/* * linux/drivers/video/acornfb.c * * Copyright (C) 1998-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Frame buffer code for Acorn platforms * * NOTE: Most of the modes with X!=640 will disappear shortly. * NOTE: Startup setting of HS & VS polarity not supported. * (do we need to support it if we're coming up in 640x480?) * * FIXME: (things broken by the "new improved" FBCON API) * - Blanking 8bpp displays with VIDC */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/fb.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <mach/hardware.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/mach-types.h> #include <asm/pgtable.h> #include "acornfb.h" /* * VIDC machines can't do 16 or 32BPP modes. */ #ifdef HAS_VIDC #undef FBCON_HAS_CFB16 #undef FBCON_HAS_CFB32 #endif /* * Default resolution. * NOTE that it has to be supported in the table towards * the end of this file. */ #define DEFAULT_XRES 640 #define DEFAULT_YRES 480 #define DEFAULT_BPP 4 /* * define this to debug the video mode selection */ #undef DEBUG_MODE_SELECTION /* * Translation from RISC OS monitor types to actual * HSYNC and VSYNC frequency ranges. These are * probably not right, but they're the best info I * have. Allow 1% either way on the nominal for TVs. */ #define NR_MONTYPES 6 static struct fb_monspecs monspecs[NR_MONTYPES] __initdata = { { /* TV */ .hfmin = 15469, .hfmax = 15781, .vfmin = 49, .vfmax = 51, }, { /* Multi Freq */ .hfmin = 0, .hfmax = 99999, .vfmin = 0, .vfmax = 199, }, { /* Hi-res mono */ .hfmin = 58608, .hfmax = 58608, .vfmin = 64, .vfmax = 64, }, { /* VGA */ .hfmin = 30000, .hfmax = 70000, .vfmin = 60, .vfmax = 60, }, { /* SVGA */ .hfmin = 30000, .hfmax = 70000, .vfmin = 56, .vfmax = 75, }, { .hfmin = 30000, .hfmax = 70000, .vfmin = 60, .vfmax = 60, } }; static struct fb_info fb_info; static struct acornfb_par current_par; static struct vidc_timing current_vidc; extern unsigned int vram_size; /* set by setup.c */ #ifdef HAS_VIDC #define MAX_SIZE 480*1024 /* CTL VIDC Actual * 24.000 0 8.000 * 25.175 0 8.392 * 36.000 0 12.000 * 24.000 1 12.000 * 25.175 1 12.588 * 24.000 2 16.000 * 25.175 2 16.783 * 36.000 1 18.000 * 24.000 3 24.000 * 36.000 2 24.000 * 25.175 3 25.175 * 36.000 3 36.000 */ struct pixclock { u_long min_clock; u_long max_clock; u_int vidc_ctl; u_int vid_ctl; }; static struct pixclock arc_clocks[] = { /* we allow +/-1% on these */ { 123750, 126250, VIDC_CTRL_DIV3, VID_CTL_24MHz }, /* 8.000MHz */ { 82500, 84167, VIDC_CTRL_DIV2, VID_CTL_24MHz }, /* 12.000MHz */ { 61875, 63125, VIDC_CTRL_DIV1_5, VID_CTL_24MHz }, /* 16.000MHz */ { 41250, 42083, VIDC_CTRL_DIV1, VID_CTL_24MHz }, /* 24.000MHz */ }; static struct pixclock * acornfb_valid_pixrate(struct fb_var_screeninfo *var) { u_long pixclock = var->pixclock; u_int i; if (!var->pixclock) return NULL; for (i = 0; i < ARRAY_SIZE(arc_clocks); i++) if (pixclock > arc_clocks[i].min_clock && pixclock < arc_clocks[i].max_clock) return arc_clocks + i; return NULL; } /* VIDC Rules: * hcr : must be even (interlace, hcr/2 must be even) * hswr : must be even * hdsr : must be odd * hder : must be odd * * vcr : must be odd * vswr : >= 1 * vdsr : >= 1 * vder : >= vdsr * if interlaced, then hcr/2 must be even */ static void acornfb_set_timing(struct fb_var_screeninfo *var) { struct pixclock *pclk; struct vidc_timing vidc; u_int horiz_correction; u_int sync_len, display_start, display_end, cycle; u_int is_interlaced; u_int vid_ctl, vidc_ctl; u_int bandwidth; memset(&vidc, 0, sizeof(vidc)); pclk = acornfb_valid_pixrate(var); vidc_ctl = pclk->vidc_ctl; vid_ctl = pclk->vid_ctl; bandwidth = var->pixclock * 8 / var->bits_per_pixel; /* 25.175, 4bpp = 79.444ns per byte, 317.776ns per word: fifo = 2,6 */ if (bandwidth > 143500) vidc_ctl |= VIDC_CTRL_FIFO_3_7; else if (bandwidth > 71750) vidc_ctl |= VIDC_CTRL_FIFO_2_6; else if (bandwidth > 35875) vidc_ctl |= VIDC_CTRL_FIFO_1_5; else vidc_ctl |= VIDC_CTRL_FIFO_0_4; switch (var->bits_per_pixel) { case 1: horiz_correction = 19; vidc_ctl |= VIDC_CTRL_1BPP; break; case 2: horiz_correction = 11; vidc_ctl |= VIDC_CTRL_2BPP; break; case 4: horiz_correction = 7; vidc_ctl |= VIDC_CTRL_4BPP; break; default: case 8: horiz_correction = 5; vidc_ctl |= VIDC_CTRL_8BPP; break; } if (var->sync & FB_SYNC_COMP_HIGH_ACT) /* should be FB_SYNC_COMP */ vidc_ctl |= VIDC_CTRL_CSYNC; else { if (!