/* * Copyright (C) 2005-2006 by Texas Instruments * * This file implements a DMA interface using TI's CPPI DMA. * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. */ #include #include #include #include #include "musb_core.h" #include "musb_debug.h" #include "cppi_dma.h" /* CPPI DMA status 7-mar-2006: * * - See musb_{host,gadget}.c for more info * * - Correct RX DMA generally forces the engine into irq-per-packet mode, * which can easily saturate the CPU under non-mass-storage loads. * * NOTES 24-aug-2006 (2.6.18-rc4): * * - peripheral RXDMA wedged in a test with packets of length 512/512/1. * evidently after the 1 byte packet was received and acked, the queue * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003, * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx * of its next (512 byte) packet. IRQ issues? * * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will * evidently also directly update the RX and TX CSRs ... so audit all * host and peripheral side DMA code to avoid CSR access after DMA has * been started. */ /* REVISIT now we can avoid preallocating these descriptors; or * more simply, switch to a global freelist not per-channel ones. * Note: at full speed, 64 descriptors == 4K bulk data. */ #define NUM_TXCHAN_BD 64 #define NUM_RXCHAN_BD 64 static inline void cpu_drain_writebuffer(void) { wmb(); #ifdef CONFIG_CPU_ARM926T /* REVISIT this "should not be needed", * but lack of it sure seemed to hurt ... */ asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); #endif } static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) { struct cppi_descriptor *bd = c->freelist; if (bd) c->freelist = bd->next; return bd; } static inline void cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) { if (!bd) return; bd->next = c->freelist; c->freelist = bd; } /* * Start DMA controller * * Initialize the DMA controller as necessary. */ /* zero out entire rx state RAM entry for the channel */ static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) { musb_writel(&rx->rx_skipbytes, 0, 0); musb_writel(&rx->rx_head, 0, 0); musb_writel(&rx->rx_sop, 0, 0); musb_writel(&rx->rx_current, 0, 0); musb_writel(&rx->rx_buf_current, 0, 0); musb_writel(&rx->rx_len_len, 0, 0); musb_writel(&rx->rx_cnt_cnt, 0, 0); } /* zero out entire tx state RAM entry for the channel */ static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) { musb_writel(&tx->tx_head, 0, 0); musb_writel(&tx->tx_buf, 0, 0); musb_writel(&tx->tx_current, 0, 0); musb_writel(&tx->tx_buf_current, 0, 0); musb_writel(&tx->tx_info, 0, 0); musb_writel(&tx->tx_rem_len, 0, 0); /* musb_writel(&tx->tx_dummy, 0, 0); */ musb_writel(&tx->tx_complete, 0, ptr); } static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) { int j; /* initialize channel fields */ c->head = NULL; c->tail = NULL; c->last_processed = NULL; c->channel.status = MUSB_DMA_STATUS_UNKNOWN; c->controller = cppi; c->is_rndis = 0; c->freelist = NULL; /* build the BD Free list for the channel */ for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { struct cppi_descriptor *bd; dma_addr_t dma; bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); bd->dma = dma; cppi_bd_free(c, bd); } } static int cppi_channel_abort(struct dma_channel *); static void cppi_pool_free(struct cppi_channel *c) { struct cppi *cppi = c->controller; struct cppi_descriptor *bd; (void) cppi_channel_abort(&c->channel); c->channel.status = MUSB_DMA_STATUS_UNKNOWN; c->controller = NULL; /* free all its bds */ bd = c->last_processed; do { if (bd) dma_pool_free(cppi->pool, bd, bd->dma); bd = cppi_bd_alloc(c); } while (bd); c->last_processed = NULL; } static void cppi_controller_start(struct cppi *controller) { void __iomem *tibase; int i; /* do whatever is necessary to start controller */ for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { controller->tx[i].transmit = true; controller->tx[i].index = i; } for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { controller->rx[i].transmit = false; controller->rx[i].index = i; } /* setup BD list on a per channel basis */ for (i = 0; i < ARRAY_SIZE(controller->tx); i++) cppi_pool_init(controller, controller->tx + i); for (i = 0; i < ARRAY_SIZE(controller->rx); i++) cppi_pool_init(controller, controller->rx + i); tibase = controller->tibase; INIT_LIST_HEAD(&controller->tx_complete); /* initialise tx/rx channel head pointers to zero */ for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { struct cppi_channel *tx_ch = controller->tx + i; struct cppi_tx_stateram __iomem *tx; INIT_LIST_HEAD(&tx_ch->tx_complete); tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); tx_ch->state_ram = tx; cppi_reset_tx(tx, 0); } for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { struct cppi_channel *rx_ch = controller->rx + i; struct cppi_rx_stateram __iomem *rx; INIT_LIST_HEAD(&rx_ch->tx_complete); rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); rx_ch->state_ram = rx; cppi_reset_rx(rx); } /* enable individual cppi channels */ musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, DAVINCI_DMA_ALL_CHANNELS_ENABLE); musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, DAVINCI_DMA_ALL_CHANNELS_ENABLE); /* enable tx/rx CPPI control */ musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); /* disable RNDIS mode, also host rx RNDIS autorequest */ musb_writel(tibase, DAVINCI_RNDIS_REG, 0); musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); } /* * Stop DMA controller * * De-Init the DMA controller as necessary. */ static void cppi_controller_stop(struct cppi *controller) { void __iomem *tibase; int i; struct musb *musb; musb = controller->musb; tibase = controller->tibase; /* DISABLE INDIVIDUAL CHANNEL Interrupts */ musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, DAVINCI_DMA_ALL_CHANNELS_ENABLE); musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, DAVINCI_DMA_ALL_CHANNELS_ENABLE); musb_dbg(musb, "Tearing down RX and TX Channels"); for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { /* FIXME restructure of txdma to use bds like rxdma */ controller->tx[i].last_processed = NULL; cppi_pool_free(controller->tx + i); } for (i = 0; i < ARRAY_SIZE(controller->rx); i++) cppi_pool_free(controller->rx + i); /* in Tx Case proper teardown is supported. We resort to disabling * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is * complete TX CPPI cannot be disabled. */ /*disable tx/rx cppi */ musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); } /* While dma channel is allocated, we only want the core irqs active * for fault reports, otherwise we'd get irqs that we don't care about. * Except for TX irqs, where dma done != fifo empty and reusable ... * * NOTE: docs don't say either way, but irq masking **enables** irqs. * * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... */ static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) { musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); } static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) { musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); } /* * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to * each transfer direction of a non-control endpoint, so allocating * (and deallocating) is mostly a way to notice bad housekeeping on * the software side. We assume the irqs are always active. */ static struct dma_channel * cppi_channel_allocate(struct dma_controller *c, struct musb_hw_ep *ep, u8 transmit) { struct cppi *controller; u8 index; struct cppi_channel *cppi_ch; void __iomem *tibase; struct musb *musb; controller = container_of(c, struct cppi, controller); tibase = controller->tibase; musb = controller->musb; /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ index = ep->epnum - 1; /* return the corresponding CPPI Channel Handle, and * probably disable the non-CPPI irq until we need it. */ if (transmit) { if (index >= ARRAY_SIZE(controller->tx)) { musb_dbg(musb, "no %cX%d CPPI channel", 'T', index); return NULL; } cppi_ch = controller->tx + index; } else { if (index >= ARRAY_SIZE(controller->rx)) { musb_dbg(musb, "no %cX%d CPPI channel", 'R', index); return NULL; } cppi_ch = controller->rx + index; core_rxirq_disable(tibase, ep->epnum); } /* REVISIT make this an error later once the same driver code works * with the other DMA engine too */ if (cppi_ch->hw_ep) musb_dbg(musb, "re-allocating DMA%d %cX channel %p", index, transmit ? 'T' : 'R', cppi_ch); cppi_ch->hw_ep = ep; cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; cppi_ch->channel.max_len = 0x7fffffff; musb_dbg(musb, "Allocate CPPI%d %cX", index, transmit ? 