// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "bkey_methods.h" #include "bkey_buf.h" #include "btree_locking.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "recovery.h" #include "reflink.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include #include #define DROP_THIS_NODE 10 #define DROP_PREV_NODE 11 static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { preempt_disable(); write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); preempt_enable(); } static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); __gc_pos_set(c, new_pos); } /* * Missing: if an interior btree node is empty, we need to do something - * perhaps just kill it */ static int bch2_gc_check_topology(struct bch_fs *c, struct btree *b, struct bkey_buf *prev, struct bkey_buf cur, bool is_last) { struct bpos node_start = b->data->min_key; struct bpos node_end = b->data->max_key; struct bpos expected_start = bkey_deleted(&prev->k->k) ? node_start : bpos_successor(prev->k->k.p); char buf1[200], buf2[200]; int ret = 0; if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) { struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k); if (bkey_deleted(&prev->k->k)) { struct printbuf out = PBUF(buf1); pr_buf(&out, "start of node: "); bch2_bpos_to_text(&out, node_start); } else { bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(prev->k)); } if (bpos_cmp(expected_start, bp->v.min_key)) { bch2_topology_error(c); if (__fsck_err(c, FSCK_CAN_FIX| FSCK_CAN_IGNORE| FSCK_NO_RATELIMIT, "btree node with incorrect min_key at btree %s level %u:\n" " prev %s\n" " cur %s", bch2_btree_ids[b->c.btree_id], b->c.level, buf1, (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(cur.k)), buf2)) && !test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags)) { bch_info(c, "Halting mark and sweep to start topology repair pass"); return FSCK_ERR_START_TOPOLOGY_REPAIR; } else { set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); } } } if (is_last && bpos_cmp(cur.k->k.p, node_end)) { bch2_topology_error(c); if (__fsck_err(c, FSCK_CAN_FIX| FSCK_CAN_IGNORE| FSCK_NO_RATELIMIT, "btree node with incorrect max_key at btree %s level %u:\n" " %s\n" " expected %s", bch2_btree_ids[b->c.btree_id], b->c.level, (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(cur.k)), buf1), (bch2_bpos_to_text(&PBUF(buf2), node_end), buf2)) && !test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags)) { bch_info(c, "Halting mark and sweep to start topology repair pass"); return FSCK_ERR_START_TOPOLOGY_REPAIR; } else { set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); } } bch2_bkey_buf_copy(prev, c, cur.k); fsck_err: return ret; } static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst) { switch (b->key.k.type) { case KEY_TYPE_btree_ptr: { struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key); dst->k.p = src->k.p; dst->v.mem_ptr = 0; dst->v.seq = b->data->keys.seq; dst->v.sectors_written = 0; dst->v.flags = 0; dst->v.min_key = b->data->min_key; set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k)); memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k)); break; } case KEY_TYPE_btree_ptr_v2: bkey_copy(&dst->k_i, &b->key); break; default: BUG(); } } static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min) { struct bkey_i_btree_ptr_v2 *new; int ret; new = kmalloc(BKEY_BTREE_PTR_U64s_MAX * sizeof(u64), GFP_KERNEL); if (!new) return -ENOMEM; btree_ptr_to_v2(b, new); b->data->min_key = new_min; new->v.min_key = new_min; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); return 0; } static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max) { struct bkey_i_btree_ptr_v2 *new; int ret; ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p); if (ret) return ret; new = kmalloc(BKEY_BTREE_PTR_U64s_MAX * sizeof(u64), GFP_KERNEL); if (!new) return -ENOMEM; btree_ptr_to_v2(b, new); b->data->max_key = new_max; new->k.p = new_max; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); return 0; } static int btree_repair_node_boundaries(struct bch_fs *c, struct btree *b, struct btree *prev, struct btree *cur) { struct bpos expected_start = !prev ? b->data->min_key : bpos_successor(prev->key.k.p); char buf1[200], buf2[200]; int ret = 0; if (!prev) { struct printbuf out = PBUF(buf1); pr_buf(&out, "start of node: "); bch2_bpos_to_text(&out, b->data->min_key); } else { bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(&prev->key)); } bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(&cur->key)); if (prev && bpos_cmp(expected_start, cur->data->min_key) > 0 && BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) { /* cur overwrites prev: */ if (mustfix_fsck_err_on(bpos_cmp(prev->data->min_key, cur->data->min_key) >= 0, c, "btree node overwritten by next node at btree %s level %u:\n" " node %s\n" " next %s", bch2_btree_ids[b->c.btree_id], b->c.level, buf1, buf2)) return DROP_PREV_NODE; if (mustfix_fsck_err_on(bpos_cmp(prev->key.k.p, bpos_predecessor(cur->data->min_key)), c, "btree node with incorrect max_key at btree %s level %u:\n" " node %s\n" " next %s", bch2_btree_ids[b->c.btree_id], b->c.level, buf1, buf2)) ret = set_node_max(c, prev, bpos_predecessor(cur->data->min_key)); } else { /* prev overwrites cur: */ if (mustfix_fsck_err_on(bpos_cmp(expected_start, cur->data->max_key) >= 0, c, "btree node overwritten by prev node at btree %s level %u:\n" " prev %s\n" " node %s", bch2_btree_ids[b->c.btree_id], b->c.level, buf1, buf2)) return DROP_THIS_NODE; if (mustfix_fsck_err_on(bpos_cmp(expected_start, cur->data->min_key), c, "btree node with incorrect min_key at btree %s level %u:\n" " prev %s\n" " node %s", bch2_btree_ids[b->c.btree_id], b->c.level, buf1, buf2)) ret = set_node_min(c, cur, expected_start); } fsck_err: return ret; } static int btree_repair_node_end(struct bch_fs *c, struct btree *b, struct btree *child) { char buf1[200], buf2[200]; int ret = 0; if (mustfix_fsck_err_on(bpos_cmp(child->key.k.p, b->key.k.p), c, "btree node with incorrect max_key at btree %s level %u:\n" " %s\n" " expected %s", bch2_btree_ids[b->c.btree_id], b->c.level, (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(&child->key)), buf1), (bch2_bpos_to_text(&PBUF(buf2), b->key.k.p), buf2))) { ret = set_node_max(c, child, b->key.k.p); if (ret) return ret; } fsck_err: return ret; } static int bch2_btree_repair_topology_recurse(struct bch_fs *c, struct btree *b) { struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf prev_k, cur_k; struct btree *prev = NULL, *cur = NULL; bool have_child, dropped_children = false; char buf[200]; int ret = 0; if (!b->c.level) return 0; again: prev = NULL; have_child = dropped_children = false; bch2_bkey_buf_init(&prev_k); bch2_bkey_buf_init(&cur_k); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { BUG_ON(bpos_cmp(k.k->p, b->data->min_key) < 0); BUG_ON(bpos_cmp(k.k->p, b->data->max_key) > 0); bch2_btree_and_journal_iter_advance(&iter); bch2_bkey_buf_reassemble(&cur_k, c, k); cur = bch2_btree_node_get_noiter(c, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); if (mustfix_fsck_err_on(ret == -EIO, c, "Unreadable btree node at btree %s level %u:\n" " %s", bch2_btree_ids[b->c.btree_id], b->c.level - 1, (bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(cur_k.k)), buf))) { bch2_btree_node_evict(c, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); if (ret) break; continue; } if (ret) { bch_err(c, "%s: error %i getting btree node", __func__, ret); break; } ret = btree_repair_node_boundaries(c, b, prev, cur); if (ret == DROP_THIS_NODE) { six_unlock_read(&cur->c.lock); bch2_btree_node_evict(c, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); if (ret) break; continue; } if (prev) six_unlock_read(&prev->c.lock); prev = NULL; if (ret == DROP_PREV_NODE) { bch2_btree_node_evict(c, prev_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, prev_k.k->k.p); if (ret) break; bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&prev_k, c); bch2_bkey_buf_exit(&cur_k, c); goto again; } else if (ret) break; prev = cur; cur = NULL; bch2_bkey_buf_copy(&prev_k, c, cur_k.k); } if (!ret && !IS_ERR_OR_NULL(prev)) { BUG_ON(cur); ret = btree_repair_node_end(c, b, prev); } if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); prev = NULL; if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); cur = NULL; if (ret) goto err; bch2_btree_and_journal_iter_exit(&iter); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { bch2_bkey_buf_reassemble(&cur_k, c, k); bch2_btree_and_journal_iter_advance(&iter); cur = bch2_btree_node_get_noiter(c, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); if (ret) { bch_err(c, "%s: error %i getting btree node", __func__, ret); goto err; } ret = bch2_btree_repair_topology_recurse(c, cur); six_unlock_read(&cur->c.lock); cur = NULL; if (ret == DROP_THIS_NODE) { bch2_btree_node_evict(c, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); dropped_children = true; } if (ret) goto err; have_child = true; } if (mustfix_fsck_err_on(!have_child, c, "empty interior btree node at btree %s level %u\n" " %s", bch2_btree_ids[b->c.btree_id], b->c.level, (bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(&b->key)), buf))) ret = DROP_THIS_NODE; err: fsck_err: if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&prev_k, c); bch2_bkey_buf_exit(&cur_k, c); if (!ret && dropped_children) goto again; return ret; } static int bch2_repair_topology(struct bch_fs *c) { struct btree *b; unsigned i; int ret = 0; for (i = 0; i < BTREE_ID_NR && !ret; i++) { b = c->btree_roots[i].b; if (btree_node_fake(b)) continue; six_lock_read(&b->c.lock, NULL, NULL); ret = bch2_btree_repair_topology_recurse(c, b); six_unlock_read(&b->c.lock); if (ret == DROP_THIS_NODE) { bch_err(c, "empty btree root - repair unimplemented"); ret = FSCK_ERR_EXIT; } } return ret; } static int bch2_check_fix_ptrs(struct bch_fs *c, enum btree_id btree_id, unsigned level, bool is_root, struct bkey_s_c *k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(*k); const union bch_extent_entry *entry; struct extent_ptr_decoded p = { 0 }; bool do_update = false; char buf[200]; int ret = 0; /* * XXX * use check_bucket_ref here */ bkey_for_each_ptr_decode(k->k, ptrs, p, entry) { struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct bucket *g = PTR_BUCKET(ca, &p.ptr, true); struct bucket *g2 = PTR_BUCKET(ca, &p.ptr, false); enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, &entry->ptr); if (fsck_err_on(!g->gen_valid, c, "bucket %u:%zu data type %s ptr gen %u missing in alloc btree\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) { if (!p.ptr.cached) { g2->_mark.gen = g->_mark.gen = p.ptr.gen; g2->gen_valid = g->gen_valid = true; set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); } else { do_update = true; } } if (fsck_err_on(data_type == BCH_DATA_btree && g->mark.gen != p.ptr.gen, c, "bucket %u:%zu data type %s has metadata but wrong gen: %u != %u\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, g->mark.gen, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) { g2->_mark.data_type = g->_mark.data_type = data_type; g2->gen_valid = g->gen_valid = true; set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); } if (fsck_err_on(gen_cmp(p.ptr.gen, g->mark.gen) > 0, c, "bucket %u:%zu data type %s ptr gen in the future: %u > %u\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, g->mark.gen, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) { if (!p.ptr.cached) { g2->_mark.gen = g->_mark.gen = p.ptr.gen; g2->gen_valid = g->gen_valid = true; g2->_mark.data_type = 0; g2->_mark.dirty_sectors = 0; g2->_mark.cached_sectors = 0; set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); } else { do_update = true; } } if (fsck_err_on(gen_cmp(g->mark.gen, p.ptr.gen) > BUCKET_GC_GEN_MAX, c, "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), g->mark.gen, bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) do_update = true; if (fsck_err_on(!p.ptr.cached && gen_cmp(p.ptr.gen, g->mark.gen) < 0, c, "bucket %u:%zu data type %s stale dirty ptr: %u < %u\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, g->mark.gen, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) do_update = true; if (p.ptr.gen != g->mark.gen) continue; if (fsck_err_on(g->mark.data_type && g->mark.data_type != data_type, c, "bucket %u:%zu different types of data in same bucket: %s, %s\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[g->mark.data_type], bch2_data_types[data_type], (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) { if (data_type == BCH_DATA_btree) { g2->_mark.data_type = g->_mark.data_type = data_type; g2->gen_valid = g->gen_valid = true; set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); } else { do_update = true; } } if (p.has_ec) { struct stripe *m = genradix_ptr(&c->stripes[true], p.ec.idx); if (fsck_err_on(!m || !m->alive, c, "pointer to nonexistent stripe %llu\n" "while marking %s", (u64) p.ec.idx, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) do_update = true; if (fsck_err_on(!bch2_ptr_matches_stripe_m(m, p), c, "pointer does not match stripe %llu\n" "while marking %s", (u64) p.ec.idx, (bch2_bkey_val_to_text(&PBUF(buf), c, *k), buf))) do_update = true; } } if (do_update) { struct bkey_ptrs ptrs; union bch_extent_entry *entry; struct bch_extent_ptr *ptr; struct bkey_i *new; if (is_root) { bch_err(c, "cannot update btree roots yet"); return -EINVAL; } new = kmalloc(bkey_bytes(k->k), GFP_KERNEL); if (!new) { bch_err(c, "%s: error allocating new key", __func__); return -ENOMEM; } bkey_reassemble(new, *k); if (level) { /* * We don't want to drop btree node pointers - if the * btree node isn't there anymore, the read path will * sort it out: */ ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, true); ptr->gen = g->mark.gen; } } else { bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, true); enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, ptr); (ptr->cached && (!g->gen_valid || gen_cmp(ptr->gen, g->mark.gen) > 0)) || (!ptr->cached && gen_cmp(ptr->gen, g->mark.gen) < 0) || gen_cmp(g->mark.gen, ptr->gen) > BUCKET_GC_GEN_MAX || (g->mark.data_type && g->mark.data_type != data_type); })); again: ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_extent_entry_for_each(ptrs, entry) { if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) { struct stripe *m = genradix_ptr(&c->stripes[true], entry->stripe_ptr.idx); union bch_extent_entry *next_ptr; bkey_extent_entry_for_each_from(ptrs, next_ptr, entry) if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr) goto found; next_ptr = NULL; found: if (!next_ptr) { bch_err(c, "aieee, found stripe ptr with no data ptr"); continue; } if (!m || !m->alive || !