(var->sync & FB_SYNC_HOR_HIGH_ACT)) vid_ctl |= VID_CTL_HS_NHSYNC; if (!(var->sync & FB_SYNC_VERT_HIGH_ACT)) vid_ctl |= VID_CTL_VS_NVSYNC; } sync_len = var->hsync_len; display_start = sync_len + var->left_margin; display_end = display_start + var->xres; cycle = display_end + var->right_margin; /* if interlaced, then hcr/2 must be even */ is_interlaced = (var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED; if (is_interlaced) { vidc_ctl |= VIDC_CTRL_INTERLACE; if (cycle & 2) { cycle += 2; var->right_margin += 2; } } vidc.h_cycle = (cycle - 2) / 2; vidc.h_sync_width = (sync_len - 2) / 2; vidc.h_border_start = (display_start - 1) / 2; vidc.h_display_start = (display_start - horiz_correction) / 2; vidc.h_display_end = (display_end - horiz_correction) / 2; vidc.h_border_end = (display_end - 1) / 2; vidc.h_interlace = (vidc.h_cycle + 1) / 2; sync_len = var->vsync_len; display_start = sync_len + var->upper_margin; display_end = display_start + var->yres; cycle = display_end + var->lower_margin; if (is_interlaced) cycle = (cycle - 3) / 2; else cycle = cycle - 1; vidc.v_cycle = cycle; vidc.v_sync_width = sync_len - 1; vidc.v_border_start = display_start - 1; vidc.v_display_start = vidc.v_border_start; vidc.v_display_end = display_end - 1; vidc.v_border_end = vidc.v_display_end; if (machine_is_a5k()) __raw_writeb(vid_ctl, IOEB_VID_CTL); if (memcmp(¤t_vidc, &vidc, sizeof(vidc))) { current_vidc = vidc; vidc_writel(0xe0000000 | vidc_ctl); vidc_writel(0x80000000 | (vidc.h_cycle << 14)); vidc_writel(0x84000000 | (vidc.h_sync_width << 14)); vidc_writel(0x88000000 | (vidc.h_border_start << 14)); vidc_writel(0x8c000000 | (vidc.h_display_start << 14)); vidc_writel(0x90000000 | (vidc.h_display_end << 14)); vidc_writel(0x94000000 | (vidc.h_border_end << 14)); vidc_writel(0x98000000); vidc_writel(0x9c000000 | (vidc.h_interlace << 14)); vidc_writel(0xa0000000 | (vidc.v_cycle << 14)); vidc_writel(0xa4000000 | (vidc.v_sync_width << 14)); vidc_writel(0xa8000000 | (vidc.v_border_start << 14)); vidc_writel(0xac000000 | (vidc.v_display_start << 14)); vidc_writel(0xb0000000 | (vidc.v_display_end << 14)); vidc_writel(0xb4000000 | (vidc.v_border_end << 14)); vidc_writel(0xb8000000); vidc_writel(0xbc000000); } #ifdef DEBUG_MODE_SELECTION printk(KERN_DEBUG "VIDC registers for %dx%dx%d:\n", var->xres, var->yres, var->bits_per_pixel); printk(KERN_DEBUG " H-cycle : %d\n", vidc.h_cycle); printk(KERN_DEBUG " H-sync-width : %d\n", vidc.h_sync_width); printk(KERN_DEBUG " H-border-start : %d\n", vidc.h_border_start); printk(KERN_DEBUG " H-display-start : %d\n", vidc.h_display_start); printk(KERN_DEBUG " H-display-end : %d\n", vidc.h_display_end); printk(KERN_DEBUG " H-border-end : %d\n", vidc.h_border_end); printk(KERN_DEBUG " H-interlace : %d\n", vidc.h_interlace); printk(KERN_DEBUG " V-cycle : %d\n", vidc.v_cycle); printk(KERN_DEBUG " V-sync-width : %d\n", vidc.v_sync_width); printk(KERN_DEBUG " V-border-start : %d\n", vidc.v_border_start); printk(KERN_DEBUG " V-display-start : %d\n", vidc.v_display_start); printk(KERN_DEBUG " V-display-end : %d\n", vidc.v_display_end); printk(KERN_DEBUG " V-border-end : %d\n", vidc.v_border_end); printk(KERN_DEBUG " VIDC Ctrl (E) : 0x%08X\n", vidc_ctl); printk(KERN_DEBUG " IOEB Ctrl : 0x%08X\n", vid_ctl); #endif } static int acornfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { union palette pal; if (regno >= current_par.palette_size) return 1; pal.p = 0; pal.vidc.reg = regno; pal.vidc.red = red >> 12; pal.vidc.green = green >> 12; pal.vidc.blue = blue >> 12; current_par.palette[regno] = pal; vidc_writel(pal.p); return 0; } #endif #ifdef HAS_VIDC20 #include <mach/acornfb.h> #define MAX_SIZE 2*1024*1024 /* VIDC20 has a different set of rules from the VIDC: * hcr : must be multiple of 4 * hswr : must be even * hdsr : must be even * hder : must be even * vcr : >= 2, (interlace, must be odd) * vswr : >= 1 * vdsr : >= 1 * vder : >= vdsr */ static void acornfb_set_timing(struct fb_info *info) { struct fb_var_screeninfo *var = &info->var; struct vidc_timing vidc; u_int vcr, fsize; u_int ext_ctl, dat_ctl; u_int