'T' : 'R'); return &cppi_ch->channel; } /* Release a CPPI Channel. */ static void cppi_channel_release(struct dma_channel *channel) { struct cppi_channel *c; void __iomem *tibase; /* REVISIT: for paranoia, check state and abort if needed... */ c = container_of(channel, struct cppi_channel, channel); tibase = c->controller->tibase; if (!c->hw_ep) musb_dbg(c->controller->musb, "releasing idle DMA channel %p", c); else if (!c->transmit) core_rxirq_enable(tibase, c->index + 1); /* for now, leave its cppi IRQ enabled (we won't trigger it) */ c->hw_ep = NULL; channel->status = MUSB_DMA_STATUS_UNKNOWN; } /* Context: controller irqlocked */ static void cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) { void __iomem *base = c->controller->mregs; struct cppi_rx_stateram __iomem *rx = c->state_ram; musb_ep_select(base, c->index + 1); musb_dbg(c->controller->musb, "RX DMA%d%s: %d left, csr %04x, " "%08x H%08x S%08x C%08x, " "B%08x L%08x %08x .. %08x", c->index, tag, musb_readl(c->controller->tibase, DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), musb_readw(c->hw_ep->regs, MUSB_RXCSR), musb_readl(&rx->rx_skipbytes, 0), musb_readl(&rx->rx_head, 0), musb_readl(&rx->rx_sop, 0), musb_readl(&rx->rx_current, 0), musb_readl(&rx->rx_buf_current, 0), musb_readl(&rx->rx_len_len, 0), musb_readl(&rx->rx_cnt_cnt, 0), musb_readl(&rx->rx_complete, 0) ); } /* Context: controller irqlocked */ static void cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) { void __iomem *base = c->controller->mregs; struct cppi_tx_stateram __iomem *tx = c->state_ram; musb_ep_select(base, c->index + 1); musb_dbg(c->controller->musb, "TX DMA%d%s: csr %04x, " "H%08x S%08x C%08x %08x, " "F%08x L%08x .. %08x", c->index, tag, musb_readw(c->hw_ep->regs, MUSB_TXCSR), musb_readl(&tx->tx_head, 0), musb_readl(&tx->tx_buf, 0), musb_readl(&tx->tx_current, 0), musb_readl(&tx->tx_buf_current, 0), musb_readl(&tx->tx_info, 0), musb_readl(&tx->tx_rem_len, 0), /* dummy/unused word 6 */ musb_readl(&tx->tx_complete, 0) ); } /* Context: controller irqlocked */ static inline void cppi_rndis_update(struct cppi_channel *c, int is_rx, void __iomem *tibase, int is_rndis) { /* we may need to change the rndis flag for this cppi channel */ if (c->is_rndis != is_rndis) { u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG); u32 temp = 1 << (c->index); if (is_rx) temp <<= 16; if (is_rndis) value |= temp; else value &= ~temp; musb_writel(tibase, DAVINCI_RNDIS_REG, value); c->is_rndis = is_rndis; } } static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) { pr_debug("RXBD/%s %08x: " "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", tag, bd->dma, bd->hw_next, bd->hw_bufp, bd->hw_off_len, bd->hw_options); } static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) { struct cppi_descriptor *bd; cppi_dump_rx(level, rx, tag); if (rx->last_processed) cppi_dump_rxbd("last", rx->last_processed); for (bd = rx->head; bd; bd = bd->next) cppi_dump_rxbd("active", bd); } /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX; * so we won't ever use it (see "CPPI RX Woes" below). */ static inline int cppi_autoreq_update(struct cppi_channel *rx, void __iomem *tibase, int onepacket, unsigned n_bds) { u32 val; #ifdef RNDIS_RX_IS_USABLE u32 tmp; /* assert(is_host_active(musb)) */ /* start from "AutoReq never" */ tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); val = tmp & ~((0x3) << (rx->index * 2)); /* HCD arranged reqpkt for packet #1. we arrange int * for all but the last one, maybe in two segments. */ if (!onepacket) { #if 0 /* use two segments, autoreq "all" then the last "never" */ val |= ((0x3) << (rx->index * 2)); n_bds--; #else /* one segment, autoreq "all-but-last" */ val |= ((0x1) << (rx->index * 2)); #endif } if (val != tmp) { int n = 100; /* make sure that autoreq is updated before continuing */ musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); do { tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); if (tmp == val) break; cpu_relax(); } while (n-- > 0); } #endif /* REQPKT is turned off after each segment */ if (n_bds && rx->channel.actual_len) { void __iomem *regs = rx->hw_ep->regs; val = musb_readw(regs, MUSB_RXCSR); if (!(val & MUSB_RXCSR_H_REQPKT)) { val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; musb_writew(regs, MUSB_RXCSR, val); /* flush writebuffer */ val = musb_readw(regs, MUSB_RXCSR); } } return n_bds; } /* Buffer enqueuing Logic: * * - RX builds new queues each time, to help handle routine "early * termination" cases (faults, including errors and short reads) * more correctly. * * - for now, TX reuses the same queue of BDs every time * * REVISIT long term, we want a normal dynamic model. * ... the goal will be to append to the * existing queue, processing completed "dma buffers" (segments) on the fly. * * Otherwise we force an IRQ latency between requests, which slows us a lot * (especially in "transparent" dma). Unfortunately that model seems to be * inherent in the DMA model from the