// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2012 Google, Inc. * * Foreground allocator code: allocate buckets from freelist, and allocate in * sector granularity from writepoints. * * bch2_bucket_alloc() allocates a single bucket from a specific device. * * bch2_bucket_alloc_set() allocates one or more buckets from different devices * in a given filesystem. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "btree_update.h" #include "btree_gc.h" #include "buckets.h" #include "buckets_waiting_for_journal.h" #include "clock.h" #include "debug.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "io.h" #include "journal.h" #include "movinggc.h" #include "trace.h" #include #include #include const char * const bch2_alloc_reserves[] = { #define x(t) #t, BCH_ALLOC_RESERVES() #undef x NULL }; /* * Open buckets represent a bucket that's currently being allocated from. They * serve two purposes: * * - They track buckets that have been partially allocated, allowing for * sub-bucket sized allocations - they're used by the sector allocator below * * - They provide a reference to the buckets they own that mark and sweep GC * can find, until the new allocation has a pointer to it inserted into the * btree * * When allocating some space with the sector allocator, the allocation comes * with a reference to an open bucket - the caller is required to put that * reference _after_ doing the index update that makes its allocation reachable. */ void bch2_reset_alloc_cursors(struct bch_fs *c) { struct bch_dev *ca; unsigned i; rcu_read_lock(); for_each_member_device_rcu(ca, c, i, NULL) ca->alloc_cursor = 0; rcu_read_unlock(); } static void bch2_open_bucket_hash_add(struct bch_fs *c, struct open_bucket *ob) { open_bucket_idx_t idx = ob - c->open_buckets; open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); ob->hash = *slot; *slot = idx; } static void bch2_open_bucket_hash_remove(struct bch_fs *c, struct open_bucket *ob) { open_bucket_idx_t idx = ob - c->open_buckets; open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); while (*slot != idx) { BUG_ON(!*slot); slot = &c->open_buckets[*slot].hash; } *slot = ob->hash; ob->hash = 0; } void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); if (ob->ec) { bch2_ec_bucket_written(c, ob); return; } percpu_down_read(&c->mark_lock); spin_lock(&ob->lock); ob->valid = false; ob->data_type = 0; spin_unlock(&ob->lock); percpu_up_read(&c->mark_lock); spin_lock(&c->freelist_lock); bch2_open_bucket_hash_remove(c, ob); ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; c->open_buckets_nr_free++; ca->nr_open_buckets--; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); } void bch2_open_bucket_write_error(struct bch_fs *c, struct open_buckets *obs, unsigned dev) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, obs, ob, i) if (ob->dev == dev && ob->ec) bch2_ec_bucket_cancel(c, ob); } static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) { struct open_bucket *ob; BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ob = c->open_buckets + c->open_buckets_freelist; c->open_buckets_freelist = ob->freelist; atomic_set(&ob->pin, 1); ob->data_type = 0; c->open_buckets_nr_free--; return ob; } static void open_bucket_free_unused(struct bch_fs *c, struct write_point *wp, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); bool may_realloc = wp->data_type == BCH_DATA_user; BUG_ON(ca->open_buckets_partial_nr > ARRAY_SIZE(ca->open_buckets_partial)); if (ca->open_buckets_partial_nr < ARRAY_SIZE(ca->open_buckets_partial) && may_realloc) { spin_lock(&c->freelist_lock); ob->on_partial_list = true; ca->open_buckets_partial[ca->open_buckets_partial_nr++] = ob - c->open_buckets; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); closure_wake_up(&c->freelist_wait); } else { bch2_open_bucket_put(c, ob); } } /* _only_ for allocating the journal on a new device: */ long bch2_bucket_alloc_new_fs(struct bch_dev *ca) { while (ca->new_fs_bucket_idx < ca->mi.nbuckets) { u64 b = ca->new_fs_bucket_idx++; if (!is_superblock_bucket(ca, b) && (!ca->buckets_nouse || !test_bit(b, ca->buckets_nouse))) return b; } return -1; } static inline unsigned open_buckets_reserved(enum alloc_reserve reserve) { switch (reserve) { case RESERVE_btree: case RESERVE_btree_movinggc: return 0; case RESERVE_movinggc: return OPEN_BUCKETS_COUNT / 4; default: return OPEN_BUCKETS_COUNT / 2; } } static struct open_bucket *__try_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, u64 bucket, enum alloc_reserve reserve, const struct bch_alloc_v4 *a, struct bucket_alloc_state *s, struct closure *cl) { struct open_bucket *ob; if (unlikely(ca->buckets_nouse && test_bit(bucket, ca->buckets_nouse))) { s->skipped_nouse++; return NULL; } if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { s->skipped_open++; return NULL; } if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, c->journal.flushed_seq_ondisk, ca->dev_idx, bucket)) { s->skipped_need_journal_commit++; return NULL; } spin_lock(&c->freelist_lock); if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) { if (cl) closure_wait(&c->open_buckets_wait, cl); if (!c->blocked_allocate_open_bucket) c->blocked_allocate_open_bucket = local_clock(); spin_unlock(&c->freelist_lock); return ERR_PTR(-BCH_ERR_open_buckets_empty); } /* Recheck under lock: */ if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { spin_unlock(&c->freelist_lock); s->skipped_open++; return NULL; } ob = bch2_open_bucket_alloc(c); spin_lock(&ob->lock); ob->valid = true; ob->sectors_free = ca->mi.bucket_size; ob->alloc_reserve = reserve; ob->dev = ca->dev_idx; ob->gen = a->gen; ob->bucket = bucket; spin_unlock(&ob->lock); ca->nr_open_buckets++; bch2_open_bucket_hash_add(c, ob); if (c->blocked_allocate_open_bucket) { bch2_time_stats_update( &c->times[BCH_TIME_blocked_allocate_open_bucket], c->blocked_allocate_open_bucket); c->blocked_allocate_open_bucket = 0; } if (c->blocked_allocate) { bch2_time_stats_update( &c->times[BCH_TIME_blocked_allocate], c->blocked_allocate); c->blocked_allocate = 0; } spin_unlock(&c->freelist_lock); return ob; } static struct open_bucket *try_alloc_bucket(struct btree_trans *trans, struct bch_dev *ca, enum alloc_reserve reserve, u64 free_entry, struct bucket_alloc_state *s, struct bkey_s_c freespace_k, struct closure *cl) { struct bch_fs *c = trans->c; struct btree_iter iter = { NULL }; struct bkey_s_c k; struct open_bucket *ob; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; u64 b = free_entry & ~(~0ULL << 56); unsigned genbits = free_entry >> 56; struct printbuf buf = PRINTBUF; int ret; if (b < ca->mi.first_bucket || b >= ca->mi.nbuckets) { prt_printf(&buf, "freespace btree has bucket outside allowed range %u-%llu\n" " freespace key ", ca->mi.first_bucket, ca->mi.nbuckets); bch2_bkey_val_to_text(&buf, c, freespace_k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, POS(ca->dev_idx, b), BTREE_ITER_CACHED); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) { ob = ERR_PTR(ret); goto err; } a = bch2_alloc_to_v4(k, &a_convert); if (a->data_type != BCH_DATA_free) { if (!test_bit(BCH_FS_CHECK_ALLOC_DONE, &c->flags)) { ob = NULL; goto err; } prt_printf(&buf, "non free bucket in freespace btree\n" " freespace key "); bch2_bkey_val_to_text(&buf, c, freespace_k); prt_printf(&buf, "\n "); bch2_bkey_val_to_text(&buf, c, k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } if (genbits != (alloc_freespace_genbits(*a) >> 