words_per_line; memset(&vidc, 0, sizeof(vidc)); vidc.h_sync_width = var->hsync_len - 8; vidc.h_border_start = vidc.h_sync_width + var->left_margin + 8 - 12; vidc.h_display_start = vidc.h_border_start + 12 - 18; vidc.h_display_end = vidc.h_display_start + var->xres; vidc.h_border_end = vidc.h_display_end + 18 - 12; vidc.h_cycle = vidc.h_border_end + var->right_margin + 12 - 8; vidc.h_interlace = vidc.h_cycle / 2; vidc.v_sync_width = var->vsync_len - 1; vidc.v_border_start = vidc.v_sync_width + var->upper_margin; vidc.v_display_start = vidc.v_border_start; vidc.v_display_end = vidc.v_display_start + var->yres; vidc.v_border_end = vidc.v_display_end; vidc.control = acornfb_default_control(); vcr = var->vsync_len + var->upper_margin + var->yres + var->lower_margin; if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) { vidc.v_cycle = (vcr - 3) / 2; vidc.control |= VIDC20_CTRL_INT; } else vidc.v_cycle = vcr - 2; switch (var->bits_per_pixel) { case 1: vidc.control |= VIDC20_CTRL_1BPP; break; case 2: vidc.control |= VIDC20_CTRL_2BPP; break; case 4: vidc.control |= VIDC20_CTRL_4BPP; break; default: case 8: vidc.control |= VIDC20_CTRL_8BPP; break; case 16: vidc.control |= VIDC20_CTRL_16BPP; break; case 32: vidc.control |= VIDC20_CTRL_32BPP; break; } acornfb_vidc20_find_rates(&vidc, var); fsize = var->vsync_len + var->upper_margin + var->lower_margin - 1; if (memcmp(¤t_vidc, &vidc, sizeof(vidc))) { current_vidc = vidc; vidc_writel(VIDC20_CTRL| vidc.control); vidc_writel(0xd0000000 | vidc.pll_ctl); vidc_writel(0x80000000 | vidc.h_cycle); vidc_writel(0x81000000 | vidc.h_sync_width); vidc_writel(0x82000000 | vidc.h_border_start); vidc_writel(0x83000000 | vidc.h_display_start); vidc_writel(0x84000000 | vidc.h_display_end); vidc_writel(0x85000000 | vidc.h_border_end); vidc_writel(0x86000000); vidc_writel(0x87000000 | vidc.h_interlace); vidc_writel(0x90000000 | vidc.v_cycle); vidc_writel(0x91000000 | vidc.v_sync_width); vidc_writel(0x92000000 | vidc.v_border_start); vidc_writel(0x93000000 | vidc.v_display_start); vidc_writel(0x94000000 | vidc.v_display_end); vidc_writel(0x95000000 | vidc.v_border_end); vidc_writel(0x96000000); vidc_writel(0x97000000); } iomd_writel(fsize, IOMD_FSIZE); ext_ctl = acornfb_default_econtrol(); if (var->sync & FB_SYNC_COMP_HIGH_ACT) /* should be FB_SYNC_COMP */ ext_ctl |= VIDC20_ECTL_HS_NCSYNC | VIDC20_ECTL_VS_NCSYNC; else { if (var->sync & FB_SYNC_HOR_HIGH_ACT) ext_ctl |= VIDC20_ECTL_HS_HSYNC; else ext_ctl |= VIDC20_ECTL_HS_NHSYNC; if (var->sync & FB_SYNC_VERT_HIGH_ACT) ext_ctl |= VIDC20_ECTL_VS_VSYNC; else ext_ctl |= VIDC20_ECTL_VS_NVSYNC; } vidc_writel(VIDC20_ECTL | ext_ctl); words_per_line = var->xres * var->bits_per_pixel / 32; if (current_par.using_vram && info->fix.smem_len == 2048*1024) words_per_line /= 2; /* RiscPC doesn't use the VIDC's VRAM control. */ dat_ctl = VIDC20_DCTL_VRAM_DIS | VIDC20_DCTL_SNA | words_per_line; /* The data bus width is dependent on both the type * and amount of video memory. * DRAM 32bit low * 1MB VRAM 32bit * 2MB VRAM 64bit */ if (current_par.using_vram && current_par.vram_half_sam == 2048) dat_ctl |= VIDC20_DCTL_BUS_D63_0; else dat_ctl |= VIDC20_DCTL_BUS_D31_0; vidc_writel(VIDC20_DCTL | dat_ctl); #ifdef DEBUG_MODE_SELECTION printk(KERN_DEBUG "VIDC registers for %dx%dx%d:\n", var->xres, var->yres, var->bits_per_pixel); printk(KERN_DEBUG " H-cycle : %d\n", vidc.h_cycle); printk(KERN_DEBUG " H-sync-width : %d\n", vidc.h_sync_width); printk(KERN_DEBUG " H-border-start : %d\n", vidc.h_border_start); printk(KERN_DEBUG " H-display-start : %d\n", vidc.h_display_start); printk(KERN_DEBUG " H-display-end : %d\n", vidc.h_display_end); printk(KERN_DEBUG " H-border-end : %d\n", vidc.h_border_end); printk(KERN_DEBUG " H-interlace : %d\n", vidc.h_interlace); printk(KERN_DEBUG " V-cycle : %d\n", vidc.v_cycle); printk(KERN_DEBUG " V-sync-width : %d\n", vidc.v_sync_width); printk(KERN_DEBUG " V-border-start : %d\n", vidc.v_border_start); printk(KERN_DEBUG " V-display-start : %d\n", vidc.v_display_start); printk(KERN_DEBUG " V-display-end : %d\n", vidc.v_display_end); printk(KERN_DEBUG " V-border-end : %d\n", vidc.v_border_end); printk(KERN_DEBUG " Ext Ctrl (C) : 0x%08X\n", ext_ctl); printk(KERN_DEBUG " PLL Ctrl (D) : 0x%08X\n", vidc.pll_ctl); printk(KERN_DEBUG " Ctrl (E) : 0x%08X\n", vidc.control); printk(KERN_DEBUG " Data Ctrl (F) : 0x%08X\n", dat_ctl); printk(KERN_DEBUG " Fsize : 0x%08X\n", fsize); #endif } /* * We have to take note of the VIDC20's 16-bit palette here. * The VIDC20 looks up a 16 bit pixel as follows: * * bits 111111 * 5432109876543210 * red ++++++++ (8 bits, 7 to 0) * green ++++++++ (8 bits, 11 to 4) * blue ++++++++ (8 bits, 15 to 8) * * We use a pixel which looks like: * * bits 111111 * 5432109876543210 * red +++++ (5 bits, 4 to 0) * green +++++ (5 bits, 9 to 5) * blue +++++ (5 bits, 14 to 10) */ static int acornfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { union palette pal; if (regno >= current_par.palette_size) return 1; if (regno < 16 && info->fix.visual == FB_VISUAL_DIRECTCOLOR) { u32 pseudo_val; pseudo_val = regno << info->var.red.offset; pseudo_val |= regno << info->var.green.offset; pseudo_val |= regno << info->var.blue.offset; ((u32 *)info->pseudo_palette)[regno] = pseudo_val; } pal.p = 0; pal.vidc20.red = red >> 8; pal.vidc20.green = green >> 8; pal.vidc20.blue = blue >> 8; current_par.palette[regno] = pal; if (info->var.bits_per_pixel == 16) { int i; pal.p = 0; vidc_writel(0x10000000); for (i = 0; i < 256; i += 1) { pal.vidc20.red = current_par.palette[ i & 31].vidc20.red; pal.vidc20.green = current_par.palette[(i >> 1) & 31].vidc20.green; pal.vidc20.blue = current_par.palette[(i >> 2) & 31].vidc20.blue; vidc_writel(pal.p); /* Palette register pointer auto-increments */ } } else { vidc_writel(0x10000000 | regno); vidc_writel(pal.p); } return 0; } #endif /* * Before selecting the timing parameters, adjust * the resolution to fit the rules. */ static int acornfb_adjust_timing(struct fb_info *info, struct fb_var_screeninfo *var, u_int fontht) { u_int font_line_len, sam_size, min_size, size, nr_y; /* xres must be even */ var->xres = (var->xres + 1) & ~1; /* * We don't allow xres_virtual to differ from xres */ var->xres_virtual = var->xres; var->xoffset = 0; if (current_par.using_vram) sam_size = current_par.vram_half_sam * 2; else sam_size = 16; /* * Now, find a value for yres_virtual which allows * us to do ywrap scrolling. The value of * yres_virtual must be such that the end of the * displayable frame buffer must be aligned with * the start of a font line. */ font_line_len = var->xres * var->bits_per_pixel * fontht / 8; min_size = var->xres * var->yres * var->bits_per_pixel / 8; /* * If minimum screen size is greater than that we have * available, reject it. */ if (min_size > info->fix.smem_len) return -EINVAL; /* Find int 'y', such that y * fll == s * sam < maxsize * y = s * sam / fll; s = maxsize / sam */ for (size = info->fix.smem_len; nr_y = size / font_line_len, min_size <= size; size -= sam_size) { if (nr_y * font_line_len == size) break; } nr_y *= fontht; if (var->accel_flags & FB_ACCELF_TEXT) { if (min_size > size) { /* * failed, use ypan */ size = info->fix.smem_len; var->yres_virtual = size / (font_line_len / fontht); } else var->yres_virtual = nr_y; } else if (var->yres_virtual > nr_y) var->yres_virtual = nr_y; current_par.screen_end = info->fix.smem_start + size; /* * Fix yres & yoffset if needed. */ if (var->yres > var->yres_virtual) var->yres = var->yres_virtual; if (var->vmode & FB_VMODE_YWRAP) { if (var->yoffset > var->yres_virtual) var->yoffset = var->yres_virtual; } else { if (var->yoffset + var->yres > var->yres_virtual) var->yoffset = var->yres_virtual - var->yres; } /* hsync_len must be even */ var->hsync_len = (var->hsync_len + 1) & ~1; #ifdef HAS_VIDC /* left_margin must be odd */ if ((var->left_margin & 1) == 0) { var->left_margin -= 1; var->right_margin += 1; } /* right_margin must be odd */ var->right_margin |= 1; #elif defined(HAS_VIDC20) /* left_margin must be even */ if (var->left_margin & 1) { var->left_margin += 1; var->right_margin -= 1; } /* right_margin must be even */ if (var->right_margin & 1) var->right_margin += 1; #endif if (var->vsync_len < 1) var->vsync_len = 1; return 0; } static int acornfb_validate_timing(struct fb_var_screeninfo *var, struct fb_monspecs *monspecs) { unsigned long hs, vs; /* * hs(Hz) = 10^12 / (pixclock * xtotal) * vs(Hz) = hs(Hz) / ytotal * * No need to do long long divisions or anything * like that if you factor it correctly */ hs = 1953125000 / var->pixclock; hs = hs * 512 / (var->xres + var->left_margin + var->right_margin + var->hsync_len); vs = hs / (var->yres + var->upper_margin + var->lower_margin + var->vsync_len); return (vs >= monspecs->vfmin && vs <= monspecs->vfmax && hs >= monspecs->hfmin && hs <= monspecs->hfmax) ? 