev); if (bdev == NULL) return NULL; if (bd_claim(bdev, sb)) { printk(KERN_ERR "EXT4: failed to claim external journal device.\n"); blkdev_put(bdev); return NULL; } blocksize = sb->s_blocksize; hblock = bdev_hardsect_size(bdev); if (blocksize < hblock) { printk(KERN_ERR "EXT4-fs: blocksize too small for journal device.\n"); goto out_bdev; } sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; offset = EXT4_MIN_BLOCK_SIZE % blocksize; set_blocksize(bdev, blocksize); if (!(bh = __bread(bdev, sb_block, blocksize))) { printk(KERN_ERR "EXT4-fs: couldn't read superblock of " "external journal\n"); goto out_bdev; } es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || !(le32_to_cpu(es->s_feature_incompat) & EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { printk(KERN_ERR "EXT4-fs: external journal has " "bad superblock\n"); brelse(bh); goto out_bdev; } if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { printk(KERN_ERR "EXT4-fs: journal UUID does not match\n"); brelse(bh); goto out_bdev; } len = ext4_blocks_count(es); start = sb_block + 1; brelse(bh); /* we're done with the superblock */ journal = jbd2_journal_init_dev(bdev, sb->s_bdev, start, len, blocksize); if (!journal) { printk(KERN_ERR "EXT4-fs: failed to create device journal\n"); goto out_bdev; } journal->j_private = sb; ll_rw_block(READ, 1, &journal->j_sb_buffer); wait_on_buffer(journal->j_sb_buffer); if (!buffer_uptodate(journal->j_sb_buffer)) { printk(KERN_ERR "EXT4-fs: I/O error on journal device\n"); goto out_journal; } if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { printk(KERN_ERR "EXT4-fs: External journal has more than one " "user (unsupported) - %d\n", be32_to_cpu(journal->j_superblock->s_nr_users)); goto out_journal; } EXT4_SB(sb)->journal_bdev = bdev; ext4_init_journal_params(sb, journal); return journal; out_journal: jbd2_journal_destroy(journal); out_bdev: ext4_blkdev_put(bdev); return NULL; } static int ext4_load_journal(struct super_block *sb, struct ext4_super_block *es, unsigned long journal_devnum) { journal_t *journal; unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); dev_t journal_dev; int err = 0; int really_read_only; if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { printk(KERN_INFO "EXT4-fs: external journal device major/minor " "numbers have changed\n"); journal_dev = new_decode_dev(journal_devnum); } else journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); really_read_only = bdev_read_only(sb->s_bdev); /* * Are we loading a blank journal or performing recovery after a * crash? For recovery, we need to check in advance whether we * can get read-write access to the device. */ if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { if (sb->s_flags & MS_RDONLY) { printk(KERN_INFO "EXT4-fs: INFO: recovery " "required on readonly filesystem.\n"); if (really_read_only) { printk(KERN_ERR "EXT4-fs: write access " "unavailable, cannot proceed.\n"); return -EROFS; } printk (KERN_INFO "EXT4-fs: write access will " "be enabled during recovery.\n"); } } if (journal_inum && journal_dev) { printk(KERN_ERR "EXT4-fs: filesystem has both journal " "and inode journals!\n"); return -EINVAL; } if (journal_inum) { if (!(journal = ext4_get_journal(sb, journal_inum))) return -EINVAL; } else { if (!(journal = ext4_get_dev_journal(sb, journal_dev))) return -EINVAL; } if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { err = jbd2_journal_update_format(journal); if (err) { printk(KERN_ERR "EXT4-fs: error updating journal.\n"); jbd2_journal_destroy(journal); return err; } } if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) err = jbd2_journal_wipe(journal, !really_read_only); if (!err) err = jbd2_journal_load(journal); if (err) { printk(KERN_ERR "EXT4-fs: error loading journal.\n"); jbd2_journal_destroy(journal); return err; } EXT4_SB(sb)->s_journal = journal; ext4_clear_journal_err(sb, es); if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { es->s_journal_dev = cpu_to_le32(journal_devnum); sb->s_dirt = 1; /* Make sure we flush the recovery flag to disk. */ ext4_commit_super(sb, es, 1); } return 0; } static int ext4_create_journal(struct super_block * sb, struct ext4_super_block * es, unsigned int journal_inum) { journal_t *journal; if (sb->s_flags & MS_RDONLY) { printk(KERN_ERR "EXT4-fs: readonly filesystem when trying to " "create journal.\n"); return -EROFS; } if (!(journal = ext4_get_journal(sb, journal_inum))) return -EINVAL; printk(KERN_INFO "EXT4-fs: creating new journal on inode %u\n", journal_inum); if (jbd2_journal_create(journal)) { printk(KERN_ERR "EXT4-fs: error creating journal.