// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update_interior.h" #include "buckets.h" #include "checksum.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "io.h" #include "journal.h" #include "journal_io.h" #include "journal_sb.h" #include "journal_seq_blacklist.h" #include "replicas.h" #include "quota.h" #include "super-io.h" #include "super.h" #include "trace.h" #include "vstructs.h" #include "counters.h" #include #include static const struct blk_holder_ops bch2_sb_handle_bdev_ops = { }; const char * const bch2_sb_fields[] = { #define x(name, nr) #name, BCH_SB_FIELDS() #undef x NULL }; static int bch2_sb_field_validate(struct bch_sb *, struct bch_sb_field *, struct printbuf *); struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb, enum bch_sb_field_type type) { struct bch_sb_field *f; /* XXX: need locking around superblock to access optional fields */ vstruct_for_each(sb, f) if (le32_to_cpu(f->type) == type) return f; return NULL; } static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb, struct bch_sb_field *f, unsigned u64s) { unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s; BUG_ON(__vstruct_bytes(struct bch_sb, sb_u64s) > sb->buffer_size); if (!f && !u64s) { /* nothing to do: */ } else if (!f) { f = vstruct_last(sb->sb); memset(f, 0, sizeof(u64) * u64s); f->u64s = cpu_to_le32(u64s); f->type = 0; } else { void *src, *dst; src = vstruct_end(f); if (u64s) { f->u64s = cpu_to_le32(u64s); dst = vstruct_end(f); } else { dst = f; } memmove(dst, src, vstruct_end(sb->sb) - src); if (dst > src) memset(src, 0, dst - src); } sb->sb->u64s = cpu_to_le32(sb_u64s); return u64s ? f : NULL; } void bch2_sb_field_delete(struct bch_sb_handle *sb, enum bch_sb_field_type type) { struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); if (f) __bch2_sb_field_resize(sb, f, 0); } /* Superblock realloc/free: */ void bch2_free_super(struct bch_sb_handle *sb) { if (sb->bio) kfree(sb->bio); if (!IS_ERR_OR_NULL(sb->bdev)) blkdev_put(sb->bdev, sb->holder); kfree(sb->holder); kfree(sb->sb); memset(sb, 0, sizeof(*sb)); } int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) { size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s); size_t new_buffer_size; struct bch_sb *new_sb; struct bio *bio; if (sb->bdev) new_bytes = max_t(size_t, new_bytes, bdev_logical_block_size(sb->bdev)); new_buffer_size = roundup_pow_of_two(new_bytes); if (sb->sb && sb->buffer_size >= new_buffer_size) return 0; if (sb->have_layout) { u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; if (new_bytes > max_bytes) { pr_err("%pg: superblock too big: want %zu but have %llu", sb->bdev, new_bytes, max_bytes); return -BCH_ERR_ENOSPC_sb; } } if (sb->buffer_size >= new_buffer_size && sb->sb) return 0; if (dynamic_fault("bcachefs:add:super_realloc")) return -ENOMEM; if (sb->have_bio) { unsigned nr_bvecs = DIV_ROUND_UP(new_buffer_size, PAGE_SIZE); bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); if (!bio) return -ENOMEM; bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0); if (sb->bio) kfree(sb->bio); sb->bio = bio; } new_sb = krealloc(sb->sb, new_buffer_size, GFP_NOFS|__GFP_ZERO); if (!new_sb) return -ENOMEM; sb->sb = new_sb; sb->buffer_size = new_buffer_size; return 0; } struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type); ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ssize_t d = -old_u64s + u64s; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) return NULL; if (sb->fs_sb) { struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb); struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); /* XXX: we're not checking that offline device have enough space */ for_each_online_member(ca, c, i) { struct bch_sb_handle *sb = &ca->disk_sb; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) { percpu_ref_put(&ca->ref); return NULL; } } } f = bch2_sb_field_get(sb->sb, type); f = __bch2_sb_field_resize(sb, f, u64s); if (f) f->type = cpu_to_le32(type); return f; } /* Superblock validate: */ static inline void __bch2_sb_layout_size_assert(void) { BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); } static int validate_sb_layout(struct bch_sb_layout *layout, struct printbuf *out) { u64 offset, prev_offset, max_sectors; unsigned i; if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) && !uuid_equal(&layout->magic, &BCHFS_MAGIC)) { prt_printf(out, "Not a bcachefs superblock layout"); return -EINVAL; } if (layout->layout_type != 0) { prt_printf(out, "Invalid superblock layout type %u", layout->layout_type); return -EINVAL; } if (!layout->nr_superblocks) { prt_printf(out, "Invalid superblock layout: no superblocks"); return -EINVAL; } if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) { prt_printf(out, "Invalid superblock layout: too many superblocks"); return -EINVAL; } max_sectors = 1 << layout->sb_max_size_bits; prev_offset = le64_to_cpu(layout->sb_offset[0]); for (i = 1; i < layout->nr_superblocks; i++) { offset = le64_to_cpu(layout->sb_offset[i]); if (offset < prev_offset + max_sectors) { prt_printf(out, "Invalid superblock layout: superblocks overlap\n" " (sb %u ends at %llu next starts at %llu", i - 1, prev_offset + max_sectors, offset); return -EINVAL; } prev_offset = offset; } return 0; } static int bch2_sb_validate(struct bch_sb_handle *disk_sb, struct printbuf *out, int rw) { struct bch_sb *sb = disk_sb->sb; struct bch_sb_field *f; struct bch_sb_field_members *mi; enum bch_opt_id opt_id; u32 version, version_min; u16 block_size; int ret; version = le16_to_cpu(sb->version); version_min = version >= bcachefs_metadata_version_bkey_renumber ? le16_to_cpu(sb->version_min) : version; if (version >= bcachefs_metadata_version_max) { prt_printf(out, "Unsupported superblock version %u (min %u, max %u)", version, bcachefs_metadata_version_min, bcachefs_metadata_version_max); return -EINVAL; } if (version_min < bcachefs_metadata_version_min) { prt_printf(out, "Unsupported superblock version %u (min %u, max %u)", version_min, bcachefs_metadata_version_min, bcachefs_metadata_version_max); return -EINVAL; } if (version_min > version) { prt_printf(out, "Bad minimum version %u, greater than version field %u", version_min, version); return -EINVAL; } if (sb->features[1] || (le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR))) { prt_printf(out, "Filesystem has incompatible features"); return -EINVAL; } block_size = le16_to_cpu(sb->block_size); if (block_size > PAGE_SECTORS) { prt_printf(out, "Block size too big (got %u, max %u)", block_size, PAGE_SECTORS); return -EINVAL; } if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid))) { prt_printf(out, "Bad user UUID (got zeroes)"); return -EINVAL; } if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid))) { prt_printf(out, "Bad intenal UUID (got zeroes)"); return -EINVAL; } if (!sb->nr_devices || sb->nr_devices > BCH_SB_MEMBERS_MAX) { prt_printf(out, "Bad number of member devices %u (max %u)", sb->nr_devices, BCH_SB_MEMBERS_MAX); return -EINVAL; } if (sb->dev_idx >= sb->nr_devices) { prt_printf(out, "Bad dev_idx (got %u, nr_devices %u)", sb->dev_idx, sb->nr_devices); return -EINVAL; } if (!sb->time_precision || le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) { prt_printf(out, "Invalid time precision: %u (min 1, max %lu)", le32_to_cpu(sb->time_precision), NSEC_PER_SEC); return -EINVAL; } if (rw == READ) { /* * Been seeing a bug where these are getting inexplicably * zeroed, so we'r now validating them, but we have to be * careful not to preven people's filesystems from mounting: */ if (!BCH_SB_JOURNAL_FLUSH_DELAY(sb)) SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); if (!BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 1000); } for (opt_id = 0; opt_id < bch2_opts_nr; opt_id++) { const struct bch_option *opt = bch2_opt_table + opt_id; if (opt->get_sb != BCH2_NO_SB_OPT) { u64 v = bch2_opt_from_sb(sb, opt_id); prt_printf(out, "Invalid option "); ret = bch2_opt_validate(opt, v, out); if (ret) return ret; printbuf_reset(out); } } /* validate layout */ ret = validate_sb_layout(&sb->layout, out); if (ret) return ret; vstruct_for_each(sb, f) { if (!f->u64s) { prt_printf(out, "Invalid superblock: optional with size 0 (type %u)", le32_to_cpu(f->type)); return -EINVAL; } if (vstruct_next(f) > vstruct_last(sb)) { prt_printf(out, "Invalid superblock: optional field extends past end of superblock (type %u)", le32_to_cpu(f->type)); return -EINVAL; } } /* members must be validated first: */ mi = bch2_sb_get_members(sb); if (!mi) { prt_printf(out, "Invalid superblock: member info area missing"); return -EINVAL; } ret = bch2_sb_field_validate(sb, &mi->field, out); if (ret) return ret; vstruct_for_each(sb, f) { if (le32_to_cpu(f->type) == BCH_SB_FIELD_members) continue; ret = bch2_sb_field_validate(sb, f, out); if (ret) return ret; } return 0; } /* device open: */ static void bch2_sb_update(struct bch_fs *c) { struct bch_sb *src = c->disk_sb.sb; struct bch_sb_field_members *mi = bch2_sb_get_members(src); struct bch_dev *ca; unsigned i; lockdep_assert_held(&c->sb_lock); c->sb.uuid = src->uuid; c->sb.user_uuid = src->user_uuid; c->sb.version = le16_to_cpu(src->version); c->sb.version_min = le16_to_cpu(src->version_min); c->sb.nr_devices = src->nr_devices; c->sb.clean = BCH_SB_CLEAN(src); c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); c->sb.nsec_per_time_unit = le32_to_cpu(src->time_precision); c->sb.time_units_per_sec = NSEC_PER_SEC / c->sb.nsec_per_time_unit; /* XXX this is wrong, we need a 96 or 128 bit integer type */ c->sb.time_base_lo = div_u64(le64_to_cpu(src->time_base_lo), c->sb.nsec_per_time_unit); c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); c->sb.features = le64_to_cpu(src->features[0]); c->sb.compat = le64_to_cpu(src->compat[0]); for_each_member_device(ca, c, i) ca->mi = bch2_mi_to_cpu(mi->members + i); } static void __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src) { struct bch_sb_field *src_f, *dst_f; struct bch_sb *dst = dst_handle->sb; unsigned i; dst->version = src->version; dst->version_min = src->version_min; dst->seq = src->seq; dst->uuid = src->uuid; dst->user_uuid = src->user_uuid; memcpy(dst->label, src->label, sizeof(dst->label)); dst->block_size = src->block_size; dst->nr_devices = src->nr_devices; dst->time_base_lo = src->time_base_lo; dst->time_base_hi = src->time_base_hi; dst->time_precision = src->time_precision; memcpy(dst->flags, src->flags, sizeof(dst->flags)); memcpy(dst->features, src->features, sizeof(dst->features)); memcpy(dst->compat, src->compat, sizeof(dst->compat)); for (i = 0; i < BCH_SB_FIELD_NR; i++) { if ((1U << i) & BCH_SINGLE_DEVICE_SB_FIELDS) continue; src_f = bch2_sb_field_get(src, i); dst_f = bch2_sb_field_get(dst, i); dst_f = __bch2_sb_field_resize(dst_handle, dst_f, src_f ? le32_to_cpu(src_f->u64s) : 0); if (src_f) memcpy(dst_f, src_f, vstruct_bytes(src_f)); } } int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) { struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(src); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; int ret; lockdep_assert_held(&c->sb_lock); ret = bch2_sb_realloc(&c->disk_sb, le32_to_cpu(src->u64s) - journal_u64s); if (ret) return ret; __copy_super(&c->disk_sb, src); ret = bch2_sb_replicas_to_cpu_replicas(c); if (ret) return ret; ret = bch2_sb_disk_groups_to_cpu(c); if (ret) return ret; bch2_sb_update(c); return 0; } int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) { struct bch_sb *src = c->disk_sb.sb, *dst = ca->disk_sb.sb; struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(dst); unsigned journal_u64s = journal_buckets ? le32_to_cpu(journal_buckets->field.u64s) : 0; unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s; int ret; ret = bch2_sb_realloc(&ca->disk_sb, u64s); if (ret) return ret; __copy_super(&ca->disk_sb, src); return 0; } /* read superblock: */ static int read_one_super(struct bch_sb_handle *sb, u64 offset, struct printbuf *err) { struct bch_csum csum; u32 version, version_min; size_t bytes; int ret; reread: bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = offset; bch2_bio_map(sb->bio, sb->sb, sb->buffer_size); ret = submit_bio_wait(sb->bio); if (ret) { prt_printf(err, "IO error: %i", ret); return ret; } if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) && !uuid_equal(&sb->sb->magic, &BCHFS_MAGIC)) { prt_printf(err, "Not a bcachefs superblock"); return -EINVAL; } version = le16_to_cpu(sb->sb->version); version_min = version >= bcachefs_metadata_version_bkey_renumber ? le16_to_cpu(sb->sb->version_min) : version; if (version >= bcachefs_metadata_version_max) { prt_printf(err, "Unsupported superblock version %u (min %u, max %u)", version, bcachefs_metadata_version_min, bcachefs_metadata_version_max); return -EINVAL; } if (version_min < bcachefs_metadata_version_min) { prt_printf(err, "Unsupported superblock version %u (min %u, max %u)", version_min, bcachefs_metadata_version_min, bcachefs_metadata_version_max); return -EINVAL; } bytes = vstruct_bytes(sb->sb); if (bytes > 512 << sb->sb->layout.sb_max_size_bits) { prt_printf(err, "Invalid superblock: too big (got %zu bytes, layout max %lu)", bytes, 512UL << sb->sb->layout.sb_max_size_bits); return -EINVAL; } if (bytes > sb->buffer_size) { if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s))) return -ENOMEM; goto reread; } if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) { prt_printf(err, "unknown checksum type %llu", BCH_SB_CSUM_TYPE(sb->sb)); return -EINVAL; } /* XXX: verify MACs */ csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb), null_nonce(), sb->sb); if (bch2_crc_cmp(csum, sb->sb->csum)) { prt_printf(err, "bad checksum"); return -EINVAL; } sb->seq = le64_to_cpu(sb->sb->seq); return 0; } int bch2_read_super(const char *path, struct bch_opts *opts, struct bch_sb_handle *sb) { u64 offset = opt_get(*opts, sb); struct bch_sb_layout layout; struct printbuf err = PRINTBUF; __le64 *i; int ret; pr_verbose_init(*opts, ""); memset(sb, 0, sizeof(*sb)); sb->mode = BLK_OPEN_READ; sb->have_bio = true; sb->holder = kmalloc(1, GFP_KERNEL); if (!sb->holder) return -ENOMEM; if (!opt_get(*opts, noexcl)) sb->mode |= BLK_OPEN_EXCL; if (!opt_get(*opts, nochanges)) sb->mode |= BLK_OPEN_WRITE; sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (IS_ERR(sb->bdev) && PTR_ERR(sb->bdev) == -EACCES && opt_get(*opts, read_only)) { sb->mode &= ~BLK_OPEN_WRITE; sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (!IS_ERR(sb->bdev)) opt_set(*opts, nochanges, true); } if (IS_ERR(sb->bdev)) { ret = PTR_ERR(sb->bdev); goto out; } ret = bch2_sb_realloc(sb, 0); if (ret) { prt_printf(&err, "error allocating memory for superblock"); goto err; } if (bch2_fs_init_fault("read_super")) { prt_printf(&err, "dynamic fault"); ret = -EFAULT; goto err; } ret = read_one_super(sb, offset, &err); if (!ret) goto got_super; if (opt_defined(*opts, sb)) goto err; printk(KERN_ERR "bcachefs (%s): error reading default superblock: %s", path, err.buf); printbuf_reset(&err); /* * Error reading primary superblock - read location of backup * superblocks: */ bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; /* * use sb buffer to read layout, since sb buffer is page aligned but * layout won't be: */ bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout)); ret = submit_bio_wait(sb->bio); if (ret) { prt_printf(&err, "IO error: %i", ret); goto err; } memcpy(&layout, sb->sb, sizeof(layout)); ret = validate_sb_layout(&layout, &err); if (ret) goto err; for (i = layout.sb_offset; i < layout.sb_offset + layout.nr_superblocks; i++) { offset = le64_to_cpu(*i); if (offset == opt_get(*opts, sb)) continue; ret = read_one_super(sb, offset, &err); if (!ret) goto got_super; } goto err; got_super: if (le16_to_cpu(sb->sb->block_size) << 9 < bdev_logical_block_size(sb->bdev)) { prt_printf(&err, "block size (%u) smaller than device block size (%u)", le16_to_cpu(sb->sb->block_size) << 9, bdev_logical_block_size(sb->bdev)); ret = -EINVAL; goto err; } ret = 0; sb->have_layout = true; ret = bch2_sb_validate(sb, &err, READ); if (ret) { printk(KERN_ERR "bcachefs (%s): error validating superblock: %s", path, err.buf); goto err_no_print; } out: pr_verbose_init(*opts, "ret %i", ret); printbuf_exit(&err); return ret; err: printk(KERN_ERR "bcachefs (%s): error reading superblock: %s", path, err.buf); err_no_print: bch2_free_super(sb); goto out; } /* write superblock: */ static void write_super_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; /* XXX: return errors directly */ if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write error: %s", bch2_blk_status_to_str(bio->bi_status))) ca->sb_write_error = 1; closure_put(&ca->fs->sb_write); percpu_ref_put(&ca->io_ref); } static void read_back_super(struct bch_fs *c, struct bch_dev *ca) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ|REQ_SYNC|REQ_META); bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE); this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; sb->offset = sb->layout.sb_offset[idx]; SET_BCH_SB_CSUM_TYPE(sb, bch2_csum_opt_to_type(c->opts.metadata_checksum, false)); sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), null_nonce(), sb); bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META); bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bch2_bio_map(bio, sb, roundup((size_t) vstruct_bytes(sb), bdev_logical_block_size(ca->disk_sb.bdev))); this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } int bch2_write_super(struct bch_fs *c) { struct closure *cl = &c->sb_write; struct bch_dev *ca; struct printbuf err = PRINTBUF; unsigned i, sb = 0, nr_wrote; struct bch_devs_mask sb_written; bool wrote, can_mount_without_written, can_mount_with_written; unsigned degraded_flags = BCH_FORCE_IF_DEGRADED; int ret = 0; trace_and_count(c, write_super, c, _RET_IP_); if (c->opts.very_degraded) degraded_flags |= BCH_FORCE_IF_LOST; lockdep_assert_held(&c->sb_lock); closure_init_stack(cl); memset(&sb_written, 0, sizeof(sb_written)); le64_add_cpu(&c->disk_sb.sb->seq, 1); if (test_bit(BCH_FS_ERROR, &c->flags)) SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1); if (test_bit(BCH_FS_TOPOLOGY_ERROR, &c->flags)) SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 