56) && test_bit(BCH_FS_CHECK_ALLOC_DONE, &c->flags)) { prt_printf(&buf, "bucket in freespace btree with wrong genbits (got %u should be %llu)\n" " freespace key ", genbits, alloc_freespace_genbits(*a) >> 56); bch2_bkey_val_to_text(&buf, c, freespace_k); prt_printf(&buf, "\n "); bch2_bkey_val_to_text(&buf, c, k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } ob = __try_alloc_bucket(c, ca, b, reserve, a, s, cl); if (!ob) iter.path->preserve = false; err: set_btree_iter_dontneed(&iter); bch2_trans_iter_exit(trans, &iter); printbuf_exit(&buf); return ob; } static struct open_bucket *try_alloc_partial_bucket(struct bch_fs *c, struct bch_dev *ca, enum alloc_reserve reserve) { struct open_bucket *ob; int i; spin_lock(&c->freelist_lock); for (i = ca->open_buckets_partial_nr - 1; i >= 0; --i) { ob = c->open_buckets + ca->open_buckets_partial[i]; if (reserve <= ob->alloc_reserve) { array_remove_item(ca->open_buckets_partial, ca->open_buckets_partial_nr, i); ob->on_partial_list = false; ob->alloc_reserve = reserve; spin_unlock(&c->freelist_lock); return ob; } } spin_unlock(&c->freelist_lock); return NULL; } /* * This path is for before the freespace btree is initialized: * * If ca->new_fs_bucket_idx is nonzero, we haven't yet marked superblock & * journal buckets - journal buckets will be < ca->new_fs_bucket_idx */ static noinline struct open_bucket * bch2_bucket_alloc_early(struct btree_trans *trans, struct bch_dev *ca, enum alloc_reserve reserve, struct bucket_alloc_state *s, struct closure *cl) { struct btree_iter iter; struct bkey_s_c k; struct open_bucket *ob = NULL; u64 alloc_start = max_t(u64, ca->mi.first_bucket, ca->new_fs_bucket_idx); u64 alloc_cursor = max(alloc_start, READ_ONCE(ca->alloc_cursor)); int ret; again: for_each_btree_key_norestart(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, alloc_cursor), BTREE_ITER_SLOTS, k, ret) { struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; if (bkey_ge(k.k->p, POS(ca->dev_idx, ca->mi.nbuckets))) break; if (ca->new_fs_bucket_idx && is_superblock_bucket(ca, k.k->p.offset)) continue; a = bch2_alloc_to_v4(k, &a_convert); if (a->data_type != BCH_DATA_free) continue; s->buckets_seen++; ob = __try_alloc_bucket(trans->c, ca, k.k->p.offset, reserve, a, s, cl); if (ob) break; } bch2_trans_iter_exit(trans, &iter); ca->alloc_cursor = alloc_cursor; if (!ob && ret) ob = ERR_PTR(ret); if (!ob && alloc_cursor > alloc_start) { alloc_cursor = alloc_start; goto again; } return ob; } static struct open_bucket *bch2_bucket_alloc_freelist(struct btree_trans *trans, struct bch_dev *ca, enum alloc_reserve reserve, struct bucket_alloc_state *s, struct closure *cl) { struct btree_iter iter; struct bkey_s_c k; struct open_bucket *ob = NULL; u64 alloc_start = max_t(u64, ca->mi.first_bucket, READ_ONCE(ca->alloc_cursor)); u64 alloc_cursor = alloc_start; int ret; BUG_ON(ca->new_fs_bucket_idx); again: for_each_btree_key_norestart(trans, iter, BTREE_ID_freespace, POS(ca->dev_idx, alloc_cursor), 0, k, ret) { if (k.k->p.inode != ca->dev_idx) break; for (alloc_cursor = max(alloc_cursor, bkey_start_offset(k.k)); alloc_cursor < k.k->p.offset; alloc_cursor++) { ret = btree_trans_too_many_iters(trans); if (ret) { ob = ERR_PTR(ret); break; } s->buckets_seen++; ob = try_alloc_bucket(trans, ca, reserve, alloc_cursor, s, k, cl); if (ob) { iter.path->preserve = false; break; } } if (ob || ret) break; } bch2_trans_iter_exit(trans, &iter); ca->alloc_cursor = alloc_cursor; if (!ob && ret) ob = ERR_PTR(ret); if (!ob && alloc_start > ca->mi.first_bucket) { alloc_cursor = alloc_start = ca->mi.first_bucket; goto again; } return ob; } /** * bch_bucket_alloc - allocate a single bucket from a specific device * * Returns index of bucket on success, 0 on