/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/fs.h> #include <linux/sched.h> #include <linux/writeback.h> #include <linux/pagemap.h> #include <linux/blkdev.h> #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "locking.h" #include "ref-cache.h" #include "tree-log.h" #define BTRFS_ROOT_TRANS_TAG 0 static noinline void put_transaction(struct btrfs_transaction *transaction) { WARN_ON(transaction->use_count == 0); transaction->use_count--; if (transaction->use_count == 0) { list_del_init(&transaction->list); memset(transaction, 0, sizeof(*transaction)); kmem_cache_free(btrfs_transaction_cachep, transaction); } } /* * either allocate a new transaction or hop into the existing one */ static noinline int join_transaction(struct btrfs_root *root) { struct btrfs_transaction *cur_trans; cur_trans = root->fs_info->running_transaction; if (!cur_trans) { cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); BUG_ON(!cur_trans); root->fs_info->generation++; root->fs_info->last_alloc = 0; root->fs_info->last_data_alloc = 0; cur_trans->num_writers = 1; cur_trans->num_joined = 0; cur_trans->transid = root->fs_info->generation; init_waitqueue_head(&cur_trans->writer_wait); init_waitqueue_head(&cur_trans->commit_wait); cur_trans->in_commit = 0; cur_trans->blocked = 0; cur_trans->use_count = 1; cur_trans->commit_done = 0; cur_trans->start_time = get_seconds(); INIT_LIST_HEAD(&cur_trans->pending_snapshots); list_add_tail(&cur_trans->list, &root->fs_info->trans_list); extent_io_tree_init(&cur_trans->dirty_pages, root->fs_info->btree_inode->i_mapping, GFP_NOFS); spin_lock(&root->fs_info->new_trans_lock); root->fs_info->running_transaction = cur_trans; spin_unlock(&root->fs_info->new_trans_lock); } else { cur_trans->num_writers++; cur_trans->num_joined++; } return 0; } /* * this does all the record keeping required to make sure that a reference * counted root is properly recorded in a given transaction. This is required * to make sure the old root from before we joined the transaction is deleted * when the transaction commits */ noinline int btrfs_record_root_in_trans(struct btrfs_root *root) { struct btrfs_dirty_root *dirty; u64 running_trans_id = root->fs_info->running_transaction->transid; if (root->ref_cows && root->last_trans < running_trans_id) { WARN_ON(root == root->fs_info->extent_root); if (root->root_item.refs != 0) { radix_tree_tag_set(&root->fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, BTRFS_ROOT_TRANS_TAG); dirty = kmalloc(sizeof(*dirty), GFP_NOFS); BUG_ON(!dirty); dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS); BUG_ON(!dirty->root); dirty->latest_root = root; INIT_LIST_HEAD(&dirty->list); root->commit_root = btrfs_root_node(root); memcpy(dirty->root, root, sizeof(*root)); spin_lock_init(&dirty->root->node_lock); spin_lock_init(&dirty->root->list_lock); mutex_init(&dirty->root->objectid_mutex); mutex_init(&dirty->root->log_mutex); INIT_LIST_HEAD(&dirty->root->dead_list); dirty->root->node = root->commit_root; dirty->root->commit_root = NULL; spin_lock(&root->list_lock); list_add(&dirty->root->dead_list, &root->dead_list); spin_unlock(&root->list_lock); root->dirty_root = dirty; } else { WARN_ON(1); } root->last_trans = running_trans_id; } return 0; } /* wait for commit against the current transaction to become unblocked * when this is done, it is safe to start a new transaction, but the current * transaction might not be fully on disk. */ static void wait_current_trans(struct btrfs_root *root) { struct btrfs_transaction *cur_trans; cur_trans = root->fs_info->running_transaction; if (cur_trans && cur_trans->blocked) { DEFINE_WAIT(wait); cur_trans->use_count++; while (1) { prepare_to_wait(&root->fs_info->transaction_wait, &wait, TASK_UNINTERRUPTIBLE); if (cur_trans->blocked) { mutex_unlock(&root->fs_info->trans_mutex); schedule(); mutex_lock(&root->fs_info->trans_mutex); finish_wait(&root->fs_info->transaction_wait, &wait); } else { finish_wait(&root->fs_info->transaction_wait, &wait); break; } } put_transaction(cur_trans); } } static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, int num_blocks, int wait) { struct btrfs_trans_handle *h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); int ret; mutex_lock(&root->fs_info->trans_mutex); if (!root->fs_info->log_root_recovering && ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2)) wait_current_trans(root); ret = join_transaction(root); BUG_ON(ret); btrfs_record_root_in_trans(root); h->transid = root->fs_info->running_transaction->transid; h->transaction = root->fs_info->running_transaction; h->blocks_reserved = num_blocks; h->blocks_used = 0; h->block_group = 0; h->alloc_exclude_nr = 0; h->alloc_exclude_start = 0; root->fs_info->running_transaction->use_count++; mutex_unlock(&root->fs_info->trans_mutex); return h; } struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, int num_blocks) { return start_transaction(root, num_blocks, 1); } struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, int num_blocks) { return start_transaction(root, num_blocks, 0); } struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, int num_blocks) { return start_transaction(r, num_blocks, 2); } /* wait for a transaction commit to be fully complete */ static noinline int wait_for_commit(struct btrfs_root *root, struct btrfs_transaction *commit) { DEFINE_WAIT(wait); mutex_lock(&root->fs_info->trans_mutex); while (!commit->commit_done) { prepare_to_wait(&commit->commit_wait, &wait, TASK_UNINTERRUPTIBLE); if (commit->commit_done) break; mutex_unlock(&root->fs_info->trans_mutex); schedule(); mutex_lock(&root->fs_info->trans_mutex); } mutex_unlock(&root->fs_info->trans_mutex); finish_wait(&commit->commit_wait, &wait); return 0; } /* * rate limit against the drop_snapshot code. This helps to slow down new * operations if the drop_snapshot code isn't able to keep up. */ static void throttle_on_drops(struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; int harder_count = 0; harder: if (atomic_read(&info->throttles)) { DEFINE_WAIT(wait); int thr; thr = atomic_read(&info->throttle_gen); do { prepare_to_wait(&info->transaction_throttle, &wait, TASK_UNINTERRUPTIBLE); if (!atomic_read(&info->throttles)) { finish_wait(&info->transaction_throttle, &wait); break; } schedule(); finish_wait(&info->transaction_throttle, &wait); } while (thr == atomic_read(&info->throttle_gen)); harder_count++; if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && harder_count < 2) goto harder; if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && harder_count < 10) goto harder; if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && harder_count < 20) goto harder; } } void btrfs_throttle(struct btrfs_root *root) { mutex_lock(&root->fs_info->trans_mutex); if (!root->fs_info->open_ioctl_trans) wait_current_trans(root); mutex_unlock(&root->fs_info->trans_mutex); throttle_on_drops(root); } static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root, int throttle) { struct btrfs_transaction *cur_trans; struct btrfs_fs_info *info = root->fs_info; mutex_lock(&info->trans_mutex); cur_trans = info->running_transaction; WARN_ON(cur_trans != trans->transaction); WARN_ON(cur_trans->num_writers < 1); cur_trans->num_writers--; if (waitqueue_active(&cur_trans->writer_wait)) wake_up(&cur_trans->writer_wait); put_transaction(cur_trans); mutex_unlock(&info->trans_mutex); memset(trans, 0, sizeof(*trans)); kmem_cache_free(btrfs_trans_handle_cachep, trans); if (throttle) throttle_on_drops(root); return 0; } int btrfs_end_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return __btrfs_end_transaction(trans, root, 0); } int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return __btrfs_end_transaction(trans, root, 1); } /* * when btree blocks are allocated, they have some corresponding bits set for * them in one of two extent_io trees. This is used to make sure all of * those extents are on disk for transaction or log commit */ int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, struct extent_io_tree *dirty_pages) { int ret; int err = 0; int werr = 0; struct page *page; struct inode *btree_inode = root->fs_info->btree_inode; u64 start = 0; u64 end; unsigned long index; while (1) { ret = find_first_extent_bit(dirty_pages, start, &start, &end, EXTENT_DIRTY); if (ret) break; while (start <= end) { cond_resched(); index = start >> PAGE_CACHE_SHIFT; start = (u64)(index + 1) << PAGE_CACHE_SHIFT; page = find_get_page(btree_inode->i_mapping, index); if (!page) continue; btree_lock_page_hook(page); if (!page->mapping) { unlock_page(page); page_cache_release(page); continue; } if (PageWriteback(page)) { if (PageDirty(page)) wait_on_page_writeback(page); else { unlock_page(page); page_cache_release(page); continue; } } err = write_one_page(page, 0); if (err) werr = err; page_cache_release(page); } } while (1) { ret = find_first_extent_bit(dirty_pages, 0, &start, &end, EXTENT_DIRTY); if (ret) break; clear_extent_dirty(dirty_pages, start, end, GFP_NOFS); while (start <= end) { index = start >> PAGE_CACHE_SHIFT; start = (u64)(index + 1) << PAGE_CACHE_SHIFT; page = find_get_page(btree_inode->i_mapping, index); if (!page) continue; if (PageDirty(page)) { btree_lock_page_hook(page); wait_on_page_writeback(page); err = write_one_page(page, 0); if (err) werr = err; } wait_on_page_writeback(page); page_cache_release(page); cond_resched(); } } if (err) werr = err; return werr; } int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { if (!trans || !trans->transaction) { struct inode *btree_inode; btree_inode = root->fs_info->btree_inode; return filemap_write_and_wait(btree_inode->i_mapping); } return btrfs_write_and_wait_marked_extents(root, &trans->transaction->dirty_pages); } /* * this is used to update the root pointer in the tree of tree roots. * * But, in the case of the extent allocation tree, updating the root * pointer may allocate blocks which may change the root of the extent * allocation tree. * * So, this loops and repeats and makes sure the cowonly root didn't * change while the root pointer was being updated in the metadata. */ static int update_cowonly_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; u64 old_root_bytenr; struct btrfs_root *tree_root = root->fs_info->tree_root; btrfs_extent_post_op(trans, root); btrfs_write_dirty_block_groups(trans, root); btrfs_extent_post_op(trans, root); while (1) { old_root_bytenr = btrfs_root_bytenr(&root->root_item); if (old_root_bytenr == root->node->start) break; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_level(&root->root_item, btrfs_header_level(root->node)); btrfs_set_root_generation(&root->root_item, trans->transid); btrfs_extent_post_op(trans, root); ret = btrfs_update_root(trans, tree_root, &root->root_key, &root->root_item); BUG_ON(ret); btrfs_write_dirty_block_groups(trans, root); btrfs_extent_post_op(trans, root); } return 0; } /* * update all the cowonly tree roots on disk */ int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct list_head *next; struct extent_buffer *eb; btrfs_extent_post_op(trans, fs_info->tree_root); eb = btrfs_lock_root_node(fs_info->tree_root); btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0); btrfs_tree_unlock(eb); free_extent_buffer(eb); btrfs_extent_post_op(trans, fs_info->tree_root); while (!list_empty(&fs_info->dirty_cowonly_roots)) { next = fs_info->dirty_cowonly_roots.next; list_del_init(next); root = list_entry(next, struct btrfs_root, dirty_list); update_cowonly_root(trans, root); } return 0; } /* * dead roots