Mentor code, except in the rare case * of transfers big enough (~128+ KB) that we could append "middle" segments * in the TX paths. (RX can't do this, see below.) * * That's true even in the CPPI- friendly iso case, where most urbs have * several small segments provided in a group and where the "packet at a time" * "transparent" DMA model is always correct, even on the RX side. */ /* * CPPI TX: * ======== * TX is a lot more reasonable than RX; it doesn't need to run in * irq-per-packet mode very often. RNDIS mode seems to behave too * (except how it handles the exactly-N-packets case). Building a * txdma queue with multiple requests (urb or usb_request) looks * like it would work ... but fault handling would need much testing. * * The main issue with TX mode RNDIS relates to transfer lengths that * are an exact multiple of the packet length. It appears that there's * a hiccup in that case (maybe the DMA completes before the ZLP gets * written?) boiling down to not being able to rely on CPPI writing any * terminating zero length packet before the next transfer is written. * So that's punted to PIO; better yet, gadget drivers can avoid it. * * Plus, there's allegedly an undocumented constraint that rndis transfer * length be a multiple of 64 bytes ... but the chip doesn't act that * way, and we really don't _want_ that behavior anyway. * * On TX, "transparent" mode works ... although experiments have shown * problems trying to use the SOP/EOP bits in different USB packets. * * REVISIT try to handle terminating zero length packets using CPPI * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet * links avoid that issue by forcing them to avoid zlps.) */ static void cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) { unsigned maxpacket = tx->maxpacket; dma_addr_t addr = tx->buf_dma + tx->offset; size_t length = tx->buf_len - tx->offset; struct cppi_descriptor *bd; unsigned n_bds; unsigned i; struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram; int rndis; /* TX can use the CPPI "rndis" mode, where we can probably fit this * transfer in one BD and one IRQ. The only time we would NOT want * to use it is when hardware constraints prevent it, or if we'd * trigger the "send a ZLP?" confusion. */ rndis = (maxpacket & 0x3f) == 0 && length > maxpacket && length < 0xffff && (length % maxpacket) != 0; if (rndis) { maxpacket = length; n_bds = 1; } else { n_bds = length / maxpacket; if (!length || (length % maxpacket)) n_bds++; n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); length = min(n_bds * maxpacket, length); } musb_dbg(musb, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u", tx->index, maxpacket, rndis ? "rndis" : "transparent", n_bds, (unsigned long long)addr, length); cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); /* assuming here that channel_program is called during * transfer initiation ... current code maintains state * for one outstanding request only (no queues, not even * the implicit ones of an iso urb). */ bd = tx->freelist; tx->head = bd; tx->last_processed = NULL; /* FIXME use BD pool like RX side does, and just queue * the minimum number for this request. */ /* Prepare queue of BDs first, then hand it to hardware. * All BDs except maybe the last should be of full packet * size; for RNDIS there _is_ only that last packet. */ for (i = 0; i < n_bds; ) { if (++i < n_bds && bd->next) bd->hw_next = bd->next->dma; else bd->hw_next = 0; bd->hw_bufp = tx->buf_dma + tx->offset; /* FIXME set EOP only on the last packet, * SOP only on the first ... avoid IRQs */ if ((tx->offset + maxpacket) <= tx->buf_len) { tx->offset += maxpacket; bd->hw_off_len = maxpacket; bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | CPPI_OWN_SET | maxpacket; } else { /* only this one may be a partial USB Packet */ u32 partial_len; partial_len = tx->buf_len - tx->offset; tx->offset = tx->buf_len; bd->hw_off_len = partial_len; bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | CPPI_OWN_SET | partial_len; if (partial_len == 0) bd->hw_options |= CPPI_ZERO_SET; } musb_dbg(musb, "TXBD %p: nxt %08x buf %08x len %04x opt %08x", bd, bd->hw_next, bd->hw_bufp, bd->hw_off_len, bd->hw_options); /* update the last BD enqueued to the list */ tx->tail = bd; bd = bd->next; } /* BDs live in DMA-coherent memory, but writes might be pending */ cpu_drain_writebuffer(); /* Write to the HeadPtr in state RAM to trigger */ musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); cppi_dump_tx(5, tx, "/S"); } /* * CPPI RX Woes: * ============= * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. * (Full speed transfers have similar scenarios.) * * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, * and the next packet goes into a buffer that's queued later; while (b) fills * the buffer with 1024 bytes. How to do that with CPPI? * * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but * (b) loses **BADLY** because nothing (!) happens when that second packet * fills the buffer, much less when a third one arrives. (Which makes this * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination * is optional, and it's fine if peripherals -- not hosts! -- pad messages * out to end-of-buffer. Standard PCI host controller DMA descriptors * implement that mode by default ... which is no accident.) * * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have * converse problems: (b) is handled right, but (a) loses badly. CPPI RX * ignores SOP/EOP markings and processes both of those BDs; so both packets * are loaded into the buffer (with a 212 byte gap between them), and the next * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP * are intended as outputs for RX queues, not inputs...) * * - A variant of "transparent" mode -- one BD at a time -- is the only way to * reliably make both cases work, with software handling both cases correctly * and at the significant penalty of needing an IRQ per packet. (The lack of * I/O overlap can be slightly ameliorated by enabling double buffering.) * * So how to get rid of IRQ-per-packet? The transparent multi-BD case could * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors * with guaranteed driver level fault recovery and scrubbing out what's left * of that garbaged datastream. * * But there seems to be no way to identify the cases where CPPI RNDIS mode * is appropriate -- which do NOT include RNDIS host drivers, but do include * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic * that applies best on the peripheral side (and which could fail rudely). * * Leaving only "transparent" mode; we avoid multi-bd modes in almost all * cases other than mass storage class. Otherwise we're correct but slow, * since CPPI penalizes our need for a "true RNDIS" default mode. */ /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY * * IFF * (a) peripheral mode ... since rndis peripherals could pad their * writes to hosts, causing i/o failure; or we'd have to cope with * a largely unknowable variety of host side protocol variants * (b) and short reads are NOT errors ... since full reads would * cause those same i/o failures * (c) and read length is * - less than 64KB (max per cppi descriptor) * - not a multiple of 4096 (g_zero default, full reads typical) * - N (>1) packets long, ditto (full reads not EXPECTED) * THEN * try rx rndis mode * * Cost of heuristic failing: RXDMA wedges at the end of transfers that * fill out the whole buffer. Buggy host side usb network drivers could * trigger that, but "in the field" such bugs seem to be all but unknown. * * So this module parameter lets the heuristic be disabled. When using * gadgetfs, the heuristic will probably need to be disabled. */ static bool cppi_rx_rndis = 1; module_param(cppi_rx_rndis, bool, 0); MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); /** * cppi_next_rx_segment - dma read for the next chunk of a buffer * @musb: the controller * @rx: dma channel * @onepacket: true unless caller treats short reads as errors, and * performs fault recovery above usbcore. * Context: controller irqlocked * * See above notes about why we can't use multi-BD RX queues except in * rare cases (mass storage class), and can never use the hardware "rndis" * mode (since it's not a "true" RNDIS mode) with complete safety.. * * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in * code to recover from corrupted datastreams after each short transfer. */ static void cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) { unsigned maxpacket = rx->maxpacket; dma_addr_t addr = rx->buf_dma + rx->offset; size_t length = rx->buf_len - rx->offset; struct cppi_descriptor *bd, *tail; unsigned n_bds; unsigned i; void __iomem *tibase = musb->ctrl_base; int is_rndis = 0; struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram; struct cppi_descriptor *d; if (onepacket) { /* almost every USB driver, host or peripheral side */ n_bds = 1; /* maybe apply the heuristic above */ if (cppi_rx_rndis && is_peripheral_active(musb) && length > maxpacket && (length & ~0xffff) == 0 && (length & 