0 : -EINVAL; } static inline void acornfb_update_dma(struct fb_info *info, struct fb_var_screeninfo *var) { u_int off = var->yoffset * info->fix.line_length; #if defined(HAS_MEMC) memc_write(VDMA_INIT, off >> 2); #elif defined(HAS_IOMD) iomd_writel(info->fix.smem_start + off, IOMD_VIDINIT); #endif } static int acornfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { u_int fontht; int err; /* * FIXME: Find the font height */ fontht = 8; var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.msb_right = 0; switch (var->bits_per_pixel) { case 1: case 2: case 4: case 8: var->red.offset = 0; var->red.length = var->bits_per_pixel; var->green = var->red; var->blue = var->red; var->transp.offset = 0; var->transp.length = 0; break; #ifdef HAS_VIDC20 case 16: var->red.offset = 0; var->red.length = 5; var->green.offset = 5; var->green.length = 5; var->blue.offset = 10; var->blue.length = 5; var->transp.offset = 15; var->transp.length = 1; break; case 32: var->red.offset = 0; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 16; var->blue.length = 8; var->transp.offset = 24; var->transp.length = 4; break; #endif default: return -EINVAL; } /* * Check to see if the pixel rate is valid. */ if (!acornfb_valid_pixrate(var)) return -EINVAL; /* * Validate and adjust the resolution to * match the video generator hardware. */ err = acornfb_adjust_timing(info, var, fontht); if (err) return err; /* * Validate the timing against the * monitor hardware. */ return acornfb_validate_timing(var, &info->monspecs); } static int acornfb_set_par(struct fb_info *info) { switch (info->var.bits_per_pixel) { case 1: current_par.palette_size = 2; info->fix.visual = FB_VISUAL_MONO10; break; case 2: current_par.palette_size = 4; info->fix.visual = FB_VISUAL_PSEUDOCOLOR; break; case 4: current_par.palette_size = 16; info->fix.visual = FB_VISUAL_PSEUDOCOLOR; break; case 8: current_par.palette_size = VIDC_PALETTE_SIZE; #ifdef HAS_VIDC info->fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; #else info->fix.visual = FB_VISUAL_PSEUDOCOLOR; #endif break; #ifdef HAS_VIDC20 case 16: current_par.palette_size = 32; info->fix.visual = FB_VISUAL_DIRECTCOLOR; break; case 32: current_par.palette_size = VIDC_PALETTE_SIZE; info->fix.visual = FB_VISUAL_DIRECTCOLOR; break; #endif default: BUG(); } info->fix.line_length = (info->var.xres * info->var.bits_per_pixel) / 8; #if defined(HAS_MEMC) { unsigned long size = info->fix.smem_len - VDMA_XFERSIZE; memc_write(VDMA_START, 0); memc_write(VDMA_END, size >> 2); } #elif defined(HAS_IOMD) { unsigned long start, size; u_int control; start = info->fix.smem_start; size = current_par.screen_end; if (current_par.using_vram) { size -= current_par.vram_half_sam; control = DMA_CR_E | (current_par.vram_half_sam / 256); } else { size -= 16; control = DMA_CR_E | DMA_CR_D | 16; } iomd_writel(start, IOMD_VIDSTART); iomd_writel(size, IOMD_VIDEND); iomd_writel(control, IOMD_VIDCR); } #endif acornfb_update_dma(info, &info->var); acornfb_set_timing(info); return 0; } static int acornfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { u_int y_bottom = var->yoffset; if (!(var->vmode & FB_VMODE_YWRAP)) y_bottom += var->yres; BUG_ON(y_bottom > var->yres_virtual); acornfb_update_dma(info, var); return 0; } /* * Note that we are entered with the kernel locked. */ static int acornfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { unsigned long off, start; u32 len; off = vma->vm_pgoff << PAGE_SHIFT; start = info->fix.smem_start; len = PAGE_ALIGN(start & ~PAGE_MASK) + info->fix.smem_len; start &= PAGE_MASK; if ((vma->vm_end - vma->vm_start + off) > len) return -EINVAL; off += start; vma->vm_pgoff = off >> PAGE_SHIFT; /* This is an IO map - tell maydump to skip this VMA */ vma->vm_flags |= VM_IO; vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); /* * Don't alter the page protection flags; we want to keep the area * cached for better performance. This does mean that we may miss * some updates to the screen occasionally, but process switches * should cause the caches and buffers to be flushed often enough. */ if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } static struct fb_ops acornfb_ops = { .owner = THIS_MODULE, .fb_check_var = acornfb_check_var, .fb_set_par = acornfb_set_par, .fb_setcolreg = acornfb_setcolreg, .fb_pan_display = acornfb_pan_display, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_mmap = acornfb_mmap, }; /* * Everything after here is initialisation!!! */ static struct fb_videomode modedb[] __initdata = { { /* 320x256 @ 50Hz */ NULL, 50, 320, 256, 125000, 92, 62, 35, 19, 38, 2, FB_SYNC_COMP_HIGH_ACT, FB_VMODE_NONINTERLACED }, { /* 640x250 @ 50Hz, 15.6 kHz hsync */ NULL, 50, 640, 250, 62500, 185, 123, 38, 21, 76, 3, 0, FB_VMODE_NONINTERLACED }, { /* 640x256 @ 50Hz, 15.6 kHz hsync */ NULL, 50, 640, 256, 62500, 185, 123, 35, 18, 76, 3, 0, FB_VMODE_NONINTERLACED }, { /* 640x512 @ 50Hz, 26.8 kHz hsync */ NULL, 50, 640, 512, 41667, 113, 87, 18, 1, 56, 3, 0, FB_VMODE_NONINTERLACED }, { /* 640x250 @ 70Hz, 31.5 kHz hsync */ NULL, 70, 640, 250, 39722, 48, 16, 109, 88, 96, 2, 0, FB_VMODE_NONINTERLACED }, { /* 640x256 @ 70Hz, 31.5 kHz hsync */ NULL, 70, 640, 256, 39722, 48, 16, 106, 85, 96, 2, 0, FB_VMODE_NONINTERLACED }, { /* 640x352 @ 70Hz, 31.5 kHz hsync */ NULL, 70, 640, 352, 39722, 48, 16, 58, 37, 96, 2, 0, FB_VMODE_NONINTERLACED }, { /* 640x480 @ 60Hz, 31.5 kHz hsync */ NULL, 60, 640, 480, 39722, 48, 16, 32, 11, 96, 2, 0, FB_VMODE_NONINTERLACED }, { /* 800x600 @ 56Hz, 35.2 kHz hsync */ NULL, 56, 800, 600, 27778, 101, 23, 22, 1, 100, 2, 0, FB_VMODE_NONINTERLACED }, { /* 896x352 @ 60Hz, 21.8 kHz hsync */ NULL, 60, 896, 352, 41667, 59, 27, 9, 0, 118, 3, 0, FB_VMODE_NONINTERLACED }, { /* 1024x 768 @ 60Hz, 48.4 kHz hsync */ NULL, 60, 1024, 768, 15385, 160, 24, 29, 3, 136, 6, 0, FB_VMODE_NONINTERLACED }, { /* 1280x1024 @ 60Hz, 63.8 kHz hsync */ NULL, 60, 1280, 1024, 9090, 186, 96, 38, 1, 160, 3, 0, FB_VMODE_NONINTERLACED } }; static struct fb_videomode __initdata acornfb_default_mode = { .name = NULL, .refresh = 60, .xres = 640, .yres = 480, .pixclock = 39722, .left_margin = 56, .right_margin = 16, .upper_margin = 34, .lower_margin = 9, .hsync_len = 88, .vsync_len = 2, .sync = 0, .vmode = FB_VMODE_NONINTERLACED }; static void __init acornfb_init_fbinfo(void) { static int first = 1; if (!first) return; first = 0; fb_info.fbops = &acornfb_ops; fb_info.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; fb_info.pseudo_palette = current_par.pseudo_palette; strcpy(fb_info.fix.id, "Acorn"); fb_info.fix.type = FB_TYPE_PACKED_PIXELS; fb_info.fix.type_aux = 0; fb_info.fix.xpanstep = 0; fb_info.fix.ypanstep = 1; fb_info.fix.ywrapstep = 1; fb_info.fix.line_length = 0; fb_info.fix.accel = FB_ACCEL_NONE; /* * setup initial parameters */ memset(&fb_info.var, 0, sizeof(fb_info.var)); #if defined(HAS_VIDC20) fb_info.var.red.length = 8; fb_info.var.transp.length = 4; #elif defined(HAS_VIDC) fb_info.var.red.length = 4; fb_info.var.transp.length = 1; #endif fb_info.var.green = fb_info.var.red; fb_info.var.blue = fb_info.var.red; fb_info.var.nonstd = 0; fb_info.var.activate = FB_ACTIVATE_NOW; fb_info.var.height = -1; fb_info.var.width = -1; fb_info.var.vmode = FB_VMODE_NONINTERLACED; fb_info.var.accel_flags = FB_ACCELF_TEXT; current_par.dram_size = 0; current_par.montype = -1; current_par.dpms = 0; } /* * setup acornfb options: * * mon:hmin-hmax:vmin-vmax:dpms:width:height * Set monitor parameters: * hmin = horizontal minimum frequency (Hz) * hmax = horizontal maximum frequency (Hz) (optional) * vmin = vertical minimum frequency (Hz) * vmax = vertical maximum frequency (Hz) (optional) * dpms = DPMS supported? (optional) * width = width of picture in mm. (optional) * height = height of picture in mm. (optional) * * montype:type * Set RISC-OS style monitor type: * 0 (or tv) - TV frequency * 1 (or multi) - Multi frequency * 2 (or hires) - Hi-res monochrome * 3 (or vga) - VGA * 4 (or svga) - SVGA * auto, or option missing * - try