are old snapshots that need to be deleted. This allocates * a dirty root struct and adds it into the list of dead roots that need to * be deleted */ int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest) { struct btrfs_dirty_root *dirty; dirty = kmalloc(sizeof(*dirty), GFP_NOFS); if (!dirty) return -ENOMEM; dirty->root = root; dirty->latest_root = latest; mutex_lock(&root->fs_info->trans_mutex); list_add(&dirty->list, &latest->fs_info->dead_roots); mutex_unlock(&root->fs_info->trans_mutex); return 0; } /* * at transaction commit time we need to schedule the old roots for * deletion via btrfs_drop_snapshot. This runs through all the * reference counted roots that were modified in the current * transaction and puts them into the drop list */ static noinline int add_dirty_roots(struct btrfs_trans_handle *trans, struct radix_tree_root *radix, struct list_head *list) { struct btrfs_dirty_root *dirty; struct btrfs_root *gang[8]; struct btrfs_root *root; int i; int ret; int err = 0; u32 refs; while (1) { ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0, ARRAY_SIZE(gang), BTRFS_ROOT_TRANS_TAG); if (ret == 0) break; for (i = 0; i < ret; i++) { root = gang[i]; radix_tree_tag_clear(radix, (unsigned long)root->root_key.objectid, BTRFS_ROOT_TRANS_TAG); BUG_ON(!root->ref_tree); dirty = root->dirty_root; btrfs_free_log(trans, root); btrfs_free_reloc_root(trans, root); if (root->commit_root == root->node) { WARN_ON(root->node->start != btrfs_root_bytenr(&root->root_item)); free_extent_buffer(root->commit_root); root->commit_root = NULL; root->dirty_root = NULL; spin_lock(&root->list_lock); list_del_init(&dirty->root->dead_list); spin_unlock(&root->list_lock); kfree(dirty->root); kfree(dirty); /* make sure to update the root on disk * so we get any updates to the block used * counts */ err = btrfs_update_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); continue; } memset(&root->root_item.drop_progress, 0, sizeof(struct btrfs_disk_key)); root->root_item.drop_level = 0; root->commit_root = NULL; root->dirty_root = NULL; root->root_key.offset = root->fs_info->generation; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_level(&root->root_item, btrfs_header_level(root->node)); btrfs_set_root_generation(&root->root_item, root->root_key.offset); err = btrfs_insert_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); if (err) break; refs = btrfs_root_refs(&dirty->root->root_item); btrfs_set_root_refs(&dirty->root->root_item, refs - 1); err = btrfs_update_root(trans, root->fs_info->tree_root, &dirty->root->root_key, &dirty->root->root_item); BUG_ON(err); if (refs == 1) { list_add(&dirty->list, list); } else { WARN_ON(1); free_extent_buffer(dirty->root->node); kfree(dirty->root); kfree(dirty); } } } return err; } /* * defrag a given btree. If cacheonly == 1, this won't read from the disk, * otherwise every leaf in the btree is read and defragged. */ int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) { struct btrfs_fs_info *info = root->fs_info; int ret; struct btrfs_trans_handle *trans; unsigned long nr; smp_mb(); if (root->defrag_running) return 0; trans = btrfs_start_transaction(root, 1); while (1) { root->defrag_running = 1; ret = btrfs_defrag_leaves(trans, root, cacheonly); nr = trans->blocks_used; btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(info->tree_root, nr); cond_resched(); trans = btrfs_start_transaction(root, 1); if (root->fs_info->closing || ret != -EAGAIN) break; } root->defrag_running = 0; smp_mb(); btrfs_end_transaction(trans, root); return 0; } /* * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on * all of them */ static noinline int drop_dirty_roots(struct btrfs_root *tree_root, struct list_head *list) { struct btrfs_dirty_root *dirty; struct btrfs_trans_handle *trans; unsigned long nr; u64 num_bytes; u64 bytes_used; u64 