/* * Copyright (C) 2010 Juergen Beisert, Pengutronix * * This code is based on: * Author: Vitaly Wool <vital@embeddedalley.com> * * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define DRIVER_NAME "mxsfb" /** * @file * @brief LCDIF driver for i.MX23 and i.MX28 * * The LCDIF support four modes of operation * - MPU interface (to drive smart displays) -> not supported yet * - VSYNC interface (like MPU interface plus Vsync) -> not supported yet * - Dotclock interface (to drive LC displays with RGB data and sync signals) * - DVI (to drive ITU-R BT656) -> not supported yet * * This driver depends on a correct setup of the pins used for this purpose * (platform specific). * * For the developer: Don't forget to set the data bus width to the display * in the imx_fb_videomode structure. You will else end up with ugly colours. * If you fight against jitter you can vary the clock delay. This is a feature * of the i.MX28 and you can vary it between 2 ns ... 8 ns in 2 ns steps. Give * the required value in the imx_fb_videomode structure. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/pinctrl/consumer.h> #include <linux/mxsfb.h> #define REG_SET 4 #define REG_CLR 8 #define LCDC_CTRL 0x00 #define LCDC_CTRL1 0x10 #define LCDC_V4_CTRL2 0x20 #define LCDC_V3_TRANSFER_COUNT 0x20 #define LCDC_V4_TRANSFER_COUNT 0x30 #define LCDC_V4_CUR_BUF 0x40 #define LCDC_V4_NEXT_BUF 0x50 #define LCDC_V3_CUR_BUF 0x30 #define LCDC_V3_NEXT_BUF 0x40 #define LCDC_TIMING 0x60 #define LCDC_VDCTRL0 0x70 #define LCDC_VDCTRL1 0x80 #define LCDC_VDCTRL2 0x90 #define LCDC_VDCTRL3 0xa0 #define LCDC_VDCTRL4 0xb0 #define LCDC_DVICTRL0 0xc0 #define LCDC_DVICTRL1 0xd0 #define LCDC_DVICTRL2 0xe0 #define LCDC_DVICTRL3 0xf0 #define LCDC_DVICTRL4 0x100 #define LCDC_V4_DATA 0x180 #define LCDC_V3_DATA 0x1b0 #define LCDC_V4_DEBUG0 0x1d0 #define LCDC_V3_DEBUG0 0x1f0 #define CTRL_SFTRST (1 << 31) #define CTRL_CLKGATE (1 << 30) #define CTRL_BYPASS_COUNT (1 << 19) #define CTRL_VSYNC_MODE (1 << 18) #define CTRL_DOTCLK_MODE (1 << 17) #define CTRL_DATA_SELECT (1 << 16) #define CTRL_SET_BUS_WIDTH(x) (((x) & 0x3) << 10) #define CTRL_GET_BUS_WIDTH(x) (((x) >> 10) & 0x3) #define CTRL_SET_WORD_LENGTH(x) (((x) & 0x3) << 8) #define CTRL_GET_WORD_LENGTH(x) (((x) >> 8) & 0x3) #define CTRL_MASTER (1 << 5) #define CTRL_DF16 (1 << 3) #define CTRL_DF18 (1 << 2) #define CTRL_DF24 (1 << 1) #define CTRL_RUN (1 << 0) #define CTRL1_FIFO_CLEAR (1 << 21) #define CTRL1_SET_BYTE_PACKAGING(x) (((x) & 0xf) << 16) #define CTRL1_GET_BYTE_PACKAGING(x) (((x) >> 16) & 0xf) #define TRANSFER_COUNT_SET_VCOUNT(x) (((x) & 0xffff) << 16) #define TRANSFER_COUNT_GET_VCOUNT(x) (((x) >> 16) & 0xffff) #define TRANSFER_COUNT_SET_HCOUNT(x) ((x) & 0xffff) #define TRANSFER_COUNT_GET_HCOUNT(x) ((x) & 0xffff) #define VDCTRL0_ENABLE_PRESENT (1 << 28) #define VDCTRL0_VSYNC_ACT_HIGH (1 << 27) #define VDCTRL0_HSYNC_ACT_HIGH (1 << 26) #define