\n"); jbd2_journal_destroy(journal); return -EIO; } EXT4_SB(sb)->s_journal = journal; ext4_update_dynamic_rev(sb); EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); EXT4_SET_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL); es->s_journal_inum = cpu_to_le32(journal_inum); sb->s_dirt = 1; /* Make sure we flush the recovery flag to disk. */ ext4_commit_super(sb, es, 1); return 0; } static void ext4_commit_super (struct super_block * sb, struct ext4_super_block * es, int sync) { struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; if (!sbh) return; es->s_wtime = cpu_to_le32(get_seconds()); ext4_free_blocks_count_set(es, ext4_count_free_blocks(sb)); es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb)); BUFFER_TRACE(sbh, "marking dirty"); mark_buffer_dirty(sbh); if (sync) sync_dirty_buffer(sbh); } /* * Have we just finished recovery? If so, and if we are mounting (or * remounting) the filesystem readonly, then we will end up with a * consistent fs on disk. Record that fact. */ static void ext4_mark_recovery_complete(struct super_block * sb, struct ext4_super_block * es) { journal_t *journal = EXT4_SB(sb)->s_journal; jbd2_journal_lock_updates(journal); jbd2_journal_flush(journal); if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && sb->s_flags & MS_RDONLY) { EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); sb->s_dirt = 0; ext4_commit_super(sb, es, 1); } jbd2_journal_unlock_updates(journal); } /* * If we are mounting (or read-write remounting) a filesystem whose journal * has recorded an error from a previous lifetime, move that error to the * main filesystem now. */ static void ext4_clear_journal_err(struct super_block * sb, struct ext4_super_block * es) { journal_t *journal; int j_errno; const char *errstr; journal = EXT4_SB(sb)->s_journal; /* * Now check for any error status which may have been recorded in the * journal by a prior ext4_error() or ext4_abort() */ j_errno = jbd2_journal_errno(journal); if (j_errno) { char nbuf[16]; errstr = ext4_decode_error(sb, j_errno, nbuf); ext4_warning(sb, __FUNCTION__, "Filesystem error recorded " "from previous mount: %s", errstr); ext4_warning(sb, __FUNCTION__, "Marking fs in need of " "filesystem check."); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); ext4_commit_super (sb, es, 1); jbd2_journal_clear_err(journal); } } /* * Force the running and committing transactions to commit, * and wait on the commit. */ int ext4_force_commit(struct super_block *sb) { journal_t *journal; int ret; if (sb->s_flags & MS_RDONLY) return 0; journal = EXT4_SB(sb)->s_journal; sb->s_dirt = 0; ret = ext4_journal_force_commit(journal); return ret; } /* * Ext4 always journals updates to the superblock itself, so we don't * have to propagate any other updates to the superblock on disk at this * point. Just start an async writeback to get the buffers on their way * to the disk. * * This implicitly triggers the writebehind on sync(). */ static void ext4_write_super (struct super_block * sb) { if (mutex_trylock(&sb->s_lock) != 0) BUG(); sb->s_dirt = 0; } static int ext4_sync_fs(struct super_block *sb, int wait) { tid_t target; sb->s_dirt = 0; if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { if (wait) jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); } return 0; } /* * LVM calls this function before a (read-only) snapshot is created. This * gives us a chance to flush the journal completely and mark the fs clean. */ static void ext4_write_super_lockfs(struct super_block *sb) { sb->s_dirt = 0; if (!(sb->s_flags & MS_RDONLY)) { journal_t *journal = EXT4_SB(sb)->s_journal; /* Now we set up the journal barrier. */ jbd2_journal_lock_updates(journal); jbd2_journal_flush(journal); /* Journal blocked and flushed, clear needs_recovery flag. */ EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); } } /* * Called by LVM after the snapshot is done. We need to reset the RECOVER * flag here, even though the filesystem is not technically dirty yet. */ static void ext4_unlockfs(struct super_block *sb) { if (!(sb->s_flags & MS_RDONLY)) { lock_super(sb); /* Reser the needs_recovery flag before the fs is unlocked. */ EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); unlock_super(sb); jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); } } static int ext4_remount (struct super_block * sb, int * flags, char * data) { struct ext4_super_block * es; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t n_blocks_count = 0; unsigned long old_sb_flags; struct ext4_mount_options old_opts; int err; #ifdef CONFIG_QUOTA int i; #endif /* Store the original options */ old_sb_flags = sb->s_flags; old_opts.s_mount_opt = sbi->s_mount_opt; old_opts.s_resuid = sbi->s_resuid; old_opts.s_resgid = sbi->s_resgid; old_opts.s_commit_interval = sbi->s_commit_interval; #ifdef CONFIG_QUOTA old_opts.s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) old_opts.s_qf_names[i] = sbi->s_qf_names[i]; #endif /* * Allow the "check" option to be passed as a remount option. */ if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) { err = -EINVAL; goto restore_opts; } if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) ext4_abort(sb, __FUNCTION__, "Abort forced by user"); sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); es = sbi->s_es; ext4_init_journal_params(sb, sbi->s_journal); if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || n_blocks_count > ext4_blocks_count(es)) { if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { err = -EROFS; goto restore_opts; } if (*flags & MS_RDONLY) { /* * First of all, the unconditional stuff we have to do * to disable replay of the journal when we next remount */ sb->s_flags |= MS_RDONLY; /* * OK, test if we are remounting a valid rw partition * readonly, and if so set the rdonly flag and then * mark the partition as valid again. */ if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && (sbi->s_mount_state & EXT4_VALID_FS)) es->s_state = cpu_to_le16(sbi->s_mount_state); ext4_mark_recovery_complete(sb, es); } else { __le32 ret; if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP))) { printk(KERN_WARNING "EXT4-fs: %s: couldn't " "remount RDWR because of unsupported " "optional features (%x).\n", sb->s_id, le32_to_cpu(ret)); err = -EROFS; goto restore_opts; } /* * If we have an unprocessed orphan list hanging * around from a previously readonly bdev mount, * require a full umount/remount for now. */ if (es->s_last_orphan) { printk(KERN_WARNING "EXT4-fs: %s: couldn't " "remount RDWR because of unprocessed " "orphan inode list. Please " "umount/remount instead.\n", sb->s_id); err = -EINVAL; goto restore_opts; } /* * Mounting a RDONLY partition read-write, so reread * and store the current valid flag. (It may have * been changed by e2fsck since we originally mounted * the partition.) */ ext4_clear_journal_err(sb, es); sbi->s_mount_state = le16_to_cpu(es->s_state); if ((err = ext4_group_extend(sb, es, n_blocks_count))) goto restore_opts; if (!ext4_setup_super (sb, es, 0)) sb->s_flags &= ~MS_RDONLY; } } #ifdef CONFIG_QUOTA /* Release old quota file names */ for (i = 0; i < MAXQUOTAS; i++) if (old_opts.s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(old_opts.s_qf_names[i]); #endif return 0; restore_opts: sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.s_mount_opt; sbi->s_resuid = old_opts.s_resuid; sbi->s_resgid = old_opts.s_resgid; sbi->s_commit_interval = old_opts.s_commit_interval; #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = old_opts.s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) { if (sbi->s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(sbi->s_qf_names[i]); sbi->s_qf_names[i] = old_opts.s_qf_names[i]; } #endif return err; } static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf) { struct super_block *sb = dentry->d_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_fsblk_t overhead; int i; u64 fsid; if (test_opt (sb, MINIX_DF)) overhead = 0; else { unsigned long ngroups; ngroups = EXT4_SB(sb)->s_groups_count; smp_rmb(); /* * Compute the overhead (FS structures) */ /* * All of the blocks before first_data_block are * overhead */ overhead = le32_to_cpu(es->s_first_data_block); /* * Add the overhead attributed to the superblock and * block group descriptors. If the sparse superblocks * feature is turned on, then not all groups have this. */ for (i = 0; i < ngroups; i++) { overhead += ext4_bg_has_super(sb, i) + ext4_bg_num_gdb(sb, i); cond_resched(); } /* * Every block group has an inode bitmap, a block * bitmap, and an inode table. */ overhead += (ngroups * (2 + EXT4_SB(sb)->s_itb_per_group)); } buf->f_type = EXT4_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = ext4_blocks_count(es) - overhead; buf->f_bfree = percpu_counter_sum(&sbi->s_freeblocks_counter); buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); if (buf->f_bfree < ext4_r_blocks_count(es)) buf->f_bavail = 0; buf->f_files = le32_to_cpu(es->s_inodes_count); buf->f_ffree = percpu_counter_sum(&sbi->s_freeinodes_counter); buf->f_namelen = EXT4_NAME_LEN; fsid = le64_to_cpup((void *)es->s_uuid) ^ le64_to_cpup((void *)es->s_uuid + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; return 0; } /* Helper function for writing quotas on sync - we need to start transaction before quota file * is locked for write. Otherwise the are possible deadlocks: * Process 1 Process 2 * ext4_create() quota_sync() * jbd2_journal_start() write_dquot() * DQUOT_INIT() down(dqio_mutex) * down(dqio_mutex) jbd2_journal_start() * */ #ifdef CONFIG_QUOTA static inline struct inode *dquot_to_inode(struct dquot *dquot) { return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; } static int ext4_dquot_initialize(struct inode *inode, int type) { handle_t *handle; int ret, err; /* We may create quota structure so we need to reserve enough blocks */ handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_initialize(inode, type); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_dquot_drop(struct inode *inode) { handle_t *handle; int ret, err; /* We may delete quota structure so we need to reserve enough blocks */ handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_drop(inode); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_write_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; struct inode *inode; inode = dquot_to_inode(dquot); handle = ext4_journal_start(inode, EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_acquire_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_acquire(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_release_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_release(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_mark_dquot_dirty(struct dquot *dquot) { /* Are we journalling quotas? */ if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { dquot_mark_dquot_dirty(dquot); return ext4_write_dquot(dquot); } else { return dquot_mark_dquot_dirty(dquot); } } static int ext4_write_info(struct super_block *sb, int type) { int ret, err; handle_t *handle; /* Data block + inode block */ handle = ext4_journal_start(sb->s_root->d_inode, 2); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit_info(sb, type); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } /* * Turn on quotas during mount time - we need to find * the quota file and such... */ static int ext4_quota_on_mount(struct super_block *sb, int type) { return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], EXT4_SB(sb)->s_jquota_fmt, type); } /* * Standard function to be called on quota_on */ static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path) { int err; struct nameidata nd; if (!test_opt(sb, QUOTA)) return -EINVAL; /* Not journalling quota? */ if (!EXT4_SB(sb)->s_qf_names[USRQUOTA] && !EXT4_SB(sb)->s_qf_names[GRPQUOTA]) return vfs_quota_on(sb, type, format_id, path); err = path_lookup(path, LOOKUP_FOLLOW, &nd); if (err) return err; /* Quotafile not on the same filesystem? */ if (nd.mnt->mnt_sb != sb) { path_release(&nd); return -EXDEV; } /* Quotafile not of fs root? */ if (nd.dentry->d_parent->d_inode != sb->s_root->d_inode) printk(KERN_WARNING "EXT4-fs: Quota file not on filesystem root. " "Journalled quota will not work.\n"); path_release(&nd); return vfs_quota_on(sb, type, format_id, path); } /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and noone else should touch the files) * we don't have to be afraid of races */ static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = sb->s_blocksize - offset < toread ? sb->s_blocksize - offset : toread; bh = ext4_bread(NULL, inode, blk, 0, &err); if (err) return err; if (!bh) /* A hole? */ memset(data, 0, tocopy); else memcpy(data, bh->b_data+offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; size_t towrite = len; struct buffer_head *bh; handle_t *handle = journal_current_handle(); mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); while (towrite > 0) { tocopy = sb->s_blocksize - offset < towrite ? sb->s_blocksize - offset : towrite; bh = ext4_bread(handle, inode, blk, 1, &err); if (!bh) goto out; if (journal_quota) { err = ext4_journal_get_write_access(handle, bh); if (err) { brelse(bh); goto out; } } lock_buffer(bh); memcpy(bh->b_data+offset, data, tocopy); flush_dcache_page(bh->b_page); unlock_buffer(bh); if (journal_quota) err = ext4_journal_dirty_metadata(handle, bh); else { /* Always do at least ordered writes for quotas */ err = ext4_journal_dirty_data(handle, bh); mark_buffer_dirty(bh); } brelse(bh); if (err) goto out; offset = 0; towrite -= tocopy; data += tocopy; blk++; } out: if (len == towrite) return err; if (inode->i_size < off+len-towrite) { i_size_write(inode, off+len-towrite); EXT4_I(inode)->i_disksize = inode->i_size; } inode->i_version++; inode->i_mtime = inode->i_ctime = CURRENT_TIME; ext4_mark_inode_dirty(handle, inode); mutex_unlock(&inode->i_mutex); return len - towrite; } #endif static int ext4_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); } static struct file_system_type ext4dev_fs_type = { .owner = THIS_MODULE, .name = "ext4dev", .get_sb = ext4_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init init_ext4_fs(void) { int err = init_ext4_xattr(); if (err) return err; err = init_inodecache(); if (err) goto out1; err = register_filesystem(&ext4dev_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: exit_ext4_xattr(); return err; } static void __exit exit_ext4_fs(void) { unregister_filesystem(&ext4dev_fs_type); destroy_inodecache(); exit_ext4_xattr(); } MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); MODULE_DESCRIPTION("Fourth Extended Filesystem with extents"); MODULE_LICENSE("GPL"); module_init(init_ext4_fs) module_exit(exit_ext4_fs)