/* * (c) 2017 Stefano Stabellini * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PVCALLS_VERSIONS "1" #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER struct pvcalls_back_global { struct list_head frontends; struct semaphore frontends_lock; } pvcalls_back_global; /* * Per-frontend data structure. It contains pointers to the command * ring, its event channel, a list of active sockets and a tree of * passive sockets. */ struct pvcalls_fedata { struct list_head list; struct xenbus_device *dev; struct xen_pvcalls_sring *sring; struct xen_pvcalls_back_ring ring; int irq; struct list_head socket_mappings; struct radix_tree_root socketpass_mappings; struct semaphore socket_lock; }; struct pvcalls_ioworker { struct work_struct register_work; struct workqueue_struct *wq; }; struct sock_mapping { struct list_head list; struct pvcalls_fedata *fedata; struct sockpass_mapping *sockpass; struct socket *sock; uint64_t id; grant_ref_t ref; struct pvcalls_data_intf *ring; void *bytes; struct pvcalls_data data; uint32_t ring_order; int irq; atomic_t read; atomic_t write; atomic_t io; atomic_t release; void (*saved_data_ready)(struct sock *sk); struct pvcalls_ioworker ioworker; }; struct sockpass_mapping { struct list_head list; struct pvcalls_fedata *fedata; struct socket *sock; uint64_t id; struct xen_pvcalls_request reqcopy; spinlock_t copy_lock; struct workqueue_struct *wq; struct work_struct register_work; void (*saved_data_ready)(struct sock *sk); }; static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map); static int pvcalls_back_release_active(struct xenbus_device *dev, struct pvcalls_fedata *fedata, struct sock_mapping *map); static void pvcalls_conn_back_read(void *opaque) { struct sock_mapping *map = (struct sock_mapping *)opaque; struct msghdr msg; struct kvec vec[2]; RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons; int32_t error; struct pvcalls_data_intf *intf = map->ring; struct pvcalls_data *data = &map->data; unsigned long flags; int ret; array_size = XEN_FLEX_RING_SIZE(map->ring_order); cons = intf->in_cons; prod = intf->in_prod; error = intf->in_error; /* read the indexes first, then deal with the data */ virt_mb(); if (error) return; size = pvcalls_queued(prod, cons, array_size); if (size >= array_size) return; spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags); if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) { atomic_set(&map->read, 0); spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags); return; } spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags); wanted = array_size - size; masked_prod = pvcalls_mask(prod, array_size); masked_cons = pvcalls_mask(cons, array_size); memset(&msg, 0, sizeof(msg)); msg.msg_iter.type = ITER_KVEC|WRITE; msg.msg_iter.count = wanted; if (masked_prod < masked_cons) { vec[0].iov_base = data->in + masked_prod; vec[0].iov_len = wanted; msg.msg_iter.kvec = vec; msg.msg_iter.nr_segs = 1; } else { vec[0].iov_base = data->in + masked_prod; vec[0].iov_len = array_size - masked_prod; vec[1].iov_base = data->in; vec[1].iov_len = wanted - vec[0].iov_len; msg.msg_iter.kvec = vec; msg.msg_iter.nr_segs = 2; } atomic_set(&map->read, 0); ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT); WARN_ON(ret > wanted); if (ret == -EAGAIN) /* shouldn't happen */ return; if (!ret) ret = -ENOTCONN; spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags); if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue)) atomic_inc(&map->read); spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags); /* write the data, then modify the indexes */ virt_wmb(); if (ret < 0) intf->in_error = ret; else intf->in_prod = prod + ret; /* update the indexes, then notify the other end */ virt_wmb(); notify_remote_via_irq(map->irq); return; } static void pvcalls_conn_back_write(struct sock_mapping *map) { struct pvcalls_data_intf *intf = map->ring; struct pvcalls_data *data = &map->data; struct msghdr msg; struct kvec vec[2]; RING_IDX cons, prod, size, array_size; int ret; cons = intf->out_cons; prod = intf->out_prod; /* read the indexes before dealing with the data */ virt_mb(); array_size = XEN_FLEX_RING_SIZE(map->ring_order); size = pvcalls_queued(prod, cons, array_size); if (size == 0) return; memset(&msg, 0, sizeof(msg)); msg.msg_flags |= MSG_DONTWAIT; msg.msg_iter.type = ITER_KVEC|READ; msg.msg_iter.count = size; if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) { vec[0].iov_base = data->out + pvcalls_mask(cons, array_size); vec[0].iov_len = size; msg.msg_iter.kvec = vec; msg.msg_iter.nr_segs = 1; } else { vec[0].iov_base = data->out + pvcalls_mask(cons, array_size); vec[0].iov_len = array_size - pvcalls_mask(cons, array_size); vec[1].iov_base = data->out; vec[1].iov_len = size - vec[0].iov_len; msg.msg_iter.kvec = vec; msg.msg_iter.nr_segs = 2; } atomic_set(&map->write, 0); ret = inet_sendmsg(map->sock, &msg, size); if (ret == -EAGAIN || (ret >= 0 && ret < size)) { atomic_inc(&map->write); atomic_inc(&map->io); } if (ret == -EAGAIN) return; /* write the data, then update the indexes */ virt_wmb(); if (ret < 0) { intf->out_error = ret; } else { intf->out_error = 0; intf->out_cons = cons + ret; prod = intf->out_prod; } /* update the indexes, then notify the other end */ virt_wmb(); if (prod != cons + ret) atomic_inc(&map->write); notify_remote_via_irq(map->irq); } static void pvcalls_back_ioworker(struct work_struct *work) { struct pvcalls_ioworker *ioworker = container_of(work, struct pvcalls_ioworker, register_work); struct sock_mapping *map = container_of(ioworker, struct sock_mapping, ioworker); while (atomic_read(&map->io) > 0) { if (atomic_read(&map->release) > 0) { atomic_set(&map->release, 0); return; } if (atomic_read(&map->read) > 0) pvcalls_conn_back_read(map); if (atomic_read(&map->write) > 0) pvcalls_conn_back_write(map); atomic_dec(&map->io); } } static int pvcalls_back_socket(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; int ret; struct xen_pvcalls_response *rsp; fedata = dev_get_drvdata(&dev->dev); if (req->u.socket.domain != AF_INET || req->u.socket.type != SOCK_STREAM || (req->u.socket.protocol != IPPROTO_IP && req->u.socket.protocol != AF_INET)) ret = -EAFNOSUPPORT; else ret = 0; /* leave the actual socket allocation for later */ rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.socket.id = req->u.socket.id; rsp->ret = ret; return 0; } static void pvcalls_sk_state_change(struct sock *sock) { struct sock_mapping *map = sock->sk_user_data; struct pvcalls_data_intf *intf; if (map == NULL) return; intf = map->ring; intf->in_error = -ENOTCONN; notify_remote_via_irq(map->irq); } static void pvcalls_sk_data_ready(struct sock *sock) { struct sock_mapping *map = sock->sk_user_data; struct pvcalls_ioworker *iow; if (map == NULL) return; iow = &map->ioworker; atomic_inc(&map->read); atomic_inc(&map->io); queue_work(iow->wq, &iow->register_work); } static struct sock_mapping *pvcalls_new_active_socket( struct pvcalls_fedata *fedata, uint64_t id, grant_ref_t ref, uint32_t evtchn, struct socket *sock) { int ret; struct sock_mapping *map; void *page; map = kzalloc(sizeof(*map), GFP_KERNEL); if (map == NULL) return NULL; map->fedata = fedata; map->sock = sock; map->id = id; map->ref = ref; ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page); if (ret < 0) goto out; map->ring = page; map->ring_order = map->ring->ring_order; /* first read the order, then map the data ring */ virt_rmb(); if (map->ring_order > MAX_RING_ORDER) { pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n", __func__, map->ring_order, MAX_RING_ORDER); goto out; } ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref, (1 << map->ring_order), &page); if (ret < 0) goto out; map->bytes = page; ret = bind_interdomain_evtchn_to_irqhandler(fedata->dev->otherend_id, evtchn, pvcalls_back_conn_event, 0, "pvcalls-backend", map); if (ret < 0) goto out; map->irq = ret; map->data.in = map->bytes; map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order); map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1); if (!map->ioworker.wq) goto out; atomic_set(&map->io, 1); INIT_WORK(&map->ioworker.register_work, pvcalls_back_ioworker); down(&fedata->socket_lock); list_add_tail(&map->list, &fedata->socket_mappings); up(&fedata->socket_lock); write_lock_bh(&map->sock->sk->sk_callback_lock); map->saved_data_ready = map->sock->sk->sk_data_ready; map->sock->sk->sk_user_data = map; map->sock->sk->sk_data_ready = pvcalls_sk_data_ready; map->sock->sk->sk_state_change = pvcalls_sk_state_change; write_unlock_bh(&map->sock->sk->sk_callback_lock); return map; out: down(&fedata->socket_lock); list_del(&map->list); pvcalls_back_release_active(fedata->dev, fedata, map); up(&fedata->socket_lock); return NULL; } static int pvcalls_back_connect(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; int ret = -EINVAL; struct socket *sock; struct sock_mapping *map; struct xen_pvcalls_response *rsp; struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr; fedata = dev_get_drvdata(&dev->dev); if (req->u.connect.len < sizeof(sa->sa_family) || req->u.connect.len > sizeof(req->u.connect.addr) || sa->sa_family != AF_INET) goto out; ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock); if (ret < 0) goto out; ret = inet_stream_connect(sock, sa, req->u.connect.len, 0); if (ret < 0) { sock_release(sock); goto out; } map = pvcalls_new_active_socket(fedata, req->u.connect.id, req->u.connect.ref, req->u.connect.evtchn, sock); if (!map) { ret = -EFAULT; sock_release(map->sock); } out: rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.connect.id = req->u.connect.id; rsp->ret = ret; return 0; } static int pvcalls_back_release_active(struct xenbus_device *dev, struct pvcalls_fedata *fedata, struct sock_mapping *map) { disable_irq(map->irq); if (map->sock->sk != NULL) { write_lock_bh(&map->sock->sk->sk_callback_lock); map->sock->sk->sk_user_data = NULL; map->sock->sk->sk_data_ready = map->saved_data_ready; write_unlock_bh(&map->sock->sk->sk_callback_lock); } atomic_set(&map->release, 1); flush_work(&map->ioworker.register_work); xenbus_unmap_ring_vfree(dev, map->bytes); xenbus_unmap_ring_vfree(dev, (void *)map->ring); unbind_from_irqhandler(map->irq, map); sock_release(map->sock); kfree(map); return 0; } static int pvcalls_back_release_passive(struct xenbus_device *dev, struct pvcalls_fedata *fedata, struct sockpass_mapping *mappass) { if (mappass->sock->sk != NULL) { write_lock_bh(&mappass->sock->sk->sk_callback_lock); mappass->sock->sk->sk_user_data = NULL; mappass->sock->sk->sk_data_ready = mappass->saved_data_ready; write_unlock_bh(&mappass->sock->sk->sk_callback_lock); } sock_release(mappass->sock); flush_workqueue(mappass->wq); destroy_workqueue(mappass->wq); kfree(mappass); return 0; } static int pvcalls_back_release(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; struct sock_mapping *map, *n; struct sockpass_mapping *mappass; int ret = 0; struct xen_pvcalls_response *rsp; fedata = dev_get_drvdata(&dev->dev); down(&fedata->socket_lock); list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) { if (map->id == req->u.release.id) { list_del(&map->list); up(&fedata->socket_lock); ret = pvcalls_back_release_active(dev, fedata, map); goto out; } } mappass = radix_tree_lookup(&fedata->socketpass_mappings, req->u.release.id); if (mappass != NULL) { radix_tree_delete(&fedata->socketpass_mappings, mappass->id); up(&fedata->socket_lock); ret = pvcalls_back_release_passive(dev, fedata, mappass); } else up(&fedata->socket_lock); out: rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->u.release.id = req->u.release.id; rsp->cmd = req->cmd; rsp->ret = ret; return 0; } static void __pvcalls_back_accept(struct work_struct *work) { struct sockpass_mapping *mappass = container_of( work, struct sockpass_mapping, register_work); struct sock_mapping *map; struct pvcalls_ioworker *iow; struct pvcalls_fedata *fedata; struct socket *sock; struct xen_pvcalls_response *rsp; struct xen_pvcalls_request *req; int notify; int ret = -EINVAL; unsigned long flags; fedata = mappass->fedata; /* * __pvcalls_back_accept can race against pvcalls_back_accept. * We only need to check the value of "cmd" on read. It could be * done atomically, but to simplify the code on the write side, we * use a spinlock. */ spin_lock_irqsave(&mappass->copy_lock, flags); req = &mappass->reqcopy; if (req->cmd != PVCALLS_ACCEPT) { spin_unlock_irqrestore(&mappass->copy_lock, flags); return; } spin_unlock_irqrestore(&mappass->copy_lock, flags); sock = sock_alloc(); if (sock == NULL) goto out_error; sock->type = mappass->sock->type; sock->ops = mappass->sock->ops; ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true); if (ret == -EAGAIN) { sock_release(sock); goto out_error; } map = pvcalls_new_active_socket(fedata, req->u.accept.id_new, req->u.accept.ref, req->u.accept.evtchn, sock); if (!map) { ret = -EFAULT; sock_release(sock); goto out_error; } map->sockpass = mappass; iow = &map->ioworker; atomic_inc(&map->read); atomic_inc(&map->io); queue_work(iow->wq, &iow->register_work); out_error: rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.accept.id = req->u.accept.id; rsp->ret = ret; RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify); if (notify) notify_remote_via_irq(fedata->irq); mappass->reqcopy.cmd = 0; } static void pvcalls_pass_sk_data_ready(struct sock *sock) { struct sockpass_mapping *mappass = sock->sk_user_data; struct pvcalls_fedata *fedata; struct xen_pvcalls_response *rsp; unsigned long flags; int notify; if (mappass == NULL) return; fedata = mappass->fedata; spin_lock_irqsave(&mappass->copy_lock, flags); if (mappass->reqcopy.cmd == PVCALLS_POLL) { rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = mappass->reqcopy.req_id; rsp->u.poll.id = mappass->reqcopy.u.poll.id; rsp->cmd = mappass->reqcopy.cmd; rsp->ret = 0; mappass->reqcopy.cmd = 0; spin_unlock_irqrestore(&mappass->copy_lock, flags); RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify); if (notify) notify_remote_via_irq(mappass->fedata->irq); } else { spin_unlock_irqrestore(&mappass->copy_lock, flags); queue_work(mappass->wq, &mappass->register_work); } } static int pvcalls_back_bind(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; int ret; struct sockpass_mapping *map; struct xen_pvcalls_response *rsp; fedata = dev_get_drvdata(&dev->dev); map = kzalloc(sizeof(*map), GFP_KERNEL); if (map == NULL) { ret = -ENOMEM; goto out; } INIT_WORK(&map->register_work, __pvcalls_back_accept); spin_lock_init(&map->copy_lock); map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1); if (!map->wq) { ret = -ENOMEM; goto out; } ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock); if (ret < 0) goto out; ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr, req->u.bind.len); if (ret < 0) goto out; map->fedata = fedata; map->id = req->u.bind.id; down(&fedata->socket_lock); ret = radix_tree_insert(&fedata->socketpass_mappings, map->id, map); up(&fedata->socket_lock); if (ret) goto out; write_lock_bh(&map->sock->sk->sk_callback_lock); map->saved_data_ready = map->sock->sk->sk_data_ready; map->sock->sk->sk_user_data = map; map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready; write_unlock_bh(&map->sock->sk->sk_callback_lock); out: if (ret) { if (map && map->sock) sock_release(map->sock); if (map && map->wq) destroy_workqueue(map->wq); kfree(map); } rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.bind.id = req->u.bind.id; rsp->ret = ret; return 0; } static int