VDCTRL0_DOTCLK_ACT_FAILING (1 << 25) #define VDCTRL0_ENABLE_ACT_HIGH (1 << 24) #define VDCTRL0_VSYNC_PERIOD_UNIT (1 << 21) #define VDCTRL0_VSYNC_PULSE_WIDTH_UNIT (1 << 20) #define VDCTRL0_HALF_LINE (1 << 19) #define VDCTRL0_HALF_LINE_MODE (1 << 18) #define VDCTRL0_SET_VSYNC_PULSE_WIDTH(x) ((x) & 0x3ffff) #define VDCTRL0_GET_VSYNC_PULSE_WIDTH(x) ((x) & 0x3ffff) #define VDCTRL2_SET_HSYNC_PERIOD(x) ((x) & 0x3ffff) #define VDCTRL2_GET_HSYNC_PERIOD(x) ((x) & 0x3ffff) #define VDCTRL3_MUX_SYNC_SIGNALS (1 << 29) #define VDCTRL3_VSYNC_ONLY (1 << 28) #define SET_HOR_WAIT_CNT(x) (((x) & 0xfff) << 16) #define GET_HOR_WAIT_CNT(x) (((x) >> 16) & 0xfff) #define SET_VERT_WAIT_CNT(x) ((x) & 0xffff) #define GET_VERT_WAIT_CNT(x) ((x) & 0xffff) #define VDCTRL4_SET_DOTCLK_DLY(x) (((x) & 0x7) << 29) /* v4 only */ #define VDCTRL4_GET_DOTCLK_DLY(x) (((x) >> 29) & 0x7) /* v4 only */ #define VDCTRL4_SYNC_SIGNALS_ON (1 << 18) #define SET_DOTCLK_H_VALID_DATA_CNT(x) ((x) & 0x3ffff) #define DEBUG0_HSYNC (1 < 26) #define DEBUG0_VSYNC (1 < 25) #define MIN_XRES 120 #define MIN_YRES 120 #define RED 0 #define GREEN 1 #define BLUE 2 #define TRANSP 3 enum mxsfb_devtype { MXSFB_V3, MXSFB_V4, }; /* CPU dependent register offsets */ struct mxsfb_devdata { unsigned transfer_count; unsigned cur_buf; unsigned next_buf; unsigned debug0; unsigned hs_wdth_mask; unsigned hs_wdth_shift; unsigned ipversion; }; struct mxsfb_info { struct fb_info fb_info; struct platform_device *pdev; struct clk *clk; void __iomem *base; /* registers */ unsigned allocated_size; int enabled; unsigned ld_intf_width; unsigned dotclk_delay; const struct mxsfb_devdata *devdata; int mapped; }; #define mxsfb_is_v3(host) (host->devdata->ipversion == 3) #define mxsfb_is_v4(host) (host->devdata->ipversion == 4) static const struct mxsfb_devdata mxsfb_devdata[] = { [MXSFB_V3] = { .transfer_count = LCDC_V3_TRANSFER_COUNT, .cur_buf = LCDC_V3_CUR_BUF, .next_buf = LCDC_V3_NEXT_BUF, .debug0 = LCDC_V3_DEBUG0, .hs_wdth_mask = 0xff, .hs_wdth_shift = 24, .ipversion = 3, }, [MXSFB_V4] = { .transfer_count = LCDC_V4_TRANSFER_COUNT, .cur_buf = LCDC_V4_CUR_BUF, .next_buf = LCDC_V4_NEXT_BUF, .debug0 = LCDC_V4_DEBUG0, .hs_wdth_mask = 0x3fff, .hs_wdth_shift = 18, .ipversion = 4, }, }; #define to_imxfb_host(x) (container_of(x, struct mxsfb_info, fb_info)) /* mask and shift depends on architecture */ static inline u32 set_hsync_pulse_width(struct mxsfb_info *host, unsigned val) { return (val & host->devdata->hs_wdth_mask) << host->devdata->hs_wdth_shift; } static inline u32 get_hsync_pulse_width(struct mxsfb_info *host, unsigned val) { return (val >> host->devdata->hs_wdth_shift) & host->devdata->hs_wdth_mask; } static const struct fb_bitfield def_rgb565[] = { [RED] = { .offset = 11, .length = 5, }, [GREEN] = { .offset = 5, .length = 6, }, [BLUE] = { .offset = 0, .length = 5, }, [TRANSP] = { /* no support for transparency */ .length = 