failure */ static struct open_bucket *bch2_bucket_alloc_trans(struct btree_trans *trans, struct bch_dev *ca, enum alloc_reserve reserve, bool may_alloc_partial, struct closure *cl, struct bch_dev_usage *usage) { struct bch_fs *c = trans->c; struct open_bucket *ob = NULL; bool freespace = READ_ONCE(ca->mi.freespace_initialized); u64 avail; struct bucket_alloc_state s = { 0 }; bool waiting = false; again: bch2_dev_usage_read_fast(ca, usage); avail = dev_buckets_free(ca, *usage, reserve); if (usage->d[BCH_DATA_need_discard].buckets > avail) bch2_do_discards(c); if (usage->d[BCH_DATA_need_gc_gens].buckets > avail) bch2_do_gc_gens(c); if (should_invalidate_buckets(ca, *usage)) bch2_do_invalidates(c); if (!avail) { if (cl && !waiting) { closure_wait(&c->freelist_wait, cl); waiting = true; goto again; } if (!c->blocked_allocate) c->blocked_allocate = local_clock(); ob = ERR_PTR(-BCH_ERR_freelist_empty); goto err; } if (waiting) closure_wake_up(&c->freelist_wait); if (may_alloc_partial) { ob = try_alloc_partial_bucket(c, ca, reserve); if (ob) return ob; } alloc: ob = likely(freespace) ? bch2_bucket_alloc_freelist(trans, ca, reserve, &s, cl) : bch2_bucket_alloc_early(trans, ca, reserve, &s, cl); if (s.skipped_need_journal_commit * 2 > avail) bch2_journal_flush_async(&c->journal, NULL); if (!ob && freespace && !test_bit(BCH_FS_CHECK_ALLOC_DONE, &c->flags)) { freespace = false; goto alloc; } err: if (!ob) ob = ERR_PTR(-BCH_ERR_no_buckets_found); if (!IS_ERR(ob)) trace_and_count(c, bucket_alloc, ca, bch2_alloc_reserves[reserve], may_alloc_partial, ob->bucket, usage->d[BCH_DATA_free].buckets, avail, bch2_copygc_wait_amount(c), c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now), &s, cl == NULL, ""); else if (!bch2_err_matches(PTR_ERR(ob), BCH_ERR_transaction_restart)) trace_and_count(c, bucket_alloc_fail, ca, bch2_alloc_reserves[reserve], may_alloc_partial, 0, usage->d[BCH_DATA_free].buckets, avail, bch2_copygc_wait_amount(c), c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now), &s, cl == NULL, bch2_err_str(PTR_ERR(ob))); return ob; } struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, enum alloc_reserve reserve, bool may_alloc_partial, struct closure *cl) { struct bch_dev_usage usage; struct open_bucket *ob; bch2_trans_do(c, NULL, NULL, 0, PTR_ERR_OR_ZERO(ob = bch2_bucket_alloc_trans(&trans, ca, reserve, may_alloc_partial, cl, &usage))); return ob; } static int __dev_stripe_cmp(struct dev_stripe_state *stripe, unsigned l, unsigned r) { return ((stripe->next_alloc[l] > stripe->next_alloc[r]) - (stripe->next_alloc[l] < stripe->next_alloc[r])); } #define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r) struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c, struct dev_stripe_state *stripe, struct bch_devs_mask *devs) { struct dev_alloc_list ret = { .nr = 0 }; unsigned i; for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX) ret.devs[ret.nr++] = i; bubble_sort(ret.devs, ret.nr, dev_stripe_cmp); return ret; } static inline void bch2_dev_stripe_increment_inlined(struct bch_dev *ca, struct dev_stripe_state *stripe, struct bch_dev_usage *usage) { u64 *v = stripe->next_alloc + ca->dev_idx; u64 free_space = dev_buckets_available(ca, RESERVE_none); u64 free_space_inv = free_space ? div64_u64(1ULL << 48, free_space) : 1ULL << 48; u64 scale = *v / 4; if (*v + free_space_inv >= *v) *v += free_space_inv; else *v = U64_MAX; for (v = stripe->next_alloc; v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++) *v = *v < scale ? 