pvcalls_back_listen(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; int ret = -EINVAL; struct sockpass_mapping *map; struct xen_pvcalls_response *rsp; fedata = dev_get_drvdata(&dev->dev); down(&fedata->socket_lock); map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id); up(&fedata->socket_lock); if (map == NULL) goto out; ret = inet_listen(map->sock, req->u.listen.backlog); out: rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.listen.id = req->u.listen.id; rsp->ret = ret; return 0; } static int pvcalls_back_accept(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; struct sockpass_mapping *mappass; int ret = -EINVAL; struct xen_pvcalls_response *rsp; unsigned long flags; fedata = dev_get_drvdata(&dev->dev); down(&fedata->socket_lock); mappass = radix_tree_lookup(&fedata->socketpass_mappings, req->u.accept.id); up(&fedata->socket_lock); if (mappass == NULL) goto out_error; /* * Limitation of the current implementation: only support one * concurrent accept or poll call on one socket. */ spin_lock_irqsave(&mappass->copy_lock, flags); if (mappass->reqcopy.cmd != 0) { spin_unlock_irqrestore(&mappass->copy_lock, flags); ret = -EINTR; goto out_error; } mappass->reqcopy = *req; spin_unlock_irqrestore(&mappass->copy_lock, flags); queue_work(mappass->wq, &mappass->register_work); /* Tell the caller we don't need to send back a notification yet */ return -1; out_error: rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.accept.id = req->u.accept.id; rsp->ret = ret; return 0; } static int pvcalls_back_poll(struct xenbus_device *dev, struct xen_pvcalls_request *req) { struct pvcalls_fedata *fedata; struct sockpass_mapping *mappass; struct xen_pvcalls_response *rsp; struct inet_connection_sock *icsk; struct request_sock_queue *queue; unsigned long flags; int ret; bool data; fedata = dev_get_drvdata(&dev->dev); down(&fedata->socket_lock); mappass = radix_tree_lookup(&fedata->socketpass_mappings, req->u.poll.id); up(&fedata->socket_lock); if (mappass == NULL) return -EINVAL; /* * Limitation of the current implementation: only support one * concurrent accept or poll call on one socket. */ spin_lock_irqsave(&mappass->copy_lock, flags); if (mappass->reqcopy.cmd != 0) { ret = -EINTR; goto out; } mappass->reqcopy = *req; icsk = inet_csk(mappass->sock->sk); queue = &icsk->icsk_accept_queue; data = queue->rskq_accept_head != NULL; if (data) { mappass->reqcopy.cmd = 0; ret = 0; goto out; } spin_unlock_irqrestore(&mappass->copy_lock, flags); /* Tell the caller we don't need to send back a notification yet */ return -1; out: spin_unlock_irqrestore(&mappass->copy_lock, flags); rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->u.poll.id = req->u.poll.id; rsp->ret = ret; return 0; } static int pvcalls_back_handle_cmd(struct xenbus_device *dev, struct xen_pvcalls_request *req) { int ret = 0; switch (req->cmd) { case PVCALLS_SOCKET: ret = pvcalls_back_socket(dev, req); break; case PVCALLS_CONNECT: ret = pvcalls_back_connect(dev, req); break; case PVCALLS_RELEASE: ret = pvcalls_back_release(dev, req); break; case PVCALLS_BIND: ret = pvcalls_back_bind(dev, req); break; case PVCALLS_LISTEN: ret = pvcalls_back_listen(dev, req); break; case PVCALLS_ACCEPT: ret = pvcalls_back_accept(dev, req); break; case PVCALLS_POLL: ret = pvcalls_back_poll(dev, req); break; default: { struct pvcalls_fedata *fedata; struct xen_pvcalls_response *rsp; fedata = dev_get_drvdata(&dev->dev); rsp = RING_GET_RESPONSE( &fedata->ring, fedata->ring.rsp_prod_pvt++); rsp->req_id = req->req_id; rsp->cmd = req->cmd; rsp->ret = -ENOTSUPP; break; } } return ret; } static void pvcalls_back_work(struct pvcalls_fedata *fedata) { int notify, notify_all = 0, more = 1; struct xen_pvcalls_request req; struct xenbus_device *dev = fedata->dev; while (more) { while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) { RING_COPY_REQUEST(&fedata->ring, fedata->ring.req_cons++, &req); if (!pvcalls_back_handle_cmd(dev, &req)) { RING_PUSH_RESPONSES_AND_CHECK_NOTIFY( &fedata->ring, notify); notify_all += notify; } } if (notify_all) { notify_remote_via_irq(fedata->irq); notify_all = 0; } RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more); } } static irqreturn_t pvcalls_back_event(int irq, void *dev_id) { struct xenbus_device *dev = dev_id; struct pvcalls_fedata *fedata = NULL; if (dev == NULL) return IRQ_HANDLED; fedata = dev_get_drvdata(&dev->dev); if (fedata == NULL) return IRQ_HANDLED; pvcalls_back_work(fedata); return IRQ_HANDLED; } static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map) { struct sock_mapping *map = sock_map; struct pvcalls_ioworker *iow; if (map == NULL || map->sock == NULL || map->sock->sk == NULL || map->sock->sk->sk_user_data != map) return IRQ_HANDLED; iow = &map->ioworker; atomic_inc(&map->write); atomic_inc(&map->io); queue_work(iow->wq, &iow->register_work); return IRQ_HANDLED; } static int backend_connect(struct xenbus_device *dev) { int err, evtchn; grant_ref_t ring_ref; struct pvcalls_fedata *fedata = NULL; fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL); if (!fedata) return -ENOMEM; fedata->irq = -1; err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u", &evtchn); if (err != 1) { err = -EINVAL; xenbus_dev_fatal(dev, err, "reading %s/event-channel", dev->otherend); goto error; } err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref); if (err != 1) { err = -EINVAL; xenbus_dev_fatal(dev, err, "reading %s/ring-ref", dev->otherend); goto error; } err = bind_interdomain_evtchn_to_irq(dev->otherend_id, evtchn); if (err < 0) goto error; fedata->irq = err; err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event, IRQF_ONESHOT, "pvcalls-back", dev); if (err < 0) goto error; err = xenbus_map_ring_valloc(dev, &ring_ref, 1, (void **)&fedata->sring); if (err < 0) goto error; BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1); fedata->dev = dev; INIT_LIST_HEAD(&fedata->socket_mappings); INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL); sema_init(&fedata->socket_lock, 1); dev_set_drvdata(&dev->dev, fedata); down(&pvcalls_back_global.frontends_lock); list_add_tail(&fedata->list, &pvcalls_back_global.frontends); up(&pvcalls_back_global.frontends_lock); return 0; error: if (fedata->irq >= 0) unbind_from_irqhandler(fedata->irq, dev); if (fedata->sring != NULL) xenbus_unmap_ring_vfree(dev, fedata->sring); kfree(fedata); return err; } static int backend_disconnect(struct xenbus_device *dev) { struct pvcalls_fedata *fedata; struct sock_mapping *map, *n; struct sockpass_mapping *mappass; struct radix_tree_iter iter; void **slot; fedata = dev_get_drvdata(&dev->dev); down(&fedata->socket_lock); list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) { list_del(&map->list); pvcalls_back_release_active(dev, fedata, map); } radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) { mappass = radix_tree_deref_slot(slot); if (!mappass) continue; if (radix_tree_exception(mappass)) { if (radix_tree_deref_retry(mappass)) slot = radix_tree_iter_retry(&iter); } else { radix_tree_delete(&fedata->socketpass_mappings, mappass->id); pvcalls_back_release_passive(dev, fedata, mappass); } } up(&fedata->socket_lock); unbind_from_irqhandler(fedata->irq, dev); xenbus_unmap_ring_vfree(dev, fedata->sring); list_del(&fedata->list); kfree(fedata); dev_set_drvdata(&dev->dev, NULL); return 0; } static int pvcalls_back_probe(struct xenbus_device *dev, const struct xenbus_device_id *id) { int err, abort; struct xenbus_transaction xbt; again: abort = 1; err = xenbus_transaction_start(&xbt); if (err) { pr_warn("%s cannot create xenstore transaction\n", __func__); return err; } err = xenbus_printf(xbt, dev->nodename, "versions", "%s", PVCALLS_VERSIONS); if (err) { pr_warn("%s write out 'versions' failed\n", __func__); goto