0x0fff) != 0 && (length & (maxpacket - 1)) == 0) { maxpacket = length; is_rndis = 1; } } else { /* virtually nothing except mass storage class */ if (length > 0xffff) { n_bds = 0xffff / maxpacket; length = n_bds * maxpacket; } else { n_bds = length / maxpacket; if (length % maxpacket) n_bds++; } if (n_bds == 1) onepacket = 1; else n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); } /* In host mode, autorequest logic can generate some IN tokens; it's * tricky since we can't leave REQPKT set in RXCSR after the transfer * finishes. So: multipacket transfers involve two or more segments. * And always at least two IRQs ... RNDIS mode is not an option. */ if (is_host_active(musb)) n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); length = min(n_bds * maxpacket, length); musb_dbg(musb, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " "dma 0x%llx len %u %u/%u", rx->index, maxpacket, onepacket ? (is_rndis ? "rndis" : "onepacket") : "multipacket", n_bds, musb_readl(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) & 0xffff, (unsigned long long)addr, length, rx->channel.actual_len, rx->buf_len); /* only queue one segment at a time, since the hardware prevents * correct queue shutdown after unexpected short packets */ bd = cppi_bd_alloc(rx); rx->head = bd; /* Build BDs for all packets in this segment */ for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { u32 bd_len; if (i) { bd = cppi_bd_alloc(rx); if (!bd) break; tail->next = bd; tail->hw_next = bd->dma; } bd->hw_next = 0; /* all but the last packet will be maxpacket size */ if (maxpacket < length) bd_len = maxpacket; else bd_len = length; bd->hw_bufp = addr; addr += bd_len; rx->offset += bd_len; bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; bd->buflen = bd_len; bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); length -= bd_len; } /* we always expect at least one reusable BD! */ if (!tail) { WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); return; } else if (i < n_bds) WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); tail->next = NULL; tail->hw_next = 0; bd = rx->head; rx->tail = tail; /* short reads and other faults should terminate this entire * dma segment. we want one "dma packet" per dma segment, not * one per USB packet, terminating the whole queue at once... * NOTE that current hardware seems to ignore SOP and EOP. */ bd->hw_options |= CPPI_SOP_SET; tail->hw_options |= CPPI_EOP_SET; for (d = rx->head; d; d = d->next) cppi_dump_rxbd("S", d); /* in case the preceding transfer left some state... */ tail = rx->last_processed; if (tail) { tail->next = bd; tail->hw_next = bd->dma; } core_rxirq_enable(tibase, rx->index + 1); /* BDs live in DMA-coherent memory, but writes might be pending */ cpu_drain_writebuffer(); /* REVISIT specs say to write this AFTER the BUFCNT register * below ... but that loses badly. */ musb_writel(&rx_ram->rx_head, 0, bd->dma); /* bufferCount must be at least 3, and zeroes on completion * unless it underflows below zero, or stops at two, or keeps * growing ... grr. */ i = musb_readl(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) & 0xffff; if (!i) musb_writel(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), n_bds + 2); else if (n_bds > (i - 3)) musb_writel(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), n_bds - (i - 3)); i = musb_readl(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) & 0xffff; if (i < (2 + n_bds)) { musb_dbg(musb, "bufcnt%d underrun - %d (for %d)", rx->index, i, n_bds); musb_writel(tibase, DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), n_bds + 2); } cppi_dump_rx(4, rx, "/S"); } /** * cppi_channel_program - program channel for data transfer * @ch: the channel * @maxpacket: max packet size * @mode: For RX, 1 unless the usb protocol driver promised to treat * all short reads as errors and kick in high level fault recovery. * For TX, ignored because of RNDIS mode races/glitches. * @dma_addr: dma address of buffer * @len: length of buffer * Context: controller irqlocked */ static int cppi_channel_program(struct dma_channel *ch, u16 maxpacket, u8 mode, dma_addr_t dma_addr, u32 len) { struct cppi_channel *cppi_ch; struct cppi *controller; struct musb *musb; cppi_ch = container_of(ch, struct cppi_channel, channel); controller = cppi_ch->controller; musb = controller->musb; switch (ch->status) { case MUSB_DMA_STATUS_BUS_ABORT: case MUSB_DMA_STATUS_CORE_ABORT: /* fault irq handler should have handled cleanup */ WARNING("%cX DMA%d not cleaned up after abort!