0, } }; static const struct fb_bitfield def_rgb666[] = { [RED] = { .offset = 16, .length = 6, }, [GREEN] = { .offset = 8, .length = 6, }, [BLUE] = { .offset = 0, .length = 6, }, [TRANSP] = { /* no support for transparency */ .length = 0, } }; static const struct fb_bitfield def_rgb888[] = { [RED] = { .offset = 16, .length = 8, }, [GREEN] = { .offset = 8, .length = 8, }, [BLUE] = { .offset = 0, .length = 8, }, [TRANSP] = { /* no support for transparency */ .length = 0, } }; static inline unsigned chan_to_field(unsigned chan, struct fb_bitfield *bf) { chan &= 0xffff; chan >>= 16 - bf->length; return chan << bf->offset; } static int mxsfb_check_var(struct fb_var_screeninfo *var, struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); const struct fb_bitfield *rgb = NULL; if (var->xres < MIN_XRES) var->xres = MIN_XRES; if (var->yres < MIN_YRES) var->yres = MIN_YRES; var->xres_virtual = var->xres; var->yres_virtual = var->yres; switch (var->bits_per_pixel) { case 16: /* always expect RGB 565 */ rgb = def_rgb565; break; case 32: switch (host->ld_intf_width) { case STMLCDIF_8BIT: pr_debug("Unsupported LCD bus width mapping\n"); break; case STMLCDIF_16BIT: case STMLCDIF_18BIT: /* 24 bit to 18 bit mapping */ rgb = def_rgb666; break; case STMLCDIF_24BIT: /* real 24 bit */ rgb = def_rgb888; break; } break; default: pr_debug("Unsupported colour depth: %u\n", var->bits_per_pixel); return -EINVAL; } /* * Copy the RGB parameters for this display * from the machine specific parameters. */ var->red = rgb[RED]; var->green = rgb[GREEN]; var->blue = rgb[BLUE]; var->transp = rgb[TRANSP]; return 0; } static void mxsfb_enable_controller(struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); u32 reg; dev_dbg(&host->pdev->dev, "%s\n", __func__); clk_prepare_enable(host->clk); clk_set_rate(host->clk, PICOS2KHZ(fb_info->var.pixclock) * 1000U); /* if it was disabled, re-enable the mode again */ writel(CTRL_DOTCLK_MODE, host->base + LCDC_CTRL + REG_SET); /* enable the SYNC signals first, then the DMA engine */ reg = readl(host->base + LCDC_VDCTRL4); reg |= VDCTRL4_SYNC_SIGNALS_ON; writel(reg, host->base + LCDC_VDCTRL4); writel(CTRL_RUN, host->base + LCDC_CTRL + REG_SET); host->enabled = 1; } static void mxsfb_disable_controller(struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); unsigned loop; u32 reg; dev_dbg(&host->pdev->dev, "%s\n", __func__); /* * Even if we disable the controller here, it will still continue * until its FIFOs are running out of data */ writel(CTRL_DOTCLK_MODE, host->base + LCDC_CTRL + REG_CLR); loop = 1000; while (loop) { reg = readl(host->base + LCDC_CTRL); if (!