max_useless; int ret = 0; int err; while (!list_empty(list)) { struct btrfs_root *root; dirty = list_entry(list->prev, struct btrfs_dirty_root, list); list_del_init(&dirty->list); num_bytes = btrfs_root_used(&dirty->root->root_item); root = dirty->latest_root; atomic_inc(&root->fs_info->throttles); while (1) { trans = btrfs_start_transaction(tree_root, 1); mutex_lock(&root->fs_info->drop_mutex); ret = btrfs_drop_snapshot(trans, dirty->root); if (ret != -EAGAIN) break; mutex_unlock(&root->fs_info->drop_mutex); err = btrfs_update_root(trans, tree_root, &dirty->root->root_key, &dirty->root->root_item); if (err) ret = err; nr = trans->blocks_used; ret = btrfs_end_transaction(trans, tree_root); BUG_ON(ret); btrfs_btree_balance_dirty(tree_root, nr); cond_resched(); } BUG_ON(ret); atomic_dec(&root->fs_info->throttles); wake_up(&root->fs_info->transaction_throttle); num_bytes -= btrfs_root_used(&dirty->root->root_item); bytes_used = btrfs_root_used(&root->root_item); if (num_bytes) { btrfs_record_root_in_trans(root); btrfs_set_root_used(&root->root_item, bytes_used - num_bytes); } ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key); if (ret) { BUG(); break; } mutex_unlock(&root->fs_info->drop_mutex); spin_lock(&root->list_lock); list_del_init(&dirty->root->dead_list); if (!list_empty(&root->dead_list)) { struct btrfs_root *oldest; oldest = list_entry(root->dead_list.prev, struct btrfs_root, dead_list); max_useless = oldest->root_key.offset - 1; } else { max_useless = root->root_key.offset - 1; } spin_unlock(&root->list_lock); nr = trans->blocks_used; ret = btrfs_end_transaction(trans, tree_root); BUG_ON(ret); ret = btrfs_remove_leaf_refs(root, max_useless, 0); BUG_ON(ret); free_extent_buffer(dirty->root->node); kfree(dirty->root); kfree(dirty); btrfs_btree_balance_dirty(tree_root, nr); cond_resched(); } return ret; } /* * new snapshots need to be created at a very specific time in the * transaction commit. This does the actual creation */ static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_pending_snapshot *pending) { struct btrfs_key key; struct btrfs_root_item *new_root_item; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root = pending->root; struct extent_buffer *tmp; struct extent_buffer *old; int ret; u64 objectid; new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); if (!new_root_item) { ret = -ENOMEM; goto fail; } ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); if (ret) goto fail; btrfs_record_root_in_trans(root); btrfs_set_root_last_snapshot(&root->root_item, trans->transid); memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); key.objectid = objectid; key.offset = trans->transid; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); old = btrfs_lock_root_node(root); btrfs_cow_block(trans, root, old, NULL, 0, &old, 0); btrfs_copy_root(trans, root, old, &tmp, objectid); btrfs_tree_unlock(old); free_extent_buffer(old); btrfs_set_root_bytenr(new_root_item, tmp->start); btrfs_set_root_level(new_root_item, btrfs_header_level(tmp)); btrfs_set_root_generation(new_root_item, trans->transid); ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, new_root_item); btrfs_tree_unlock(tmp); free_extent_buffer(tmp); if (ret) goto fail; key.offset = (u64)-1; memcpy(&pending->root_key, &key, sizeof(key)); fail: kfree(new_root_item); return ret; } static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info, struct btrfs_pending_snapshot *pending) { int ret; int namelen; u64 index = 0; struct btrfs_trans_handle *trans; struct inode *parent_inode; struct inode *inode; struct btrfs_root *parent_root; parent_inode = pending->dentry->d_parent->d_inode; parent_root = BTRFS_I(parent_inode)->root; trans = btrfs_join_transaction(parent_root, 1); /* * insert the directory item */ namelen = strlen(pending->name); ret = btrfs_set_inode_index(parent_inode, &index); ret = btrfs_insert_dir_item(trans, parent_root, pending->name, namelen, parent_inode->i_ino, &pending->root_key, BTRFS_FT_DIR, index); if (ret) goto fail; btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2); ret = btrfs_update_inode(trans, parent_root, parent_inode); BUG_ON(ret); /* add the backref first */ ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, pending->root_key.objectid, BTRFS_ROOT_BACKREF_KEY, parent_root->root_key.objectid, parent_inode->i_ino, index, pending->name, namelen); BUG_ON(ret); /* now add the forward ref */ ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, parent_root->root_key.objectid, BTRFS_ROOT_REF_KEY, pending->root_key.objectid, parent_inode->i_ino, index, pending->name, namelen); inode = btrfs_lookup_dentry(parent_inode, pending->dentry); d_instantiate(pending->dentry, inode); fail: btrfs_end_transaction(trans, fs_info->fs_root); return ret; } /* * create all the snapshots we've scheduled for creation */ static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_pending_snapshot *pending; struct list_head *head = &trans->transaction->pending_snapshots; struct list_head *cur; int ret; list_for_each(cur, head) { pending = list_entry(cur, struct btrfs_pending_snapshot, list); ret = create_pending_snapshot(trans, fs_info, pending); BUG_ON(ret); } return 0; } static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_pending_snapshot *pending; struct list_head *head = &trans->transaction->pending_snapshots; int ret; while (!list_empty(head)) { pending = list_entry(head->next, struct btrfs_pending_snapshot, list); ret = finish_pending_snapshot(fs_info, pending); BUG_ON(ret); list_del(&pending->list); kfree(pending->name); kfree(pending); } return 0; } int btrfs_commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { unsigned long joined = 0; unsigned long timeout = 1; struct btrfs_transaction *cur_trans; struct btrfs_transaction *prev_trans = NULL; struct btrfs_root *chunk_root = root->fs_info->chunk_root; struct list_head dirty_fs_roots; struct extent_io_tree *pinned_copy; DEFINE_WAIT(wait); int ret; INIT_LIST_HEAD(&dirty_fs_roots); mutex_lock(&root->fs_info->trans_mutex); if (trans->transaction->in_commit) { cur_trans = trans->transaction; trans->transaction->use_count++; mutex_unlock(&root->fs_info->trans_mutex); btrfs_end_transaction(trans, root); ret = wait_for_commit(root, cur_trans); BUG_ON(ret); mutex_lock(&root->fs_info->trans_mutex); put_transaction(cur_trans); mutex_unlock(&root->fs_info->trans_mutex); return 0; } pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS); if (!pinned_copy) return -ENOMEM; extent_io_tree_init(pinned_copy, root->fs_info->btree_inode->i_mapping, GFP_NOFS); trans->transaction->in_commit = 1; trans->transaction->blocked = 1; cur_trans = trans->transaction; if (cur_trans->list.prev != &root->fs_info->trans_list) { prev_trans = list_entry(cur_trans->list.prev, struct btrfs_transaction, list); if (!prev_trans->commit_done) { prev_trans->use_count++; mutex_unlock(&root->fs_info->trans_mutex); wait_for_commit(root, prev_trans); mutex_lock(&root->fs_info->trans_mutex); put_transaction(prev_trans); } } do { int snap_pending = 0; joined = cur_trans->num_joined; if (!list_empty(&trans->transaction->pending_snapshots)) snap_pending = 1; WARN_ON(cur_trans != trans->transaction); prepare_to_wait(&cur_trans->writer_wait, &wait, TASK_UNINTERRUPTIBLE); if (cur_trans->num_writers > 1) timeout = MAX_SCHEDULE_TIMEOUT; else timeout = 1; mutex_unlock(&root->fs_info->trans_mutex); if (snap_pending) { ret = btrfs_wait_ordered_extents(root, 1); BUG_ON(ret); } schedule_timeout(timeout); mutex_lock(&root->fs_info->trans_mutex); finish_wait(&cur_trans->writer_wait, &wait); } while (cur_trans->num_writers > 1 || (cur_trans->num_joined != joined)); ret = create_pending_snapshots(trans, root->fs_info); BUG_ON(ret); WARN_ON(cur_trans != trans->transaction); /* btrfs_commit_tree_roots is responsible for getting the * various roots consistent with each other. Every pointer * in the tree of tree roots has to point to the most up to date * root for every subvolume and other tree. So, we have to keep * the tree logging code from jumping in and changing any * of the trees. * * At this point in the commit, there can't be any tree-log * writers, but a little lower down we drop the trans mutex * and let new people in. By holding the tree_log_mutex * from now until after the super is written, we avoid races * with the tree-log code. */ mutex_lock(&root->fs_info->tree_log_mutex); /* * keep tree reloc code from adding new reloc trees */ mutex_lock(&root->fs_info->tree_reloc_mutex); ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix, &dirty_fs_roots); BUG_ON(ret); /* add_dirty_roots gets rid of all the tree log roots, it is now * safe to free the root of tree log roots */ btrfs_free_log_root_tree(trans, root->fs_info); ret = btrfs_commit_tree_roots(trans, root); BUG_ON(ret); cur_trans = root->fs_info->running_transaction; spin_lock(&root->fs_info->new_trans_lock); root->fs_info->running_transaction = NULL; spin_unlock(&root->fs_info->new_trans_lock); btrfs_set_super_generation(&root->fs_info->super_copy, cur_trans->transid); btrfs_set_super_root(&root->fs_info->super_copy, root->fs_info->tree_root->node->start); btrfs_set_super_root_level(&root->fs_info->super_copy, btrfs_header_level(root->fs_info->tree_root->node)); btrfs_set_super_chunk_root(&root->fs_info->super_copy, chunk_root->node->start); btrfs_set_super_chunk_root_level(&root->fs_info->super_copy, btrfs_header_level(chunk_root->node)); btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy, btrfs_header_generation(chunk_root->node)); if (!root->fs_info->log_root_recovering) { btrfs_set_super_log_root(&root->fs_info->super_copy, 0); btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); } memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, sizeof(root->fs_info->super_copy)); btrfs_copy_pinned(root, pinned_copy); trans->transaction->blocked = 0; wake_up(&root->fs_info->transaction_throttle); wake_up(&root->fs_info->transaction_wait); mutex_unlock(&root->fs_info->trans_mutex); ret = btrfs_write_and_wait_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root, 0); /* * the super is written, we can safely allow the tree-loggers * to go about their business */ mutex_unlock(&root->fs_info->tree_log_mutex); btrfs_finish_extent_commit(trans, root, pinned_copy); kfree(pinned_copy); btrfs_drop_dead_reloc_roots(root); mutex_unlock(&root->fs_info->tree_reloc_mutex); /* do the directory inserts of any pending snapshot creations */ finish_pending_snapshots(trans, root->fs_info); mutex_lock(&root->fs_info->trans_mutex); cur_trans->commit_done = 1; root->fs_info->last_trans_committed = cur_trans->transid; wake_up(&cur_trans->commit_wait); put_transaction(cur_trans); put_transaction(cur_trans); list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots); if (root->fs_info->closing) list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots); mutex_unlock(&root->fs_info->trans_mutex); kmem_cache_free(btrfs_trans_handle_cachep, trans); if (root->fs_info->closing) drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots); return ret; } /* * interface function to delete all the snapshots we have scheduled for deletion */ int btrfs_clean_old_snapshots(struct btrfs_root *root) { struct list_head dirty_roots; INIT_LIST_HEAD(&dirty_roots); again: mutex_lock(&root->fs_info->trans_mutex); list_splice_init(&root->fs_info->dead_roots, &dirty_roots); mutex_unlock(&root->fs_info->trans_mutex); if (!list_empty(&dirty_roots)) { drop_dirty_roots(root, &dirty_roots); goto again; } return 0; }