__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block], &next_ptr->ptr, m->sectors)) { bch2_bkey_extent_entry_drop(new, entry); goto again; } } } } ret = bch2_journal_key_insert(c, btree_id, level, new); if (ret) kfree(new); else *k = bkey_i_to_s_c(new); } fsck_err: return ret; } /* marking of btree keys/nodes: */ static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id, unsigned level, bool is_root, struct bkey_s_c *k, u8 *max_stale, bool initial) { struct bch_fs *c = trans->c; struct bkey_ptrs_c ptrs; const struct bch_extent_ptr *ptr; struct bkey deleted = KEY(0, 0, 0); struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; unsigned flags = BTREE_TRIGGER_GC| (initial ? BTREE_TRIGGER_NOATOMIC : 0); int ret = 0; deleted.p = k->k->p; if (initial) { BUG_ON(bch2_journal_seq_verify && k->k->version.lo > journal_cur_seq(&c->journal)); ret = bch2_check_fix_ptrs(c, btree_id, level, is_root, k); if (ret) goto err; if (fsck_err_on(k->k->version.lo > atomic64_read(&c->key_version), c, "key version number higher than recorded: %llu > %llu", k->k->version.lo, atomic64_read(&c->key_version))) atomic64_set(&c->key_version, k->k->version.lo); } ptrs = bch2_bkey_ptrs_c(*k); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, true); if (gen_after(g->oldest_gen, ptr->gen)) g->oldest_gen = ptr->gen; *max_stale = max(*max_stale, ptr_stale(ca, ptr)); } ret = bch2_mark_key(trans, old, *k, flags); fsck_err: err: if (ret) bch_err(c, "%s: ret %i", __func__, ret); return ret; } static int btree_gc_mark_node(struct btree_trans *trans, struct btree *b, u8 *max_stale, bool initial) { struct bch_fs *c = trans->c; struct btree_node_iter iter; struct bkey unpacked; struct bkey_s_c k; struct bkey_buf prev, cur; int ret = 0; *max_stale = 0; if (!btree_node_type_needs_gc(btree_node_type(b))) return 0; bch2_btree_node_iter_init_from_start(&iter, b); bch2_bkey_buf_init(&prev); bch2_bkey_buf_init(&cur); bkey_init(&prev.k->k); while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) { ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false, &k, max_stale, initial); if (ret) break; bch2_btree_node_iter_advance(&iter, b); if (b->c.level) { bch2_bkey_buf_reassemble(&cur, c, k); ret = bch2_gc_check_topology(c, b, &prev, cur, bch2_btree_node_iter_end(&iter)); if (ret) break; } } bch2_bkey_buf_exit(&cur, c); bch2_bkey_buf_exit(&prev, c); return ret; } static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree_id, bool initial, bool metadata_only) { struct bch_fs *c = trans->c; struct btree_iter iter; struct btree *b; unsigned depth = metadata_only ? 1 : bch2_expensive_debug_checks ? 0 : !btree_node_type_needs_gc(btree_id) ? 1 : 0; u8 max_stale = 0; int ret = 0; gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); __for_each_btree_node(trans, iter, btree_id, POS_MIN, 0, depth, BTREE_ITER_PREFETCH, b, ret) { bch2_verify_btree_nr_keys(b); gc_pos_set(c, gc_pos_btree_node(b)); ret = btree_gc_mark_node(trans, b, &max_stale, initial); if (ret) break; if (!initial) { if (max_stale > 64) bch2_btree_node_rewrite(trans, &iter, b, BTREE_INSERT_NOWAIT| BTREE_INSERT_GC_LOCK_HELD); else if (!bch2_btree_gc_rewrite_disabled && (bch2_btree_gc_always_rewrite || max_stale > 16)) bch2_btree_node_rewrite(trans, &iter, b, BTREE_INSERT_NOWAIT| BTREE_INSERT_GC_LOCK_HELD); } } bch2_trans_iter_exit(trans, &iter); if (ret) return ret; mutex_lock(&c->btree_root_lock); b = c->btree_roots[btree_id].b; if (!btree_node_fake(b)) { struct bkey_s_c k = bkey_i_to_s_c(&b->key); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, true, &k, &max_stale, initial); } gc_pos_set(c, gc_pos_btree_root(b->c.btree_id)); mutex_unlock(&c->btree_root_lock); return ret; } static int bch2_gc_btree_init_recurse(struct btree_trans *trans, struct btree *b, unsigned target_depth) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf cur, prev; u8 max_stale = 0; char buf[200]; int ret = 0; bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); bch2_bkey_buf_init(&prev); bch2_bkey_buf_init(&cur); bkey_init(&prev.k->k); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { BUG_ON(bpos_cmp(k.k->p, b->data->min_key) < 0); BUG_ON(bpos_cmp(k.k->p, b->data->max_key) > 0); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false, &k, &max_stale, true); if (ret) { bch_err(c, "%s: error %i from bch2_gc_mark_key", __func__, ret); goto fsck_err; } if (b->c.level) { bch2_bkey_buf_reassemble(&cur, c, k); k = bkey_i_to_s_c(cur.k); bch2_btree_and_journal_iter_advance(&iter); ret = bch2_gc_check_topology(c, b, &prev, cur, !bch2_btree_and_journal_iter_peek(&iter).k); if (ret) goto fsck_err; } else { bch2_btree_and_journal_iter_advance(&iter); } } if (b->c.level > target_depth) { bch2_btree_and_journal_iter_exit(&iter); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { struct btree *child; bch2_bkey_buf_reassemble(&cur, c, k); bch2_btree_and_journal_iter_advance(&iter); child = bch2_btree_node_get_noiter(c, cur.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(child); if (ret == -EIO) { bch2_topology_error(c); if (__fsck_err(c, FSCK_CAN_FIX| FSCK_CAN_IGNORE| FSCK_NO_RATELIMIT, "Unreadable btree node at btree %s level %u:\n" " %s", bch2_btree_ids[b->c.btree_id], b->c.level - 1, (bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(cur.k)), buf)) && !test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags)) { ret = FSCK_ERR_START_TOPOLOGY_REPAIR; bch_info(c, "Halting mark and sweep to start topology repair pass"); goto fsck_err; } else { /* Continue marking when opted to not * fix the error: */ ret = 0; set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); continue; } } else if (ret) { bch_err(c, "%s: error %i getting btree node", __func__, ret); break; } ret = bch2_gc_btree_init_recurse(trans, child, target_depth); six_unlock_read(&child->c.lock); if (ret) break; } } fsck_err: bch2_bkey_buf_exit(&cur, c); bch2_bkey_buf_exit(&prev, c); bch2_btree_and_journal_iter_exit(&iter); return ret; } static int bch2_gc_btree_init(struct btree_trans *trans, enum btree_id btree_id, bool metadata_only) { struct bch_fs *c = trans->c; struct btree *b; unsigned target_depth = metadata_only ? 