(reg & CTRL_RUN)) break; loop--; } reg = readl(host->base + LCDC_VDCTRL4); writel(reg & ~VDCTRL4_SYNC_SIGNALS_ON, host->base + LCDC_VDCTRL4); clk_disable_unprepare(host->clk); host->enabled = 0; } static int mxsfb_set_par(struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); u32 ctrl, vdctrl0, vdctrl4; int line_size, fb_size; int reenable = 0; line_size = fb_info->var.xres * (fb_info->var.bits_per_pixel >> 3); fb_size = fb_info->var.yres_virtual * line_size; if (fb_size > fb_info->fix.smem_len) return -ENOMEM; fb_info->fix.line_length = line_size; /* * It seems, you can't re-program the controller if it is still running. * This may lead into shifted pictures (FIFO issue?). * So, first stop the controller and drain its FIFOs */ if (host->enabled) { reenable = 1; mxsfb_disable_controller(fb_info); } /* clear the FIFOs */ writel(CTRL1_FIFO_CLEAR, host->base + LCDC_CTRL1 + REG_SET); ctrl = CTRL_BYPASS_COUNT | CTRL_MASTER | CTRL_SET_BUS_WIDTH(host->ld_intf_width); switch (fb_info->var.bits_per_pixel) { case 16: dev_dbg(&host->pdev->dev, "Setting up RGB565 mode\n"); ctrl |= CTRL_SET_WORD_LENGTH(0); writel(CTRL1_SET_BYTE_PACKAGING(0xf), host->base + LCDC_CTRL1); break; case 32: dev_dbg(&host->pdev->dev, "Setting up RGB888/666 mode\n"); ctrl |= CTRL_SET_WORD_LENGTH(3); switch (host->ld_intf_width) { case STMLCDIF_8BIT: dev_dbg(&host->pdev->dev, "Unsupported LCD bus width mapping\n"); return -EINVAL; case STMLCDIF_16BIT: case STMLCDIF_18BIT: /* 24 bit to 18 bit mapping */ ctrl |= CTRL_DF24; /* ignore the upper 2 bits in * each colour component */ break; case STMLCDIF_24BIT: /* real 24 bit */ break; } /* do not use packed pixels = one pixel per word instead */ writel(CTRL1_SET_BYTE_PACKAGING(0x7), host->base + LCDC_CTRL1); break; default: dev_dbg(&host->pdev->dev, "Unhandled color depth of %u\n", fb_info->var.bits_per_pixel); return -EINVAL; } writel(ctrl, host->base + LCDC_CTRL); writel(TRANSFER_COUNT_SET_VCOUNT(fb_info->var.yres) | TRANSFER_COUNT_SET_HCOUNT(fb_info->var.xres), host->base + host->devdata->transfer_count); vdctrl0 = VDCTRL0_ENABLE_PRESENT | /* always in DOTCLOCK mode */ VDCTRL0_VSYNC_PERIOD_UNIT | VDCTRL0_VSYNC_PULSE_WIDTH_UNIT | VDCTRL0_SET_VSYNC_PULSE_WIDTH(fb_info->var.vsync_len); if (fb_info->var.sync & FB_SYNC_HOR_HIGH_ACT) vdctrl0 |= VDCTRL0_HSYNC_ACT_HIGH; if (fb_info->var.sync & FB_SYNC_VERT_HIGH_ACT) vdctrl0 |= VDCTRL0_VSYNC_ACT_HIGH; if (fb_info->var.sync & FB_SYNC_DATA_ENABLE_HIGH_ACT) vdctrl0 |= VDCTRL0_ENABLE_ACT_HIGH; if (fb_info->var.sync & FB_SYNC_DOTCLK_FAILING_ACT) vdctrl0 |= VDCTRL0_DOTCLK_ACT_FAILING; writel(vdctrl0, host->base + LCDC_VDCTRL0); /* frame length in lines */ writel(fb_info->var.upper_margin + fb_info->var.vsync_len + fb_info->var.lower_margin + fb_info->var.yres, host->base + LCDC_VDCTRL1); /* line length in units of clocks or pixels */ writel(set_hsync_pulse_width(host, fb_info->var.hsync_len) | VDCTRL2_SET_HSYNC_PERIOD(fb_info->var.left_margin + fb_info->var.hsync_len + fb_info->var.right_margin + fb_info->var.xres), host->base + LCDC_VDCTRL2); writel(SET_HOR_WAIT_CNT(fb_info->var.left_margin + fb_info->var.hsync_len) | SET_VERT_WAIT_CNT(fb_info->var.upper_margin + fb_info->var.vsync_len), host->base + LCDC_VDCTRL3); vdctrl4 = SET_DOTCLK_H_VALID_DATA_CNT(fb_info->var.xres); if (mxsfb_is_v4(host)) vdctrl4 |= VDCTRL4_SET_DOTCLK_DLY(host->dotclk_delay); writel(vdctrl4, host->base + LCDC_VDCTRL4); writel(fb_info->fix.smem_start + fb_info->fix.line_length * fb_info->var.yoffset, host->base + host->devdata->next_buf); if (reenable) mxsfb_enable_controller(fb_info); return 0; } static int mxsfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *fb_info) { unsigned int val; int ret = -EINVAL; /* * If greyscale is true, then we convert the RGB value * to greyscale no matter what visual we are using. */ if (fb_info->var.grayscale) red = green = blue = (19595 * red + 38470 * green + 7471 * blue) >> 16; switch (fb_info->fix.visual) { case FB_VISUAL_TRUECOLOR: /* * 12 or 16-bit True Colour. We encode the RGB value * according to the RGB bitfield information. */ if (regno < 16) { u32 *pal = fb_info->pseudo_palette; val = chan_to_field(red, &fb_info->var.red); val |= chan_to_field(green, &fb_info->var.green); val |= chan_to_field(blue, &fb_info->var.blue); pal[regno] = val; ret = 0; } break; case FB_VISUAL_STATIC_PSEUDOCOLOR: case FB_VISUAL_PSEUDOCOLOR: break; } return ret; } static int mxsfb_blank(int blank, struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); switch (blank) { case FB_BLANK_POWERDOWN: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_NORMAL: if (host->enabled) mxsfb_disable_controller(fb_info); break; case FB_BLANK_UNBLANK: if (!host->enabled) mxsfb_enable_controller(fb_info); break; } return 0; } static int mxsfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb_info) { struct mxsfb_info *host = to_imxfb_host(fb_info); unsigned offset; if (var->xoffset != 0) return -EINVAL; offset = fb_info->fix.line_length * var->yoffset; /* update on next VSYNC */ writel(fb_info->fix.smem_start + offset, host->base + host->devdata->next_buf); return 0; } static struct fb_ops mxsfb_ops = { .owner = THIS_MODULE, .fb_check_var = mxsfb_check_var, .fb_set_par = mxsfb_set_par, .fb_setcolreg = mxsfb_setcolreg, .fb_blank = mxsfb_blank, .fb_pan_display = mxsfb_pan_display, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, }; static int mxsfb_restore_mode(struct mxsfb_info *host) { struct fb_info *fb_info = &host->fb_info; unsigned line_count; unsigned period; unsigned long pa, fbsize; int bits_per_pixel, ofs; u32 transfer_count, vdctrl0, vdctrl2, vdctrl3, vdctrl4, ctrl; struct fb_videomode vmode; /* Only restore the mode when the controller is running */ ctrl = readl(host->base + LCDC_CTRL); if (!