abort; } err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u", MAX_RING_ORDER); if (err) { pr_warn("%s write out 'max-page-order' failed\n", __func__); goto abort; } err = xenbus_printf(xbt, dev->nodename, "function-calls", XENBUS_FUNCTIONS_CALLS); if (err) { pr_warn("%s write out 'function-calls' failed\n", __func__); goto abort; } abort = 0; abort: err = xenbus_transaction_end(xbt, abort); if (err) { if (err == -EAGAIN && !abort) goto again; pr_warn("%s cannot complete xenstore transaction\n", __func__); return err; } if (abort) return -EFAULT; xenbus_switch_state(dev, XenbusStateInitWait); return 0; } static void set_backend_state(struct xenbus_device *dev, enum xenbus_state state) { while (dev->state != state) { switch (dev->state) { case XenbusStateClosed: switch (state) { case XenbusStateInitWait: case XenbusStateConnected: xenbus_switch_state(dev, XenbusStateInitWait); break; case XenbusStateClosing: xenbus_switch_state(dev, XenbusStateClosing); break; default: WARN_ON(1); } break; case XenbusStateInitWait: case XenbusStateInitialised: switch (state) { case XenbusStateConnected: backend_connect(dev); xenbus_switch_state(dev, XenbusStateConnected); break; case XenbusStateClosing: case XenbusStateClosed: xenbus_switch_state(dev, XenbusStateClosing); break; default: WARN_ON(1); } break; case XenbusStateConnected: switch (state) { case XenbusStateInitWait: case XenbusStateClosing: case XenbusStateClosed: down(&pvcalls_back_global.frontends_lock); backend_disconnect(dev); up(&pvcalls_back_global.frontends_lock); xenbus_switch_state(dev, XenbusStateClosing); break; default: WARN_ON(1); } break; case XenbusStateClosing: switch (state) { case XenbusStateInitWait: case XenbusStateConnected: case XenbusStateClosed: xenbus_switch_state(dev, XenbusStateClosed); break; default: WARN_ON(1); } break; default: WARN_ON(1); } } } static void pvcalls_back_changed(struct xenbus_device *dev, enum xenbus_state frontend_state) { switch (frontend_state) { case XenbusStateInitialising: set_backend_state(dev, XenbusStateInitWait); break; case XenbusStateInitialised: case XenbusStateConnected: set_backend_state(dev, XenbusStateConnected); break; case XenbusStateClosing: set_backend_state(dev, XenbusStateClosing); break; case XenbusStateClosed: set_backend_state(dev, XenbusStateClosed); if (xenbus_dev_is_online(dev)) break; device_unregister(&dev->dev); break; case XenbusStateUnknown: set_backend_state(dev, XenbusStateClosed); device_unregister(&dev->dev); break; default: xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend", frontend_state); break; } } static int pvcalls_back_remove(struct xenbus_device *dev) { return 0; } static int pvcalls_back_uevent(struct xenbus_device *xdev, struct kobj_uevent_env *env) { return 0; } static const struct xenbus_device_id pvcalls_back_ids[] = { { "pvcalls" }, { "" } }; static struct xenbus_driver pvcalls_back_driver = { .ids = pvcalls_back_ids, .probe = pvcalls_back_probe, .remove = pvcalls_back_remove, .uevent = pvcalls_back_uevent, .otherend_changed = pvcalls_back_changed, }; static int __init pvcalls_back_init(void) { int ret; if (!xen_domain()) return -ENODEV; ret = xenbus_register_backend(&pvcalls_back_driver); if (ret < 0) return ret; sema_init(&pvcalls_back_global.frontends_lock, 1); INIT_LIST_HEAD(&pvcalls_back_global.frontends); return 0; } module_init(pvcalls_back_init); static void __exit pvcalls_back_fin(void) { struct pvcalls_fedata *fedata, *nfedata; down(&pvcalls_back_global.frontends_lock); list_for_each_entry_safe(fedata, nfedata, &pvcalls_back_global.frontends, list) { backend_disconnect(fedata->dev); } up(&pvcalls_back_global.frontends_lock); xenbus_unregister_driver(&pvcalls_back_driver); } module_exit(pvcalls_back_fin); MODULE_DESCRIPTION("Xen PV Calls backend driver"); MODULE_AUTHOR("Stefano Stabellini "); MODULE_LICENSE("GPL");