\n", cppi_ch->transmit ? 'T' : 'R', cppi_ch->index); /* WARN_ON(1); */ break; case MUSB_DMA_STATUS_BUSY: WARNING("program active channel? %cX DMA%d\n", cppi_ch->transmit ? 'T' : 'R', cppi_ch->index); /* WARN_ON(1); */ break; case MUSB_DMA_STATUS_UNKNOWN: musb_dbg(musb, "%cX DMA%d not allocated!", cppi_ch->transmit ? 'T' : 'R', cppi_ch->index); /* FALLTHROUGH */ case MUSB_DMA_STATUS_FREE: break; } ch->status = MUSB_DMA_STATUS_BUSY; /* set transfer parameters, then queue up its first segment */ cppi_ch->buf_dma = dma_addr; cppi_ch->offset = 0; cppi_ch->maxpacket = maxpacket; cppi_ch->buf_len = len; cppi_ch->channel.actual_len = 0; /* TX channel? or RX? */ if (cppi_ch->transmit) cppi_next_tx_segment(musb, cppi_ch); else cppi_next_rx_segment(musb, cppi_ch, mode); return true; } static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) { struct cppi_channel *rx = &cppi->rx[ch]; struct cppi_rx_stateram __iomem *state = rx->state_ram; struct cppi_descriptor *bd; struct cppi_descriptor *last = rx->last_processed; bool completed = false; bool acked = false; int i; dma_addr_t safe2ack; void __iomem *regs = rx->hw_ep->regs; struct musb *musb = cppi->musb; cppi_dump_rx(6, rx, "/K"); bd = last ? last->next : rx->head; if (!bd) return false; /* run through all completed BDs */ for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; i++, bd = bd->next) { u16 len; /* catch latest BD writes from CPPI */ rmb(); if (!completed && (bd->hw_options & CPPI_OWN_SET)) break; musb_dbg(musb, "C/RXBD %llx: nxt %08x buf %08x " "off.len %08x opt.len %08x (%d)", (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp, bd->hw_off_len, bd->hw_options, rx->channel.actual_len); /* actual packet received length */ if ((bd->hw_options & CPPI_SOP_SET) && !completed) len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; else len = 0; if (bd->hw_options & CPPI_EOQ_MASK) completed = true; if (!completed && len < bd->buflen) { /* NOTE: when we get a short packet, RXCSR_H_REQPKT * must have been cleared, and no more DMA packets may * active be in the queue... TI docs didn't say, but * CPPI ignores those BDs even though OWN is still set. */ completed = true; musb_dbg(musb, "rx short %d/%d (%d)", len, bd->buflen, rx->channel.actual_len); } /* If we got here, we expect to ack at least one BD; meanwhile * CPPI may completing other BDs while we scan this list... * * RACE: we can notice OWN cleared before CPPI raises the * matching irq by writing that BD as the completion pointer. * In such cases, stop scanning and wait for the irq, avoiding * lost acks and states where BD ownership is unclear. */ if (bd->dma == safe2ack) { musb_writel(&state->rx_complete, 0, safe2ack); safe2ack = musb_readl(&state->rx_complete, 0); acked = true; if (bd->dma == safe2ack) safe2ack = 0; } rx->channel.actual_len += len; cppi_bd_free(rx, last); last = bd; /* stop scanning on end-of-segment */ if (bd->hw_next == 0) completed = true; } rx->last_processed = last; /* dma abort, lost ack, or ... */ if (!acked && last) { int csr; if (safe2ack == 0 || safe2ack == rx->last_processed->dma) musb_writel(&state->rx_complete, 0, safe2ack); if (safe2ack == 0) { cppi_bd_free(rx, last); rx->last_processed = NULL; /* if we land here on the host side, H_REQPKT will * be clear and we need to restart the queue... */ WARN_ON(rx->head); } musb_ep_select(cppi->mregs, rx->index + 1); csr = musb_readw(regs, MUSB_RXCSR); if (csr & MUSB_RXCSR_DMAENAB) { musb_dbg(musb, "list%d %p/%p, last %llx%s, csr %04x", rx->index, rx->head, rx->tail, rx->last_processed ? (unsigned long long) rx->last_processed->dma : 0, completed ? ", completed" : "", csr); cppi_dump_rxq(4, "/what?", rx); } } if (!completed) { int csr; rx->head = bd; /* REVISIT seems like "autoreq all but EOP" doesn't... * setting it here "should" be racey, but seems to work */ csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); if (is_host_active(cppi->musb) && bd && !(csr & MUSB_RXCSR_H_REQPKT)) { csr |= MUSB_RXCSR_H_REQPKT; musb_writew(regs, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | csr); csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); } } else { rx->head = NULL; rx->tail = NULL; } cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); return completed; } irqreturn_t cppi_interrupt(int irq, void *dev_id) { struct musb *musb = dev_id; struct cppi *cppi; void __iomem *tibase; struct musb_hw_ep *hw_ep = NULL; u32 rx, tx; int i, index; unsigned long uninitialized_var(flags); cppi = container_of(musb->dma_controller, struct cppi, controller); if (cppi->irq) spin_lock_irqsave(&musb->lock, flags); tibase = musb->ctrl_base; tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); if (!tx && !rx) { if (cppi->irq) spin_unlock_irqrestore(&musb->lock, flags); return IRQ_NONE; } musb_dbg(musb, "CPPI IRQ Tx%x Rx%x", tx, rx); /* process TX channels */ for (index = 0; tx; tx = tx >> 1, index++) { struct cppi_channel *tx_ch; struct cppi_tx_stateram __iomem *tx_ram; bool completed = false; struct cppi_descriptor *bd; if (!