0 : *v - scale; } void bch2_dev_stripe_increment(struct bch_dev *ca, struct dev_stripe_state *stripe) { struct bch_dev_usage usage; bch2_dev_usage_read_fast(ca, &usage); bch2_dev_stripe_increment_inlined(ca, stripe, &usage); } #define BUCKET_MAY_ALLOC_PARTIAL (1 << 0) #define BUCKET_ALLOC_USE_DURABILITY (1 << 1) static void add_new_bucket(struct bch_fs *c, struct open_buckets *ptrs, struct bch_devs_mask *devs_may_alloc, unsigned *nr_effective, bool *have_cache, unsigned flags, struct open_bucket *ob) { unsigned durability = bch_dev_bkey_exists(c, ob->dev)->mi.durability; __clear_bit(ob->dev, devs_may_alloc->d); *nr_effective += (flags & BUCKET_ALLOC_USE_DURABILITY) ? durability : 1; *have_cache |= !durability; ob_push(c, ptrs, ob); } static int bch2_bucket_alloc_set_trans(struct btree_trans *trans, struct open_buckets *ptrs, struct dev_stripe_state *stripe, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum alloc_reserve reserve, unsigned flags, struct closure *cl) { struct bch_fs *c = trans->c; struct dev_alloc_list devs_sorted = bch2_dev_alloc_list(c, stripe, devs_may_alloc); unsigned dev; struct bch_dev *ca; int ret = -BCH_ERR_insufficient_devices; unsigned i; BUG_ON(*nr_effective >= nr_replicas); for (i = 0; i < devs_sorted.nr; i++) { struct bch_dev_usage usage; struct open_bucket *ob; dev = devs_sorted.devs[i]; rcu_read_lock(); ca = rcu_dereference(c->devs[dev]); if (ca) percpu_ref_get(&ca->ref); rcu_read_unlock(); if (!ca) continue; if (!ca->mi.durability && *have_cache) { percpu_ref_put(&ca->ref); continue; } ob = bch2_bucket_alloc_trans(trans, ca, reserve, flags & BUCKET_MAY_ALLOC_PARTIAL, cl, &usage); if (!IS_ERR(ob)) bch2_dev_stripe_increment_inlined(ca, stripe, &usage); percpu_ref_put(&ca->ref); if (IS_ERR(ob)) { ret = PTR_ERR(ob); if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || cl) break; continue; } add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); if (*nr_effective >= nr_replicas) { ret = 0; break; } } return ret; } int bch2_bucket_alloc_set(struct bch_fs *c, struct open_buckets *ptrs, struct dev_stripe_state *stripe, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum alloc_reserve reserve, unsigned flags, struct closure *cl) { return bch2_trans_do(c, NULL, NULL, 0, bch2_bucket_alloc_set_trans(&trans, ptrs, stripe, devs_may_alloc, nr_replicas, nr_effective, have_cache, reserve, flags, cl)); } /* Allocate from stripes: */ /* * if we can't allocate a new stripe because there are already too many * partially filled stripes, force allocating from an existing stripe even when * it's to a device we don't want: */ static int bucket_alloc_from_stripe(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, u16 target, unsigned erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags, struct closure *cl) { struct dev_alloc_list devs_sorted; struct ec_stripe_head *h; struct open_bucket *ob; struct bch_dev *ca; unsigned i, ec_idx; if (!erasure_code) return 0; if (nr_replicas < 2) return 0; if (ec_open_bucket(c, ptrs)) return 0; h = bch2_ec_stripe_head_get(c, target, 0, nr_replicas - 1, wp == &c->copygc_write_point, cl); if (IS_ERR(h)) return -PTR_ERR(h); if (!h) return 0; devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc); for (i = 0; i < devs_sorted.nr; i++) for (ec_idx = 0; ec_idx < h->s->nr_data; ec_idx++) { if (!h->s->blocks[ec_idx]) continue; ob = c->open_buckets + h->s->blocks[ec_idx]; if (ob->dev == devs_sorted.devs[i] && !test_and_set_bit(ec_idx, h->s->blocks_allocated)) goto got_bucket; } goto out_put_head; got_bucket: ca = bch_dev_bkey_exists(c, ob->dev); ob->ec_idx = ec_idx; ob->ec = h->s; add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); atomic_inc(&h->s->pin); out_put_head: bch2_ec_stripe_head_put(c, h); return 0; } /* Sector allocator */ static void get_buckets_from_writepoint(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags, bool need_ec) { struct open_buckets ptrs_skip = { .nr = 0 }; struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); if (*nr_effective < nr_replicas && test_bit(ob->dev, devs_may_alloc->d) && (ca->mi.durability || (wp->data_type == BCH_DATA_user && !