1 : bch2_expensive_debug_checks ? 0 : !btree_node_type_needs_gc(btree_id) ? 1 : 0; u8 max_stale = 0; char buf[100]; int ret = 0; b = c->btree_roots[btree_id].b; if (btree_node_fake(b)) return 0; six_lock_read(&b->c.lock, NULL, NULL); if (mustfix_fsck_err_on(bpos_cmp(b->data->min_key, POS_MIN), c, "btree root with incorrect min_key: %s", (bch2_bpos_to_text(&PBUF(buf), b->data->min_key), buf))) { bch_err(c, "repair unimplemented"); ret = FSCK_ERR_EXIT; goto fsck_err; } if (mustfix_fsck_err_on(bpos_cmp(b->data->max_key, SPOS_MAX), c, "btree root with incorrect max_key: %s", (bch2_bpos_to_text(&PBUF(buf), b->data->max_key), buf))) { bch_err(c, "repair unimplemented"); ret = FSCK_ERR_EXIT; goto fsck_err; } if (b->c.level >= target_depth) ret = bch2_gc_btree_init_recurse(trans, b, target_depth); if (!ret) { struct bkey_s_c k = bkey_i_to_s_c(&b->key); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, true, &k, &max_stale, true); } fsck_err: six_unlock_read(&b->c.lock); if (ret < 0) bch_err(c, "%s: ret %i", __func__, ret); return ret; } static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) { return (int) btree_id_to_gc_phase(l) - (int) btree_id_to_gc_phase(r); } static int bch2_gc_btrees(struct bch_fs *c, bool initial, bool metadata_only) { struct btree_trans trans; enum btree_id ids[BTREE_ID_NR]; unsigned i; int ret = 0; bch2_trans_init(&trans, c, 0, 0); for (i = 0; i < BTREE_ID_NR; i++) ids[i] = i; bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); for (i = 0; i < BTREE_ID_NR && !ret; i++) ret = initial ? bch2_gc_btree_init(&trans, ids[i], metadata_only) : bch2_gc_btree(&trans, ids[i], initial, metadata_only); if (ret < 0) bch_err(c, "%s: ret %i", __func__, ret); bch2_trans_exit(&trans); return ret; } static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, u64 start, u64 end, enum bch_data_type type, unsigned flags) { u64 b = sector_to_bucket(ca, start); do { unsigned sectors = min_t(u64, bucket_to_sector(ca, b + 1), end) - start; bch2_mark_metadata_bucket(c, ca, b, type, sectors, gc_phase(GC_PHASE_SB), flags); b++; start += sectors; } while (start < end); } void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, unsigned flags) { struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; unsigned i; u64 b; /* * This conditional is kind of gross, but we may be called from the * device add path, before the new device has actually been added to the * running filesystem: */ if (c) { lockdep_assert_held(&c->sb_lock); percpu_down_read(&c->mark_lock); } for (i = 0; i < layout->nr_superblocks; i++) { u64 offset = le64_to_cpu(layout->sb_offset[i]); if (offset == BCH_SB_SECTOR) mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, BCH_DATA_sb, flags); mark_metadata_sectors(c, ca, offset, offset + (1 << layout->sb_max_size_bits), BCH_DATA_sb, flags); } for (i = 0; i < ca->journal.nr; i++) { b = ca->journal.buckets[i]; bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal, ca->mi.bucket_size, gc_phase(GC_PHASE_SB), flags); } if (c) percpu_up_read(&c->mark_lock); } static void bch2_mark_superblocks(struct bch_fs *c) { struct bch_dev *ca; unsigned i; mutex_lock(&c->sb_lock); gc_pos_set(c, gc_phase(GC_PHASE_SB)); for_each_online_member(ca, c, i) bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC); mutex_unlock(&c->sb_lock); } #if 0 /* Also see bch2_pending_btree_node_free_insert_done() */ static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) { struct btree_update *as; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); for_each_pending_btree_node_free(c, as, d) if (d->index_update_done) bch2_mark_key(c, bkey_i_to_s_c(&d->key), BTREE_TRIGGER_GC); mutex_unlock(&c->btree_interior_update_lock); } #endif static void bch2_gc_free(struct bch_fs *c) { struct bch_dev *ca; unsigned i; genradix_free(&c->stripes[1]); for_each_member_device(ca, c, i) { kvpfree(rcu_dereference_protected(ca->buckets[1], 1), sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket)); ca->buckets[1] = NULL; free_percpu(ca->usage_gc); ca->usage_gc = NULL; } free_percpu(c->usage_gc); c->usage_gc = NULL; } static int bch2_gc_done(struct bch_fs *c, bool initial, bool metadata_only) { struct bch_dev *ca = NULL; bool verify = !metadata_only && (!initial || (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info))); unsigned i, dev; int ret = 0; #define copy_field(_f, _msg, ...) \ if (dst->_f != src->_f) { \ if (verify) \ fsck_err(c, _msg ": got %llu, should be %llu" \ , ##__VA_ARGS__, dst->_f, src->_f); \ dst->_f = src->_f; \ set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ } #define copy_stripe_field(_f, _msg, ...) \ if (dst->_f != src->_f) { \ if (verify) \ fsck_err(c, "stripe %zu has wrong "_msg \ ": got %u, should be %u", \ iter.pos, ##__VA_ARGS__, \ dst->_f, src->_f); \ dst->_f = src->_f; \ set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ } #define copy_bucket_field(_f) \ if (dst->b[b]._f != src->b[b]._f) { \ if (verify) \ fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f \ ": got %u, should be %u", dev, b, \ dst->b[b].mark.gen, \ bch2_data_types[dst->b[b].mark.data_type],\ dst->b[b]._f, src->b[b]._f); \ dst->b[b]._f = src->b[b]._f; \ set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \ } #define copy_dev_field(_f, _msg, ...) \ copy_field(_f, "dev %u has wrong " _msg, dev, ##__VA_ARGS__) #define copy_fs_field(_f, _msg, ...) \ copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__) if (!metadata_only) { struct genradix_iter iter = genradix_iter_init(&c->stripes[1], 0); struct stripe *dst, *src; while ((src = genradix_iter_peek(&iter, &c->stripes[1]))) { dst = genradix_ptr_alloc(&c->stripes[0], iter.pos, GFP_KERNEL); if (dst->alive != src->alive || dst->sectors != src->sectors || dst->algorithm != src->algorithm || dst->nr_blocks != src->nr_blocks || dst->nr_redundant != src->nr_redundant) { bch_err(c, "unexpected stripe inconsistency at bch2_gc_done, confused"); ret = -EINVAL; goto fsck_err; } for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++) copy_stripe_field(block_sectors[i], "block_sectors[%u]", i); dst->blocks_nonempty = 0; for (i = 0; i < dst->nr_blocks; i++) dst->blocks_nonempty += dst->block_sectors[i] != 0; genradix_iter_advance(&iter, &c->stripes[1]); } } for (i = 0; i < ARRAY_SIZE(c->usage); i++) bch2_fs_usage_acc_to_base(c, i); for_each_member_device(ca, c, dev) { struct bucket_array *dst = __bucket_array(ca, 0); struct bucket_array *src = __bucket_array(ca, 1); size_t b; for (b = 0; b < src->nbuckets; b++) { copy_bucket_field(_mark.gen); copy_bucket_field(_mark.data_type); copy_bucket_field(_mark.stripe); copy_bucket_field(_mark.dirty_sectors); copy_bucket_field(_mark.cached_sectors); copy_bucket_field(stripe_redundancy); copy_bucket_field(stripe); dst->b[b].oldest_gen = src->b[b].oldest_gen; } { struct bch_dev_usage *dst = ca->usage_base; struct bch_dev_usage *src = (void *) bch2_acc_percpu_u64s((void *) ca->usage_gc, dev_usage_u64s()); copy_dev_field(buckets_ec, "buckets_ec"); copy_dev_field(buckets_unavailable, "buckets_unavailable"); for (i = 0; i < BCH_DATA_NR; i++) { copy_dev_field(d[i].buckets, "%s buckets", bch2_data_types[i]); copy_dev_field(d[i].sectors, "%s sectors", bch2_data_types[i]); copy_dev_field(d[i].fragmented, "%s fragmented", bch2_data_types[i]); } } }; { unsigned nr = fs_usage_u64s(c); struct bch_fs_usage *dst = c->usage_base; struct bch_fs_usage *src = (void *) bch2_acc_percpu_u64s((void *) c->usage_gc, nr); copy_fs_field(hidden, "hidden"); copy_fs_field(btree, "btree"); if (!metadata_only) { copy_fs_field(data, "data"); copy_fs_field(cached, "cached"); copy_fs_field(reserved, "reserved"); copy_fs_field(nr_inodes,"nr_inodes"); for (i = 0; i < BCH_REPLICAS_MAX; i++) copy_fs_field(persistent_reserved[i], "persistent_reserved[%i]", i); } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); char buf[80]; if (metadata_only && (e->data_type == BCH_DATA_user || e->data_type == BCH_DATA_cached)) continue; bch2_replicas_entry_to_text(&PBUF(buf), e); copy_fs_field(replicas[i], "%s", buf); } } #undef copy_fs_field #undef copy_dev_field #undef copy_bucket_field #undef copy_stripe_field #undef copy_field fsck_err: if (ca) percpu_ref_put(&ca->ref); if (ret) bch_err(c, "%s: ret %i", __func__, ret); return ret; } static int bch2_gc_start(struct bch_fs *c, bool metadata_only) { struct bch_dev *ca = NULL; unsigned i; int ret; BUG_ON(c->usage_gc); c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!c->usage_gc) { bch_err(c, "error allocating c->usage_gc"); return -ENOMEM; } for_each_member_device(ca, c, i) { BUG_ON(ca->buckets[1]); BUG_ON(ca->usage_gc); ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO); if (!ca->buckets[1]) { percpu_ref_put(&ca->ref); bch_err(c, "error allocating ca->buckets[gc]"); return -ENOMEM; } ca->usage_gc = alloc_percpu(struct bch_dev_usage); if (!ca->usage_gc) { bch_err(c, "error allocating ca->usage_gc"); percpu_ref_put(&ca->ref); return -ENOMEM; } } ret = bch2_ec_mem_alloc(c, true); if (ret) { bch_err(c, "error allocating ec gc mem"); return ret; } percpu_down_write(&c->mark_lock); /* * indicate to stripe code that we need to allocate for the gc stripes * radix tree, too */ gc_pos_set(c, gc_phase(GC_PHASE_START)); for_each_member_device(ca, c, i) { struct bucket_array *dst = __bucket_array(ca, 1); struct bucket_array *src = __bucket_array(ca, 0); size_t b; dst->first_bucket = src->first_bucket; dst->nbuckets = src->nbuckets; for (b = 0; b < src->nbuckets; b++) { struct bucket *d = &dst->b[b]; struct bucket *s = &src->b[b]; d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen; d->gen_valid = s->gen_valid; if (metadata_only && (s->mark.data_type == BCH_DATA_user || s->mark.data_type == BCH_DATA_cached)) d->_mark = s->mark; } }; percpu_up_write(&c->mark_lock); return 0; } static int bch2_gc_reflink_done_initial_fn(struct btree_trans *trans, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct reflink_gc *r; const __le64 *refcount = bkey_refcount_c(k); char buf[200]; int ret = 0; if (!refcount) return 0; r = genradix_ptr(&c->reflink_gc_table, c->reflink_gc_idx++); if (!r) return -ENOMEM; if (!r || r->offset != k.k->p.offset || r->size != k.k->size) { bch_err(c, "unexpected inconsistency walking reflink table at gc finish"); return -EINVAL; } if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c, "reflink key has wrong refcount:\n" " %s\n" " should be %u", (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf), r->refcount)) { struct bkey_i *new; new = kmalloc(bkey_bytes(k.k), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto fsck_err; } bkey_reassemble(new, k); if (!r->refcount) { new->k.type = KEY_TYPE_deleted; new->k.size = 0; } else { *bkey_refcount(new) = cpu_to_le64(r->refcount); } ret = bch2_journal_key_insert(c, BTREE_ID_reflink, 0, new); if (ret) kfree(new); } fsck_err: return ret; } static int bch2_gc_reflink_done(struct bch_fs *c, bool initial, bool metadata_only) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct reflink_gc *r; size_t idx = 0; char buf[200]; int ret = 0; if (metadata_only) return 0; bch2_trans_init(&trans, c, 0, 0); if (initial) { c->reflink_gc_idx = 0; ret = bch2_btree_and_journal_walk(&trans, BTREE_ID_reflink, bch2_gc_reflink_done_initial_fn); goto out; } for_each_btree_key(&trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { const __le64 *refcount = bkey_refcount_c(k); if (!refcount) continue; r = genradix_ptr(&c->reflink_gc_table, idx); if (!r || r->offset != k.k->p.offset || r->size != k.k->size) { bch_err(c, "unexpected inconsistency walking reflink table at gc finish"); ret = -EINVAL; break; } if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c, "reflink key has wrong refcount:\n" " %s\n" " should be %u", (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf), r->refcount)) { struct bkey_i *new; new = kmalloc(bkey_bytes(k.k), GFP_KERNEL); if (!new) { ret = -ENOMEM; break; } bkey_reassemble(new, k); if (!r->refcount) new->k.type = KEY_TYPE_deleted; else *bkey_refcount(new) = cpu_to_le64(r->refcount); ret = __bch2_trans_do(&trans, NULL, NULL, 0, __bch2_btree_insert(&trans, BTREE_ID_reflink, new)); kfree(new); if (ret) break; } } fsck_err: bch2_trans_iter_exit(&trans, &iter); out: genradix_free(&c->reflink_gc_table); c->reflink_gc_nr = 0; bch2_trans_exit(&trans); return ret; } static int bch2_gc_reflink_start_initial_fn(struct btree_trans *trans, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct reflink_gc *r; const __le64 *refcount = bkey_refcount_c(k); if (!refcount) return 0; r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++, GFP_KERNEL); if (!r) return -ENOMEM; r->offset = k.k->p.offset; r->size = k.k->size; r->refcount = 0; return 0; } static int bch2_gc_reflink_start(struct bch_fs *c, bool initial, bool metadata_only) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct reflink_gc *r; int ret = 0; if (metadata_only) return 0; bch2_trans_init(&trans, c, 0, 0); genradix_free(&c->reflink_gc_table); c->reflink_gc_nr = 0; if (initial) { ret = bch2_btree_and_journal_walk(&trans, BTREE_ID_reflink, bch2_gc_reflink_start_initial_fn); goto out; } for_each_btree_key(&trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { const __le64 *refcount = bkey_refcount_c(k); if (!refcount) continue; r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++, GFP_KERNEL); if (!r) { ret = -ENOMEM; break; } r->offset = k.k->p.offset; r->size = k.k->size; r->refcount = 0; } bch2_trans_iter_exit(&trans, &iter); out: bch2_trans_exit(&trans); return ret; } /** * bch2_gc - walk _all_ references to buckets, and recompute them: * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ int bch2_gc(struct bch_fs *c, bool initial, bool metadata_only) { struct bch_dev *ca; u64 start_time = local_clock(); unsigned i, iter = 0; int ret; lockdep_assert_held(&c->state_lock); trace_gc_start(c); down_write(&c->gc_lock); /* flush interior btree updates: */ closure_wait_event(&c->btree_interior_update_wait, !bch2_btree_interior_updates_nr_pending(c)); again: ret = bch2_gc_start(c, metadata_only) ?: bch2_gc_reflink_start(c, initial, metadata_only); if (ret) goto out; bch2_mark_superblocks(c); if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb) && !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags) && c->opts.fix_errors != FSCK_OPT_NO) { bch_info(c, "starting topology repair pass"); ret = bch2_repair_topology(c); if (ret) goto out; bch_info(c, "topology repair pass done"); set_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags); } ret = bch2_gc_btrees(c, initial, metadata_only); if (ret == FSCK_ERR_START_TOPOLOGY_REPAIR && !test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags) && !