(ctrl & CTRL_RUN)) return -EINVAL; vdctrl0 = readl(host->base + LCDC_VDCTRL0); vdctrl2 = readl(host->base + LCDC_VDCTRL2); vdctrl3 = readl(host->base + LCDC_VDCTRL3); vdctrl4 = readl(host->base + LCDC_VDCTRL4); transfer_count = readl(host->base + host->devdata->transfer_count); vmode.xres = TRANSFER_COUNT_GET_HCOUNT(transfer_count); vmode.yres = TRANSFER_COUNT_GET_VCOUNT(transfer_count); switch (CTRL_GET_WORD_LENGTH(ctrl)) { case 0: bits_per_pixel = 16; break; case 3: bits_per_pixel = 32; case 1: default: return -EINVAL; } fb_info->var.bits_per_pixel = bits_per_pixel; vmode.pixclock = KHZ2PICOS(clk_get_rate(host->clk) / 1000U); vmode.hsync_len = get_hsync_pulse_width(host, vdctrl2); vmode.left_margin = GET_HOR_WAIT_CNT(vdctrl3) - vmode.hsync_len; vmode.right_margin = VDCTRL2_GET_HSYNC_PERIOD(vdctrl2) - vmode.hsync_len - vmode.left_margin - vmode.xres; vmode.vsync_len = VDCTRL0_GET_VSYNC_PULSE_WIDTH(vdctrl0); period = readl(host->base + LCDC_VDCTRL1); vmode.upper_margin = GET_VERT_WAIT_CNT(vdctrl3) - vmode.vsync_len; vmode.lower_margin = period - vmode.vsync_len - vmode.upper_margin - vmode.yres; vmode.vmode = FB_VMODE_NONINTERLACED; vmode.sync = 0; if (vdctrl0 & VDCTRL0_HSYNC_ACT_HIGH) vmode.sync |= FB_SYNC_HOR_HIGH_ACT; if (vdctrl0 & VDCTRL0_VSYNC_ACT_HIGH) vmode.sync |= FB_SYNC_VERT_HIGH_ACT; pr_debug("Reconstructed video mode:\n"); pr_debug("%dx%d, hsync: %u left: %u, right: %u, vsync: %u, upper: %u, lower: %u\n", vmode.xres, vmode.yres, vmode.hsync_len, vmode.left_margin, vmode.right_margin, vmode.vsync_len, vmode.upper_margin, vmode.lower_margin); pr_debug("pixclk: %ldkHz\n", PICOS2KHZ(vmode.pixclock)); fb_add_videomode(&vmode, &fb_info->modelist); host->ld_intf_width = CTRL_GET_BUS_WIDTH(ctrl); host->dotclk_delay = VDCTRL4_GET_DOTCLK_DLY(vdctrl4); fb_info->fix.line_length = vmode.xres * (bits_per_pixel >> 3); pa = readl(host->base + host->devdata->cur_buf); fbsize = fb_info->fix.line_length * vmode.yres; if (pa < fb_info->fix.smem_start) return -EINVAL; if (pa + fbsize > fb_info->fix.smem_start + fb_info->fix.smem_len) return -EINVAL; ofs = pa - fb_info->fix.smem_start; if (ofs) { memmove(fb_info->screen_base, fb_info->screen_base + ofs, fbsize); writel(fb_info->fix.smem_start, host->base + host->devdata->next_buf); } line_count = fb_info->fix.smem_len / fb_info->fix.line_length; fb_info->fix.ypanstep = 1; clk_prepare_enable(host->clk); host->enabled = 1; return 0; } static int mxsfb_init_fbinfo(struct mxsfb_info *host) { struct fb_info *fb_info = &host->fb_info; struct fb_var_screeninfo *var = &fb_info->var; struct mxsfb_platform_data *pdata = host->pdev->dev.platform_data; dma_addr_t fb_phys; void *fb_virt; unsigned fb_size = pdata->fb_size; fb_info->fbops = &mxsfb_ops; fb_info->flags = FBINFO_FLAG_DEFAULT | FBINFO_READS_FAST; strlcpy(fb_info->fix.id, "mxs", sizeof(fb_info->fix.id)); fb_info->fix.type = FB_TYPE_PACKED_PIXELS; fb_info->fix.ypanstep = 1; fb_info->fix.visual = FB_VISUAL_TRUECOLOR, fb_info->fix.accel = FB_ACCEL_NONE; var->bits_per_pixel = pdata->default_bpp ? pdata->default_bpp : 16; var->nonstd = 0; var->activate = FB_ACTIVATE_NOW; var->accel_flags = 0; var->vmode = FB_VMODE_NONINTERLACED; host->dotclk_delay = pdata->dotclk_delay; host->ld_intf_width = pdata->ld_intf_width; /* Memory allocation for framebuffer */ if (pdata->fb_phys) { if (!fb_size) return -EINVAL; fb_phys = pdata->fb_phys; if (!request_mem_region(fb_phys, fb_size, host->pdev->name)) return -ENOMEM; fb_virt = ioremap(fb_phys, fb_size); if (!fb_virt) { release_mem_region(fb_phys, fb_size); return -ENOMEM; } host->mapped = 1; } else { if (!fb_size) fb_size = SZ_2M; /* default */ fb_virt = alloc_pages_exact(fb_size, GFP_DMA); if (!fb_virt) return -ENOMEM; fb_phys = virt_to_phys(fb_virt); } fb_info->fix.smem_start = fb_phys; fb_info->screen_base = fb_virt; fb_info->screen_size = fb_info->fix.smem_len = fb_size; if (mxsfb_restore_mode(host)) memset(fb_virt, 0, fb_size); return 0; } static void mxsfb_free_videomem(struct mxsfb_info *host) { struct fb_info *fb_info = &host->fb_info; if (host->mapped) { iounmap(fb_info->screen_base); release_mem_region(fb_info->fix.smem_start, fb_info->screen_size); } else { free_pages_exact(fb_info->screen_base, fb_info->fix.smem_len); } } static struct platform_device_id mxsfb_devtype[] = { { .name = "imx23-fb", .driver_data = MXSFB_V3, }, { .name = "imx28-fb", .driver_data = MXSFB_V4, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, mxsfb_devtype); static const struct of_device_id mxsfb_dt_ids[] = { { .compatible = "fsl,imx23-lcdif", .data = &mxsfb_devtype[0], }, { .compatible = "fsl,imx28-lcdif", .data = &mxsfb_devtype[1], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxsfb_dt_ids); static int mxsfb_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(mxsfb_dt_ids, &pdev->dev); struct mxsfb_platform_data *pdata = pdev->dev.platform_data; struct resource *res; struct mxsfb_info *host; struct fb_info *fb_info; struct fb_modelist *modelist; struct pinctrl *pinctrl; int panel_enable; enum of_gpio_flags flags; int i, ret; if (of_id) pdev->id_entry = of_id->data; if (!pdata) { dev_err(&pdev->dev, "No platformdata. Giving up\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Cannot get memory IO resource\n"); return -ENODEV; } if (!request_mem_region(res->start, resource_size(res), pdev->name)) return -EBUSY; fb_info = framebuffer_alloc(sizeof(struct mxsfb_info), &pdev->dev); if (!fb_info) { dev_err(&pdev->dev, "Failed to allocate fbdev\n"); ret = -ENOMEM; goto error_alloc_info; } host = to_imxfb_host(fb_info); host->base = ioremap(res->start, resource_size(res)); if (!host->base) { dev_err(&pdev->dev, "ioremap failed\n"); ret = -ENOMEM; goto error_ioremap; } host->pdev = pdev; platform_set_drvdata(pdev, host); host->devdata = &mxsfb_devdata[pdev->id_entry->driver_data]; pinctrl = devm_pinctrl_get_select_default(&pdev->dev); if (IS_ERR(pinctrl)) { ret = PTR_ERR(pinctrl); goto error_getpin; } host->clk = clk_get(&host->pdev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto error_getclock; } panel_enable = of_get_named_gpio_flags(pdev->dev.of_node, "panel-enable-gpios", 