1); SET_BCH_SB_BIG_ENDIAN(c->disk_sb.sb, CPU_BIG_ENDIAN); bch2_sb_counters_from_cpu(c); for_each_online_member(ca, c, i) bch2_sb_from_fs(c, ca); for_each_online_member(ca, c, i) { printbuf_reset(&err); ret = bch2_sb_validate(&ca->disk_sb, &err, WRITE); if (ret) { bch2_fs_inconsistent(c, "sb invalid before write: %s", err.buf); percpu_ref_put(&ca->io_ref); goto out; } } if (c->opts.nochanges) goto out; /* * Defer writing the superblock until filesystem initialization is * complete - don't write out a partly initialized superblock: */ if (!BCH_SB_INITIALIZED(c->disk_sb.sb)) goto out; for_each_online_member(ca, c, i) { __set_bit(ca->dev_idx, sb_written.d); ca->sb_write_error = 0; } for_each_online_member(ca, c, i) read_back_super(c, ca); closure_sync(cl); for_each_online_member(ca, c, i) { if (ca->sb_write_error) continue; if (le64_to_cpu(ca->sb_read_scratch->seq) < ca->disk_sb.seq) { bch2_fs_fatal_error(c, "Superblock write was silently dropped! (seq %llu expected %llu)", le64_to_cpu(ca->sb_read_scratch->seq), ca->disk_sb.seq); percpu_ref_put(&ca->io_ref); ret = -EROFS; goto out; } if (le64_to_cpu(ca->sb_read_scratch->seq) > ca->disk_sb.seq) { bch2_fs_fatal_error(c, "Superblock modified by another process (seq %llu expected %llu)", le64_to_cpu(ca->sb_read_scratch->seq), ca->disk_sb.seq); percpu_ref_put(&ca->io_ref); ret = -EROFS; goto out; } } do { wrote = false; for_each_online_member(ca, c, i) if (!ca->sb_write_error && sb < ca->disk_sb.sb->layout.nr_superblocks) { write_one_super(c, ca, sb); wrote = true; } closure_sync(cl); sb++; } while (wrote); for_each_online_member(ca, c, i) { if (ca->sb_write_error) __clear_bit(ca->dev_idx, sb_written.d); else ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq); } nr_wrote = dev_mask_nr(&sb_written); can_mount_with_written = bch2_have_enough_devs(c, sb_written, degraded_flags, false); for (i = 0; i < ARRAY_SIZE(sb_written.d); i++) sb_written.d[i] = ~sb_written.d[i]; can_mount_without_written = bch2_have_enough_devs(c, sb_written, degraded_flags, false); /* * If we would be able to mount _without_ the devices we successfully * wrote superblocks to, we weren't able to write to enough devices: * * Exception: if we can mount without the successes because we haven't * written anything (new filesystem), we continue if we'd be able to * mount with the devices we did successfully write to: */ if (bch2_fs_fatal_err_on(!nr_wrote || !can_mount_with_written || (can_mount_without_written && !can_mount_with_written), c, "Unable to write superblock to sufficient devices (from %ps)", (void *) _RET_IP_)) ret = -1; out: /* Make new options visible after they're persistent: */ bch2_sb_update(c); printbuf_exit(&err); return ret; } void __bch2_check_set_feature(struct bch_fs *c, unsigned feat) { mutex_lock(&c->sb_lock); if (!(c->sb.features & (1ULL << feat))) { c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat); bch2_write_super(c); } mutex_unlock(&c->sb_lock); } /* BCH_SB_FIELD_members: */ static int bch2_sb_members_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { struct bch_sb_field_members *mi = field_to_type(f, members); unsigned i; if ((void *) (mi->members + sb->nr_devices) > vstruct_end(&mi->field)) { prt_printf(err, "too many devices for section size"); return -EINVAL; } for (i = 0; i < sb->nr_devices; i++) { struct bch_member *m = mi->members + i; if (!bch2_member_exists(m)) continue; if (le64_to_cpu(m->nbuckets) > LONG_MAX) { prt_printf(err, "device %u: too many buckets (got %llu, max %lu)", i, le64_to_cpu(m->nbuckets), LONG_MAX); return -EINVAL; } if (le64_to_cpu(m->nbuckets) - le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS) { prt_printf(err, "device %u: not enough buckets (got %llu, max %u)", i, le64_to_cpu(m->nbuckets), BCH_MIN_NR_NBUCKETS); return -EINVAL; } if (le16_to_cpu(m->bucket_size) < le16_to_cpu(sb->block_size)) { prt_printf(err, "device %u: bucket size %u smaller than block size %u", i, le16_to_cpu(m->bucket_size), le16_to_cpu(sb->block_size)); return -EINVAL; } if (le16_to_cpu(m->bucket_size) < BCH_SB_BTREE_NODE_SIZE(sb)) { prt_printf(err, "device %u: bucket size %u smaller than btree node size %llu", i, le16_to_cpu(m->bucket_size), BCH_SB_BTREE_NODE_SIZE(sb)); return -EINVAL; } } return 0; } static void bch2_sb_members_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_members *mi = field_to_type(f, members); struct bch_sb_field_disk_groups *gi = bch2_sb_get_disk_groups(sb); unsigned i; for (i = 0; i < sb->nr_devices; i++) { struct bch_member *m = mi->members + i; unsigned data_have = bch2_sb_dev_has_data(sb, i); u64 bucket_size = le16_to_cpu(m->bucket_size); u64 device_size = le64_to_cpu(m->nbuckets) * bucket_size; if (!bch2_member_exists(m)) continue; prt_printf(out, "Device:"); prt_tab(out); prt_printf(out, "%u", i); prt_newline(out); printbuf_indent_add(out, 2); prt_printf(out, "UUID:"); prt_tab(out); pr_uuid(out, m->uuid.b); prt_newline(out); prt_printf(out, "Size:"); prt_tab(out); prt_units_u64(out, device_size << 9); prt_newline(out); prt_printf(out, "Bucket size:"); prt_tab(out); prt_units_u64(out, bucket_size << 9); prt_newline(out); prt_printf(out, "First bucket:"); prt_tab(out); prt_printf(out, "%u", le16_to_cpu(m->first_bucket)); prt_newline(out); prt_printf(out, "Buckets:"); prt_tab(out); prt_printf(out, "%llu", le64_to_cpu(m->nbuckets)); prt_newline(out); prt_printf(out, "Last mount:"); prt_tab(out); if (m->last_mount) pr_time(out, le64_to_cpu(m->last_mount)); else prt_printf(out, "(never)"); prt_newline(out); prt_printf(out, "State:"); prt_tab(out); prt_printf(out, "%s", BCH_MEMBER_STATE(m) < BCH_MEMBER_STATE_NR ? bch2_member_states[BCH_MEMBER_STATE(m)] : "unknown"); prt_newline(out); prt_printf(out, "Label:"); prt_tab(out); if (BCH_MEMBER_GROUP(m)) { unsigned idx = BCH_MEMBER_GROUP(m) - 1; if (idx < disk_groups_nr(gi)) prt_printf(out, "%s (%u)", gi->entries[idx].label, idx); else prt_printf(out, "(bad disk labels section)"); } else { prt_printf(out, "(none)"); } prt_newline(out); prt_printf(out, "Data allowed:"); prt_tab(out); if (BCH_MEMBER_DATA_ALLOWED(m)) prt_bitflags(out, bch2_data_types, BCH_MEMBER_DATA_ALLOWED(m)); else prt_printf(out, "(none)"); prt_newline(out); prt_printf(out, "Has data:"); prt_tab(out); if (data_have) prt_bitflags(out, bch2_data_types, data_have); else prt_printf(out, "(none)"); prt_newline(out); prt_printf(out, "Discard:"); prt_tab(out); prt_printf(out, "%llu", BCH_MEMBER_DISCARD(m)); prt_newline(out); prt_printf(out, "Freespace initialized:"); prt_tab(out); prt_printf(out, "%llu", BCH_MEMBER_FREESPACE_INITIALIZED(m)); prt_newline(out); printbuf_indent_sub(out, 2); } } static const struct bch_sb_field_ops bch_sb_field_ops_members = { .validate = bch2_sb_members_validate, .to_text = bch2_sb_members_to_text, }; /* BCH_SB_FIELD_crypt: */ static int bch2_sb_crypt_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) { prt_printf(err, "wrong size (got %zu should be %zu)", vstruct_bytes(&crypt->field), sizeof(*crypt)); return -EINVAL; } if (BCH_CRYPT_KDF_TYPE(crypt)) { prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt)); return -EINVAL; } return 0; } static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); prt_printf(out, "KFD: %llu", BCH_CRYPT_KDF_TYPE(crypt)); prt_newline(out); prt_printf(out, "scrypt n: %llu", BCH_KDF_SCRYPT_N(crypt)); prt_newline(out); prt_printf(out, "scrypt r: %llu", BCH_KDF_SCRYPT_R(crypt)); prt_newline(out); prt_printf(out, "scrypt p: %llu", BCH_KDF_SCRYPT_P(crypt)); prt_newline(out); } static const struct bch_sb_field_ops bch_sb_field_ops_crypt = { .validate = bch2_sb_crypt_validate, .to_text = bch2_sb_crypt_to_text, }; /* BCH_SB_FIELD_clean: */ int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean, int write) { struct jset_entry *entry; int ret; for (entry = clean->start; entry < (struct jset_entry *) vstruct_end(&clean->field); entry = vstruct_next(entry)) { ret = bch2_journal_entry_validate(c, "superblock", entry, le16_to_cpu(c->disk_sb.sb->version), BCH_SB_BIG_ENDIAN(c->disk_sb.sb), write); if (ret) return ret; } return 0; } int bch2_fs_mark_dirty(struct bch_fs *c) { int ret; /* * Unconditionally write superblock, to verify it hasn't changed before * we go rw: */ mutex_lock(&c->sb_lock); SET_BCH_SB_CLEAN(c->disk_sb.sb, false); c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS); c->disk_sb.sb->compat[0] &= cpu_to_le64((1ULL << BCH_COMPAT_NR) - 1); ret = bch2_write_super(c); mutex_unlock(&c->sb_lock); return ret; } static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size) { struct jset_entry *entry = *end; unsigned u64s = DIV_ROUND_UP(size, sizeof(u64)); memset(entry, 0, u64s * sizeof(u64)); /* * The u64s field counts from the start of data, ignoring the shared * fields. */ entry->u64s = cpu_to_le16(u64s - 1); *end = vstruct_next(*end); return entry; } void bch2_journal_super_entries_add_common(struct bch_fs *c, struct jset_entry **end, u64 journal_seq) { struct bch_dev *ca; unsigned i, dev; percpu_down_read(&c->mark_lock); if (!journal_seq) { for (i = 0; i < ARRAY_SIZE(c->usage); i++) bch2_fs_usage_acc_to_base(c, i); } else { bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK); } { struct jset_entry_usage *u = container_of(jset_entry_init(end, sizeof(*u)), struct jset_entry_usage, entry); u->entry.type = BCH_JSET_ENTRY_usage; u->entry.btree_id = BCH_FS_USAGE_inodes; u->v = cpu_to_le64(c->usage_base->nr_inodes); } { struct jset_entry_usage *u = container_of(jset_entry_init(end, sizeof(*u)), struct jset_entry_usage, entry); u->entry.type = BCH_JSET_ENTRY_usage; u->entry.btree_id = BCH_FS_USAGE_key_version; u->v = cpu_to_le64(atomic64_read(&c->key_version)); } for (i = 0; i < BCH_REPLICAS_MAX; i++) { struct jset_entry_usage *u = container_of(jset_entry_init(end, sizeof(*u)), struct jset_entry_usage, entry); u->entry.type = BCH_JSET_ENTRY_usage; u->entry.btree_id = BCH_FS_USAGE_reserved; u->entry.level = i; u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]); } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); struct jset_entry_data_usage *u = container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs), struct jset_entry_data_usage, entry); u->entry.type = BCH_JSET_ENTRY_data_usage; u->v = cpu_to_le64(c->usage_base->replicas[i]); unsafe_memcpy(&u->r, e, replicas_entry_bytes(e), "embedded variable length struct"); } for_each_member_device(ca, c, dev) { unsigned b = sizeof(struct jset_entry_dev_usage) + sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR; struct jset_entry_dev_usage *u = container_of(jset_entry_init(end, b), struct jset_entry_dev_usage, entry); u->entry.type = BCH_JSET_ENTRY_dev_usage; u->dev = cpu_to_le32(dev); u->buckets_ec = cpu_to_le64(ca->usage_base->buckets_ec); for (i = 0; i < BCH_DATA_NR; i++) { u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets); u->d[i].sectors = cpu_to_le64(ca->usage_base->d[i].sectors); u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented); } } percpu_up_read(&c->mark_lock); for (i = 0; i < 2; i++) { struct jset_entry_clock *clock = container_of(jset_entry_init(end, sizeof(*clock)), struct jset_entry_clock, entry); clock->entry.type = BCH_JSET_ENTRY_clock; clock->rw = i; clock->time = cpu_to_le64(atomic64_read(&c->io_clock[i].now)); } } void bch2_fs_mark_clean(struct bch_fs *c) { struct bch_sb_field_clean *sb_clean; struct jset_entry *entry; unsigned u64s; int ret; mutex_lock(&c->sb_lock); if (BCH_SB_CLEAN(c->disk_sb.sb)) goto out; SET_BCH_SB_CLEAN(c->disk_sb.sb, true); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata); c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates)); c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled)); u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved; sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s); if (!sb_clean) { bch_err(c, "error resizing superblock while setting filesystem clean"); goto out; } sb_clean->flags = 0; sb_clean->journal_seq = cpu_to_le64(atomic64_read(&c->journal.seq)); /* Trying to catch outstanding bug: */ BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX); entry = sb_clean->start; bch2_journal_super_entries_add_common(c, &entry, 0); entry = bch2_btree_roots_to_journal_entries(c, entry, entry); BUG_ON((void *) entry > vstruct_end(&sb_clean->field)); memset(entry, 0, vstruct_end(&sb_clean->field) - (void *) entry); /* * this should be in the write path, and we should be validating every * superblock section: */ ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE); if (ret) { bch_err(c, "error writing marking filesystem clean: validate error"); goto out; } bch2_write_super(c); out: mutex_unlock(&c->sb_lock); } static int bch2_sb_clean_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { struct bch_sb_field_clean *clean = field_to_type(f, clean); if (vstruct_bytes(&clean->field) < sizeof(*clean)) { prt_printf(err, "wrong size (got %zu should be %zu)", vstruct_bytes(&clean->field), sizeof(*clean)); return -EINVAL; } return 0; } static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_clean *clean = field_to_type(f, clean); struct jset_entry *entry; prt_printf(out, "flags: %x", le32_to_cpu(clean->flags)); prt_newline(out); prt_printf(out, "journal_seq: %llu", le64_to_cpu(clean->journal_seq)); prt_newline(out); for (entry = clean->start; entry != vstruct_end(&clean->field); entry = vstruct_next(entry)) { if (entry->type == BCH_JSET_ENTRY_btree_keys && !entry->u64s) continue; bch2_journal_entry_to_text(out, NULL, entry); prt_newline(out); } } static const struct bch_sb_field_ops bch_sb_field_ops_clean = { .validate = bch2_sb_clean_validate, .to_text = bch2_sb_clean_to_text, }; static const struct bch_sb_field_ops *bch2_sb_field_ops[] = { #define x(f, nr) \ [BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f, BCH_SB_FIELDS() #undef x }; static int bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { unsigned type = le32_to_cpu(f->type); struct printbuf field_err = PRINTBUF; int ret; if (type >= BCH_SB_FIELD_NR) return 0; ret = bch2_sb_field_ops[type]->validate(sb, f, &field_err); if (ret) { prt_printf(err, "Invalid superblock section %s: %s", bch2_sb_fields[type], field_err.buf); prt_newline(err); bch2_sb_field_to_text(err, sb, f); } printbuf_exit(&field_err); return ret; } void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); const struct bch_sb_field_ops *ops = type < BCH_SB_FIELD_NR ? bch2_sb_field_ops[type] : NULL; if (!out->nr_tabstops) printbuf_tabstop_push(out, 32); if (ops) prt_printf(out, "%s", bch2_sb_fields[type]); else prt_printf(out, "(unknown field %u)", type); prt_printf(out, " (size %zu):", vstruct_bytes(f)); prt_newline(out); if (ops && ops->to_text) { printbuf_indent_add(out, 2); bch2_sb_field_ops[type]->to_text(out, sb, f); printbuf_indent_sub(out, 2); } } void bch2_sb_layout_to_text(struct printbuf *out, struct bch_sb_layout *l) { unsigned i; prt_printf(out, "Type: %u", l->layout_type); prt_newline(out); prt_str(out, "Superblock max size: "); prt_units_u64(out, 512 << l->sb_max_size_bits); prt_newline(out); prt_printf(out, "Nr superblocks: %u", l->nr_superblocks); prt_newline(out); prt_str(out, "Offsets: "); for (i = 0; i < l->nr_superblocks; i++) { if (i) prt_str(out, ", "); prt_printf(out, "%llu", le64_to_cpu(l->sb_offset[i])); } prt_newline(out); } void bch2_sb_to_text(struct printbuf *out, struct bch_sb *sb, bool print_layout, unsigned fields) { struct bch_sb_field_members *mi; struct bch_sb_field *f; u64 fields_have = 0; unsigned nr_devices = 0; if (!out->nr_tabstops) printbuf_tabstop_push(out, 44); mi = bch2_sb_get_members(sb); if (mi) { struct bch_member *m; for (m = mi->members; m < mi->members + sb->nr_devices; m++) nr_devices += bch2_member_exists(m); } prt_printf(out, "External UUID:"); prt_tab(out); pr_uuid(out, sb->user_uuid.b); prt_newline(out); prt_printf(out, "Internal UUID:"); prt_tab(out); pr_uuid(out, sb->uuid.b); prt_newline(out); prt_str(out, "Device index:"); prt_tab(out); prt_printf(out, "%u", sb->dev_idx); prt_newline(out); prt_str(out, "Label:"); prt_tab(out); prt_printf(out, "%.*s", (int) sizeof(sb->label), sb->label); prt_newline(out); prt_str(out, "Version:"); prt_tab(out); prt_printf(out, "%s", bch2_metadata_versions[le16_to_cpu(sb->version)]); prt_newline(out); prt_printf(out, "Oldest version on disk:"); prt_tab(out); prt_printf(out, "%s", bch2_metadata_versions[le16_to_cpu(sb->version_min)]); prt_newline(out); prt_printf(out, "Created:"); prt_tab(out); if (sb->time_base_lo) pr_time(out, div_u64(le64_to_cpu(sb->time_base_lo), NSEC_PER_SEC)); else prt_printf(out, "(not set)"); prt_newline(out); prt_printf(out, "Sequence number:"); prt_tab(out); prt_printf(out, "%llu", le64_to_cpu(sb->seq)); prt_newline(out); prt_printf(out, "Superblock size:"); prt_tab(out); prt_printf(out, "%zu", vstruct_bytes(sb)); prt_newline(out); prt_printf(out, "Clean:"); prt_tab(out); prt_printf(out, "%llu", BCH_SB_CLEAN(sb)); prt_newline(out); prt_printf(out, "Devices:"); prt_tab(out); prt_printf(out, "%u", nr_devices); prt_newline(out); prt_printf(out, "Sections:"); vstruct_for_each(sb, f) fields_have |= 1 << le32_to_cpu(f->type); prt_tab(out); prt_bitflags(out, bch2_sb_fields, fields_have); prt_newline(out); prt_printf(out, "Features:"); prt_tab(out); prt_bitflags(out, bch2_sb_features, le64_to_cpu(sb->features[0])); prt_newline(out); prt_printf(out, "Compat features:"); prt_tab(out); prt_bitflags(out, bch2_sb_compat, le64_to_cpu(sb->compat[0])); prt_newline(out); prt_newline(out); prt_printf(out, "Options:"); prt_newline(out); printbuf_indent_add(out, 2); { enum bch_opt_id id; for (id = 0; id < bch2_opts_nr; id++) { const struct bch_option *opt = bch2_opt_table + id; if (opt->get_sb != BCH2_NO_SB_OPT) { u64 v = bch2_opt_from_sb(sb, id); prt_printf(out, "%s:", opt->attr.name); prt_tab(out); bch2_opt_to_text(out, NULL, sb, opt, v, OPT_HUMAN_READABLE|OPT_SHOW_FULL_LIST); prt_newline(out); } } } printbuf_indent_sub(out, 2); if (print_layout) { prt_newline(out); prt_printf(out, "layout:"); prt_newline(out); printbuf_indent_add(out, 2); bch2_sb_layout_to_text(out, &sb->layout); printbuf_indent_sub(out, 2); } vstruct_for_each(sb, f) if (fields & (1 << le32_to_cpu(f->type))) { prt_newline(out); bch2_sb_field_to_text(out, sb, f); } }