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) { set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); ret = 0; } if (ret == FSCK_ERR_START_TOPOLOGY_REPAIR) ret = FSCK_ERR_EXIT; if (ret) goto out; #if 0 bch2_mark_pending_btree_node_frees(c); #endif c->gc_count++; if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) || (!iter && bch2_test_restart_gc)) { /* * XXX: make sure gens we fixed got saved */ if (iter++ <= 2) { bch_info(c, "Second GC pass needed, restarting:"); clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); percpu_down_write(&c->mark_lock); bch2_gc_free(c); percpu_up_write(&c->mark_lock); /* flush fsck errors, reset counters */ bch2_flush_fsck_errs(c); goto again; } bch_info(c, "Unable to fix bucket gens, looping"); ret = -EINVAL; } out: if (!ret) { bch2_journal_block(&c->journal); percpu_down_write(&c->mark_lock); ret = bch2_gc_reflink_done(c, initial, metadata_only) ?: bch2_gc_done(c, initial, metadata_only); bch2_journal_unblock(&c->journal); } else { percpu_down_write(&c->mark_lock); } /* Indicates that gc is no longer in progress: */ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); bch2_gc_free(c); percpu_up_write(&c->mark_lock); up_write(&c->gc_lock); trace_gc_end(c); bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); /* * Wake up allocator in case it was waiting for buckets * because of not being able to inc gens */ for_each_member_device(ca, c, i) bch2_wake_allocator(ca); /* * At startup, allocations can happen directly instead of via the * allocator thread - issue wakeup in case they blocked on gc_lock: */ closure_wake_up(&c->freelist_wait); return ret; } static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const struct bch_extent_ptr *ptr; percpu_down_read(&c->mark_lock); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, false); if (gen_after(g->mark.gen, ptr->gen) > 16) { percpu_up_read(&c->mark_lock); return true; } } bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, false); if (gen_after(g->gc_gen, ptr->gen)) g->gc_gen = ptr->gen; } percpu_up_read(&c->mark_lock); return false; } /* * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree * node pointers currently never have cached pointers that can become stale: */ static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bkey_buf sk; int ret = 0, commit_err = 0; bch2_bkey_buf_init(&sk); bch2_trans_init(&trans, c, 0, 0); bch2_trans_iter_init(&trans, &iter, btree_id, POS_MIN, BTREE_ITER_PREFETCH| BTREE_ITER_NOT_EXTENTS| BTREE_ITER_ALL_SNAPSHOTS); while ((bch2_trans_begin(&trans), k = bch2_btree_iter_peek(&iter)).k) { ret = bkey_err(k); if (ret == -EINTR) continue; if (ret) break; c->gc_gens_pos = iter.pos; if (gc_btree_gens_key(c, k) && !commit_err) { bch2_bkey_buf_reassemble(&sk, c, k); bch2_extent_normalize(c, bkey_i_to_s(sk.k)); commit_err = bch2_trans_update(&trans, &iter, sk.k, 0) ?: bch2_trans_commit(&trans, NULL, NULL, BTREE_INSERT_NOWAIT| BTREE_INSERT_NOFAIL); if (commit_err == -EINTR) { commit_err = 0; continue; } } bch2_btree_iter_advance(&iter); } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); bch2_bkey_buf_exit(&sk, c); return ret; } int bch2_gc_gens(struct bch_fs *c) { struct bch_dev *ca; struct bucket_array *buckets; struct bucket *g; unsigned i; int ret; /* * Ideally we would be using state_lock and not gc_lock here, but that * introduces a deadlock in the RO path - we currently take the state * lock at the start of going RO, thus the gc thread may get stuck: */ down_read(&c->gc_lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) g->gc_gen = g->mark.gen; up_read(&ca->bucket_lock); } for (i = 0; i < BTREE_ID_NR; i++) if ((1 << i) & BTREE_ID_HAS_PTRS) { c->gc_gens_btree = i; c->gc_gens_pos = POS_MIN; ret = bch2_gc_btree_gens(c, i); if (ret) { bch_err(c, "error recalculating oldest_gen: %i", ret); goto err; } } for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) g->oldest_gen = g->gc_gen; up_read(&ca->bucket_lock); } c->gc_gens_btree = 0; c->gc_gens_pos = POS_MIN; c->gc_count++; err: up_read(&c->gc_lock); return ret; } static int bch2_gc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; unsigned long last = atomic64_read(&clock->now); unsigned last_kick = atomic_read(&c->kick_gc); int ret; set_freezable(); while (1) { while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } if (atomic_read(&c->kick_gc) != last_kick) break; if (c->btree_gc_periodic) { unsigned long next = last + c->capacity / 16; if (atomic64_read(&clock->now) >= next) break; bch2_io_clock_schedule_timeout(clock, next); } else { schedule(); } try_to_freeze(); } __set_current_state(TASK_RUNNING); last = atomic64_read(&clock->now); last_kick = atomic_read(&c->kick_gc); /* * Full gc is currently incompatible with btree key cache: */ #if 0 ret = bch2_gc(c, false, false); #else ret = bch2_gc_gens(c); #endif if (ret < 0) bch_err(c, "btree gc failed: %i", ret); debug_check_no_locks_held(); } return 0; } void bch2_gc_thread_stop(struct bch_fs *c) { struct task_struct *p; p = c->gc_thread; c->gc_thread = NULL; if (p) { kthread_stop(p); put_task_struct(p); } } int bch2_gc_thread_start(struct bch_fs *c) { struct task_struct *p; if (c->gc_thread) return 0; p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name); if (IS_ERR(p)) { bch_err(c, "error creating gc thread: %li", PTR_ERR(p)); return PTR_ERR(p); } get_task_struct(p); c->gc_thread = p; wake_up_process(p); return 0; }