*have_cache)) && (ob->ec || !need_ec)) { add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); } else { ob_push(c, &ptrs_skip, ob); } } wp->ptrs = ptrs_skip; } static int open_bucket_add_buckets(struct btree_trans *trans, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_list *devs_have, u16 target, unsigned erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum alloc_reserve reserve, unsigned flags, struct closure *_cl) { struct bch_fs *c = trans->c; struct bch_devs_mask devs; struct open_bucket *ob; struct closure *cl = NULL; int ret; unsigned i; rcu_read_lock(); devs = target_rw_devs(c, wp->data_type, target); rcu_read_unlock(); /* Don't allocate from devices we already have pointers to: */ for (i = 0; i < devs_have->nr; i++) __clear_bit(devs_have->devs[i], devs.d); open_bucket_for_each(c, ptrs, ob, i) __clear_bit(ob->dev, devs.d); if (erasure_code) { if (!ec_open_bucket(c, ptrs)) { get_buckets_from_writepoint(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, flags, true); if (*nr_effective >= nr_replicas) return 0; } if (!ec_open_bucket(c, ptrs)) { ret = bucket_alloc_from_stripe(c, ptrs, wp, &devs, target, erasure_code, nr_replicas, nr_effective, have_cache, flags, _cl); if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || bch2_err_matches(ret, BCH_ERR_freelist_empty) || bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) return ret; if (*nr_effective >= nr_replicas) return 0; } } get_buckets_from_writepoint(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, flags, false); if (*nr_effective >= nr_replicas) return 0; retry_blocking: /* * Try nonblocking first, so that if one device is full we'll try from * other devices: */ ret = bch2_bucket_alloc_set_trans(trans, ptrs, &wp->stripe, &devs, nr_replicas, nr_effective, have_cache, reserve, flags, cl); if (ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart) && !bch2_err_matches(ret, BCH_ERR_insufficient_devices) && !cl && _cl) { cl = _cl; goto retry_blocking; } return ret; } void bch2_open_buckets_stop_dev(struct bch_fs *c, struct bch_dev *ca, struct open_buckets *obs) { struct open_buckets ptrs = { .nr = 0 }; struct open_bucket *ob, *ob2; unsigned i, j; open_bucket_for_each(c, obs, ob, i) { bool drop = !ca || ob->dev == ca->dev_idx; if (!drop && ob->ec) { mutex_lock(&ob->ec->lock); for (j = 0; j < ob->ec->new_stripe.key.v.nr_blocks; j++) { if (!ob->ec->blocks[j]) continue; ob2 = c->open_buckets + ob->ec->blocks[j]; drop |= ob2->dev == ca->dev_idx; } mutex_unlock(&ob->ec->lock); } if (drop) bch2_open_bucket_put(c, ob); else ob_push(c, &ptrs, ob); } *obs = ptrs; } void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca, struct write_point *wp) { mutex_lock(&wp->lock); bch2_open_buckets_stop_dev(c, ca, &wp->ptrs); mutex_unlock(&wp->lock); } static inline struct hlist_head *writepoint_hash(struct bch_fs *c, unsigned long write_point) { unsigned hash = hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); return &c->write_points_hash[hash]; } static struct write_point *__writepoint_find(struct hlist_head *head, unsigned long write_point) { struct write_point *wp; rcu_read_lock(); hlist_for_each_entry_rcu(wp, head, node) if (wp->write_point == write_point) goto out; wp = NULL; out: rcu_read_unlock(); return wp; } static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor) { u64 stranded = c->write_points_nr * c->bucket_size_max; u64 free = bch2_fs_usage_read_short(c).free; return stranded * factor > free; } static bool try_increase_writepoints(struct bch_fs *c) { struct write_point *wp; if (c->write_points_nr == ARRAY_SIZE(c->write_points) || too_many_writepoints(c, 32)) return false; wp = c->write_points + c->write_points_nr++; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); return true; } static bool try_decrease_writepoints(struct bch_fs *c, unsigned old_nr) { struct write_point *wp; mutex_lock(&c->write_points_hash_lock); if (c->write_points_nr < old_nr) { mutex_unlock(&c->write_points_hash_lock); return true; } if (c->write_points_nr == 1 || !too_many_writepoints(c, 8)) { mutex_unlock(&c->write_points_hash_lock); return false; } wp = c->write_points + --c->write_points_nr; hlist_del_rcu(&wp->node); mutex_unlock(&c->write_points_hash_lock); bch2_writepoint_stop(c, NULL, wp); return true; } static void bch2_trans_mutex_lock(struct btree_trans *trans, struct mutex *lock) { if (!mutex_trylock(lock)) { bch2_trans_unlock(trans); mutex_lock(lock); } } static struct write_point *writepoint_find(struct btree_trans *trans, unsigned long write_point) { struct bch_fs *c = trans->c; struct write_point *wp, *oldest; struct hlist_head *head; if (!(write_point & 1UL)) { wp = (struct write_point *) write_point; bch2_trans_mutex_lock(trans, &wp->lock); return wp; } head = writepoint_hash(c, write_point); restart_find: wp = __writepoint_find(head, write_point); if (wp) { lock_wp: bch2_trans_mutex_lock(trans, &wp->lock); if (wp->write_point == write_point) goto out; mutex_unlock(&wp->lock); goto restart_find; } restart_find_oldest: oldest = NULL; for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) if (!oldest || time_before64(wp->last_used, oldest->last_used)) oldest = wp; bch2_trans_mutex_lock(trans, &oldest->lock); bch2_trans_mutex_lock(trans, &c->write_points_hash_lock); if (oldest >= c->write_points + c->write_points_nr || try_increase_writepoints(c)) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto restart_find_oldest; } wp = __writepoint_find(head, write_point); if (wp && wp != oldest) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto lock_wp; } wp = oldest; hlist_del_rcu(&wp->node); wp->write_point = write_point; hlist_add_head_rcu(&wp->node, head); mutex_unlock(&c->write_points_hash_lock); out: wp->last_used = local_clock(); return wp; } /* * Get us an open_bucket we can allocate from, return with it locked: */ int bch2_alloc_sectors_start_trans(struct btree_trans *trans, unsigned target, unsigned erasure_code, struct write_point_specifier write_point, struct bch_devs_list *devs_have, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, unsigned flags, struct closure *cl, struct write_point **wp_ret) { struct bch_fs *c = trans->c; struct write_point *wp; struct open_bucket *ob; struct open_buckets ptrs; unsigned nr_effective, write_points_nr; unsigned ob_flags = 0; bool have_cache; int ret; int i; if (!(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) ob_flags |= BUCKET_ALLOC_USE_DURABILITY; BUG_ON(!nr_replicas || !nr_replicas_required); retry: ptrs.nr = 0; nr_effective = 0; write_points_nr = c->write_points_nr; have_cache = false; *wp_ret = wp = writepoint_find(trans, write_point.v); if (wp->data_type == BCH_DATA_user) ob_flags |= BUCKET_MAY_ALLOC_PARTIAL; /* metadata may not allocate on cache devices: */ if (wp->data_type != BCH_DATA_user) have_cache = true; if (!target || (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) { ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, cl); } else { ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, NULL); if (!ret || bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto alloc_done; ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, 0, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, cl); } alloc_done: BUG_ON(!ret && nr_effective < nr_replicas); if (erasure_code && !ec_open_bucket(c, &ptrs)) pr_debug("failed to get ec bucket: ret %u", ret); if (ret == -BCH_ERR_insufficient_devices && nr_effective >= nr_replicas_required) ret = 0; if (ret) goto err; /* Free buckets we didn't use: */ open_bucket_for_each(c, &wp->ptrs, ob, i) open_bucket_free_unused(c, wp, ob); wp->ptrs = ptrs; wp->sectors_free = UINT_MAX; open_bucket_for_each(c, &wp->ptrs, ob, i) wp->sectors_free = min(wp->sectors_free, ob->sectors_free); BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); return 0; err: open_bucket_for_each(c, &wp->ptrs, ob, i) if (ptrs.nr < ARRAY_SIZE(ptrs.v)) ob_push(c, &ptrs, ob); else open_bucket_free_unused(c, wp, ob); wp->ptrs = ptrs; mutex_unlock(&wp->lock); if (bch2_err_matches(ret, BCH_ERR_freelist_empty) && try_decrease_writepoints(c, write_points_nr)) goto retry; if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty) || bch2_err_matches(ret, BCH_ERR_freelist_empty)) return cl ? -BCH_ERR_bucket_alloc_blocked : -BCH_ERR_ENOSPC_bucket_alloc; return ret; } struct bch_extent_ptr bch2_ob_ptr(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); return (struct bch_extent_ptr) { .type = 1 << BCH_EXTENT_ENTRY_ptr, .gen = ob->gen, .dev = ob->dev, .offset = bucket_to_sector(ca, ob->bucket) + ca->mi.bucket_size - ob->sectors_free, }; } void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, struct bkey_i *k, unsigned sectors, bool cached) { bch2_alloc_sectors_append_ptrs_inlined(c, wp, k, sectors, cached); } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) { bch2_alloc_sectors_done_inlined(c, wp); } static inline void writepoint_init(struct write_point *wp, enum bch_data_type type) { mutex_init(&wp->lock); wp->data_type = type; INIT_WORK(&wp->index_update_work, bch2_write_point_do_index_updates); INIT_LIST_HEAD(&wp->writes); spin_lock_init(&wp->writes_lock); } void bch2_fs_allocator_foreground_init(struct bch_fs *c) { struct open_bucket *ob; struct write_point *wp; mutex_init(&c->write_points_hash_lock); c->write_points_nr = ARRAY_SIZE(c->write_points); /* open bucket 0 is a sentinal NULL: */ spin_lock_init(&c->open_buckets[0].lock); for (ob = c->open_buckets + 1; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock_init(&ob->lock); c->open_buckets_nr_free++; ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; } writepoint_init(&c->btree_write_point, BCH_DATA_btree); writepoint_init(&c->rebalance_write_point, BCH_DATA_user); writepoint_init(&c->copygc_write_point, BCH_DATA_user); for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) { writepoint_init(wp, BCH_DATA_user); wp->last_used = local_clock(); wp->write_point = (unsigned long) wp; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); } } void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c) { struct open_bucket *ob; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list) { prt_printf(out, "%zu ref %u type %s %u:%llu:%u\n", ob - c->open_buckets, atomic_read(&ob->pin), bch2_data_types[ob->data_type], ob->dev, ob->bucket, ob->gen); } spin_unlock(&ob->lock); } } static const char * const bch2_write_point_states[] = { #define x(n) #n, WRITE_POINT_STATES() #undef x NULL }; void bch2_write_points_to_text(struct printbuf *out, struct bch_fs *c) { struct write_point *wp; unsigned i; for (wp = c->write_points; wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) { prt_printf(out, "%lu: ", wp->write_point); prt_human_readable_u64(out, wp->sectors_allocated); prt_printf(out, " last wrote: "); bch2_pr_time_units(out, sched_clock() - wp->last_used); for (i = 0; i < WRITE_POINT_STATE_NR; i++) { prt_printf(out, " %s: ", bch2_write_point_states[i]); bch2_pr_time_units(out, wp->time[i]); } prt_newline(out); } }