0, &flags); if (gpio_is_valid(panel_enable)) { unsigned long f = GPIOF_OUT_INIT_HIGH; if (flags == OF_GPIO_ACTIVE_LOW) f = GPIOF_OUT_INIT_LOW; ret = devm_gpio_request_one(&pdev->dev, panel_enable, f, "panel-enable"); if (ret) { dev_err(&pdev->dev, "failed to request gpio %d: %d\n", panel_enable, ret); goto error_panel_enable; } } fb_info->pseudo_palette = kmalloc(sizeof(u32) * 16, GFP_KERNEL); if (!fb_info->pseudo_palette) { ret = -ENOMEM; goto error_pseudo_pallette; } INIT_LIST_HEAD(&fb_info->modelist); ret = mxsfb_init_fbinfo(host); if (ret != 0) goto error_init_fb; for (i = 0; i < pdata->mode_count; i++) fb_add_videomode(&pdata->mode_list[i], &fb_info->modelist); modelist = list_first_entry(&fb_info->modelist, struct fb_modelist, list); fb_videomode_to_var(&fb_info->var, &modelist->mode); /* init the color fields */ mxsfb_check_var(&fb_info->var, fb_info); platform_set_drvdata(pdev, fb_info); ret = register_framebuffer(fb_info); if (ret != 0) { dev_err(&pdev->dev,"Failed to register framebuffer\n"); goto error_register; } if (!host->enabled) { writel(0, host->base + LCDC_CTRL); mxsfb_set_par(fb_info); mxsfb_enable_controller(fb_info); } dev_info(&pdev->dev, "initialized\n"); return 0; error_register: if (host->enabled) clk_disable_unprepare(host->clk); fb_destroy_modelist(&fb_info->modelist); error_init_fb: kfree(fb_info->pseudo_palette); error_pseudo_pallette: error_panel_enable: clk_put(host->clk); error_getclock: error_getpin: iounmap(host->base); error_ioremap: framebuffer_release(fb_info); error_alloc_info: release_mem_region(res->start, resource_size(res)); return ret; } static int mxsfb_remove(struct platform_device *pdev) { struct fb_info *fb_info = platform_get_drvdata(pdev); struct mxsfb_info *host = to_imxfb_host(fb_info); struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (host->enabled) mxsfb_disable_controller(fb_info); unregister_framebuffer(fb_info); kfree(fb_info->pseudo_palette); mxsfb_free_videomem(host); iounmap(host->base); clk_put(host->clk); framebuffer_release(fb_info); release_mem_region(res->start, resource_size(res)); platform_set_drvdata(pdev, NULL); return 0; } static void mxsfb_shutdown(struct platform_device *pdev) { struct fb_info *fb_info = platform_get_drvdata(pdev); struct mxsfb_info *host = to_imxfb_host(fb_info); /* * Force stop the LCD controller as keeping it running during reboot * might interfere with the BootROM's boot mode pads sampling. */ writel(CTRL_RUN, host->base + LCDC_CTRL + REG_CLR); } static struct platform_driver mxsfb_driver = { .probe = mxsfb_probe, .remove = mxsfb_remove, .shutdown = mxsfb_shutdown, .id_table = mxsfb_devtype, .driver = { .name = DRIVER_NAME, .of_match_table = mxsfb_dt_ids, }, }; module_platform_driver(mxsfb_driver); MODULE_DESCRIPTION("Freescale mxs framebuffer driver"); MODULE_AUTHOR("Sascha Hauer, Pengutronix"); MODULE_LICENSE("GPL");