hardware detect * * dram:size * Set the amount of DRAM to use for the frame buffer * (even if you have VRAM). * size can optionally be followed by 'M' or 'K' for * MB or KB respectively. */ static void __init acornfb_parse_mon(char *opt) { char *p = opt; current_par.montype = -2; fb_info.monspecs.hfmin = simple_strtoul(p, &p, 0); if (*p == '-') fb_info.monspecs.hfmax = simple_strtoul(p + 1, &p, 0); else fb_info.monspecs.hfmax = fb_info.monspecs.hfmin; if (*p != ':') goto bad; fb_info.monspecs.vfmin = simple_strtoul(p + 1, &p, 0); if (*p == '-') fb_info.monspecs.vfmax = simple_strtoul(p + 1, &p, 0); else fb_info.monspecs.vfmax = fb_info.monspecs.vfmin; if (*p != ':') goto check_values; fb_info.monspecs.dpms = simple_strtoul(p + 1, &p, 0); if (*p != ':') goto check_values; fb_info.var.width = simple_strtoul(p + 1, &p, 0); if (*p != ':') goto check_values; fb_info.var.height = simple_strtoul(p + 1, NULL, 0); check_values: if (fb_info.monspecs.hfmax < fb_info.monspecs.hfmin || fb_info.monspecs.vfmax < fb_info.monspecs.vfmin) goto bad; return; bad: printk(KERN_ERR "Acornfb: bad monitor settings: %s\n", opt); current_par.montype = -1; } static void __init acornfb_parse_montype(char *opt) { current_par.montype = -2; if (strncmp(opt, "tv", 2) == 0) { opt += 2; current_par.montype = 0; } else if (strncmp(opt, "multi", 5) == 0) { opt += 5; current_par.montype = 1; } else if (strncmp(opt, "hires", 5) == 0) { opt += 5; current_par.montype = 2; } else if (strncmp(opt, "vga", 3) == 0) { opt += 3; current_par.montype = 3; } else if (strncmp(opt, "svga", 4) == 0) { opt += 4; current_par.montype = 4; } else if (strncmp(opt, "auto", 4) == 0) { opt += 4; current_par.montype = -1; } else if (isdigit(*opt)) current_par.montype = simple_strtoul(opt, &opt, 0); if (current_par.montype == -2 || current_par.montype > NR_MONTYPES) { printk(KERN_ERR "acornfb: unknown monitor type: %s\n", opt); current_par.montype = -1; } else if (opt && *opt) { if (strcmp(opt, ",dpms") == 0) current_par.dpms = 1; else printk(KERN_ERR "acornfb: unknown monitor option: %s\n", opt); } } static void __init acornfb_parse_dram(char *opt) { unsigned int size; size = simple_strtoul(opt, &opt, 0); if (opt) { switch (*opt) { case 'M': case 'm': size *= 1024; case 'K': case 'k': size *= 1024; default: break; } } current_par.dram_size = size; } static struct options { char *name; void (*parse)(char *opt); } opt_table[] __initdata = { { "mon", acornfb_parse_mon }, { "montype", acornfb_parse_montype }, { "dram", acornfb_parse_dram }, { NULL, NULL } }; int __init acornfb_setup(char *options) { struct options *optp; char *opt; if (!options || !*options) return 0; acornfb_init_fbinfo(); while ((opt = strsep(&options, ",")) != NULL) { if (!*opt) continue; for (optp = opt_table; optp->name; optp++) { int optlen; optlen = strlen(optp->name); if (strncmp(opt, optp->name, optlen) == 0 && opt[optlen] == ':') { optp->parse(opt + optlen + 1); break; } } if (!optp->name) printk(KERN_ERR "acornfb: unknown parameter: %s\n", opt); } return 0; } /* * Detect type of monitor connected * For now, we just assume SVGA */ static int __init acornfb_detect_monitortype(void) { return 4; } /* * This enables the unused memory to be freed on older Acorn machines. * We are freeing memory on behalf of the architecture initialisation * code here. */ static inline void free_unused_pages(unsigned int virtual_start, unsigned int virtual_end) { int mb_freed = 0; /* * Align addresses */ virtual_start = PAGE_ALIGN(virtual_start); virtual_end = PAGE_ALIGN(virtual_end); while (virtual_start < virtual_end) { struct page *page; /* * Clear page reserved bit, * set count to 1, and free * the page. */ page = virt_to_page(virtual_start); ClearPageReserved(page); init_page_count(page); free_page(virtual_start); virtual_start += PAGE_SIZE; mb_freed += PAGE_SIZE / 1024; } printk("acornfb: freed %dK memory\n", mb_freed); } static int __init acornfb_probe(struct platform_device *dev) { unsigned long size; u_int h_sync, v_sync; int rc, i; char *option = NULL; if (fb_get_options("acornfb", &option)) return -ENODEV; acornfb_setup(option); acornfb_init_fbinfo(); current_par.dev = &dev->dev; if (current_par.montype == -1) current_par.montype = acornfb_detect_monitortype(); if (current_par.montype == -1 || current_par.montype > NR_MONTYPES) current_par.montype = 4; if (current_par.montype >= 0) { fb_info.monspecs = monspecs[current_par.montype]; fb_info.monspecs.dpms = current_par.dpms; } /* * Try to select a suitable default mode */ for (i = 0; i < ARRAY_SIZE(modedb); i++) { unsigned long hs; hs = modedb[i].refresh * (modedb[i].yres + modedb[i].upper_margin + modedb[i].lower_margin + modedb[i].vsync_len); if (modedb[i].xres == DEFAULT_XRES && modedb[i].yres == DEFAULT_YRES && modedb[i].refresh >= fb_info.monspecs.vfmin && modedb[i].refresh <= fb_info.monspecs.vfmax && hs >= fb_info.monspecs.hfmin && hs <= fb_info.monspecs.hfmax) { acornfb_default_mode = modedb[i]; break; } } fb_info.screen_base = (char *)SCREEN_BASE; fb_info.fix.smem_start = SCREEN_START; current_par.using_vram = 0; /* * If vram_size is set, we are using VRAM in * a Risc PC. However, if the user has specified * an amount of DRAM then use that instead. */ if (vram_size && !current_par.dram_size) { size = vram_size; current_par.vram_half_sam = vram_size / 1024; current_par.using_vram = 1; } else if (current_par.dram_size) size = current_par.dram_size; else size = MAX_SIZE; /* * Limit maximum screen size. */ if (size > MAX_SIZE) size = MAX_SIZE; size = PAGE_ALIGN(size); #if defined(HAS_VIDC20) if (!current_par.using_vram) { dma_addr_t handle; void *base; /* * RiscPC needs to allocate the DRAM memory * for the framebuffer if we are not using * VRAM. */ base = dma_alloc_writecombine(current_par.dev, size, &handle, GFP_KERNEL); if (base == NULL) { printk(KERN_ERR "acornfb: unable to allocate screen " "memory\n"); return -ENOMEM; } fb_info.screen_base = base; fb_info.fix.smem_start = handle; } #endif #if defined(HAS_VIDC) /* * Archimedes/A5000 machines use a fixed address for their * framebuffers. Free unused pages */ free_unused_pages(PAGE_OFFSET + size, PAGE_OFFSET + MAX_SIZE); #endif fb_info.fix.smem_len = size; current_par.palette_size = VIDC_PALETTE_SIZE; /* * Lookup the timing for this resolution. If we can't * find it, then we can't restore it if we change * the resolution, so we disable this feature. */ do { rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb, ARRAY_SIZE(modedb), &acornfb_default_mode, DEFAULT_BPP); /* * If we found an exact match, all ok. */ if (rc == 1) break; rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0, &acornfb_default_mode, DEFAULT_BPP); /* * If we found an exact match, all ok. */ if (rc == 1) break; rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb, ARRAY_SIZE(modedb), &acornfb_default_mode, DEFAULT_BPP); if (rc) break; rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0, &acornfb_default_mode, DEFAULT_BPP); } while (0); /* * If we didn't find an exact match, try the * generic database. */ if (rc == 0) { printk("Acornfb: no valid mode found\n"); return -EINVAL; } h_sync = 1953125000 / fb_info.var.pixclock; h_sync = h_sync * 512 / (fb_info.var.xres + fb_info.var.left_margin + fb_info.var.right_margin + fb_info.var.hsync_len); v_sync = h_sync / (fb_info.var.yres + fb_info.var.upper_margin + fb_info.var.lower_margin + fb_info.var.vsync_len); printk(KERN_INFO "Acornfb: %dkB %cRAM, %s, using %dx%d, " "%d.%03dkHz, %dHz\n", fb_info.fix.smem_len / 1024, current_par.using_vram ? 'V' : 'D', VIDC_NAME, fb_info.var.xres, fb_info.var.yres, h_sync / 1000, h_sync % 1000, v_sync); printk(KERN_INFO "Acornfb: Monitor: %d.%03d-%d.%03dkHz, %d-%dHz%s\n", fb_info.monspecs.hfmin / 1000, fb_info.monspecs.hfmin % 1000, fb_info.monspecs.hfmax / 1000, fb_info.monspecs.hfmax % 1000, fb_info.monspecs.vfmin, fb_info.monspecs.vfmax, fb_info.monspecs.dpms ? ", DPMS" : ""); if (fb_set_var(&fb_info, &fb_info.var)) printk(KERN_ERR "Acornfb: unable to set display parameters\n"); if (register_framebuffer(&fb_info) < 0) return -EINVAL; return 0; } static struct platform_driver acornfb_driver = { .probe = acornfb_probe, .driver = { .name = "acornfb", }, }; static int __init acornfb_init(void) { return platform_driver_register(&acornfb_driver); } module_init(acornfb_init); MODULE_AUTHOR("Russell King"); MODULE_DESCRIPTION("VIDC 1/1a/20 framebuffer driver"); MODULE_LICENSE("GPL");