(tx & 1)) continue; tx_ch = cppi->tx + index; tx_ram = tx_ch->state_ram; /* FIXME need a cppi_tx_scan() routine, which * can also be called from abort code */ cppi_dump_tx(5, tx_ch, "/E"); bd = tx_ch->head; /* * If Head is null then this could mean that a abort interrupt * that needs to be acknowledged. */ if (NULL == bd) { musb_dbg(musb, "null BD"); musb_writel(&tx_ram->tx_complete, 0, 0); continue; } /* run through all completed BDs */ for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; i++, bd = bd->next) { u16 len; /* catch latest BD writes from CPPI */ rmb(); if (bd->hw_options & CPPI_OWN_SET) break; musb_dbg(musb, "C/TXBD %p n %x b %x off %x opt %x", bd, bd->hw_next, bd->hw_bufp, bd->hw_off_len, bd->hw_options); len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; tx_ch->channel.actual_len += len; tx_ch->last_processed = bd; /* write completion register to acknowledge * processing of completed BDs, and possibly * release the IRQ; EOQ might not be set ... * * REVISIT use the same ack strategy as rx * * REVISIT have observed bit 18 set; huh?? */ /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ musb_writel(&tx_ram->tx_complete, 0, bd->dma); /* stop scanning on end-of-segment */ if (bd->hw_next == 0) completed = true; } /* on end of segment, maybe go to next one */ if (completed) { /* cppi_dump_tx(4, tx_ch, "/complete"); */ /* transfer more, or report completion */ if (tx_ch->offset >= tx_ch->buf_len) { tx_ch->head = NULL; tx_ch->tail = NULL; tx_ch->channel.status = MUSB_DMA_STATUS_FREE; hw_ep = tx_ch->hw_ep; musb_dma_completion(musb, index + 1, 1); } else { /* Bigger transfer than we could fit in * that first batch of descriptors... */ cppi_next_tx_segment(musb, tx_ch); } } else tx_ch->head = bd; } /* Start processing the RX block */ for (index = 0; rx; rx = rx >> 1, index++) { if (rx & 1) { struct cppi_channel *rx_ch; rx_ch = cppi->rx + index; /* let incomplete dma segments finish */ if (!cppi_rx_scan(cppi, index)) continue; /* start another dma segment if needed */ if (rx_ch->channel.actual_len != rx_ch->buf_len && rx_ch->channel.actual_len == rx_ch->offset) { cppi_next_rx_segment(musb, rx_ch, 1); continue; } /* all segments completed! */ rx_ch->channel.status = MUSB_DMA_STATUS_FREE; hw_ep = rx_ch->hw_ep; core_rxirq_disable(tibase, index + 1); musb_dma_completion(musb, index + 1, 0); } } /* write to CPPI EOI register to re-enable interrupts */ musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); if (cppi->irq) spin_unlock_irqrestore(&musb->lock, flags); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(cppi_interrupt); /* Instantiate a software object representing a DMA controller. */ struct dma_controller * cppi_dma_controller_create(struct musb *musb, void __iomem *mregs) { struct cppi *controller; struct device *dev = musb->controller; struct platform_device *pdev = to_platform_device(dev); int irq = platform_get_irq_byname(pdev, "dma"); controller = kzalloc(sizeof *controller, GFP_KERNEL); if (!controller) return NULL; controller->mregs = mregs; controller->tibase = mregs - DAVINCI_BASE_OFFSET; controller->musb = musb; controller->controller.channel_alloc = cppi_channel_allocate; controller->controller.channel_release = cppi_channel_release; controller->controller.channel_program = cppi_channel_program; controller->controller.channel_abort = cppi_channel_abort; /* NOTE: allocating from on-chip SRAM would give the least * contention for memory access, if that ever matters here. */ /* setup BufferPool */ controller->pool = dma_pool_create("cppi", controller->musb->controller, sizeof(struct cppi_descriptor), CPPI_DESCRIPTOR_ALIGN, 0); if (!controller->pool) { kfree(controller); return NULL; } if (irq > 0) { if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { dev_err(dev, "request_irq %d failed!\n", irq); musb_dma_controller_destroy(&controller->controller); return NULL; } controller->irq = irq; } cppi_controller_start(controller); return &controller->controller; } EXPORT_SYMBOL_GPL(cppi_dma_controller_create); /* * Destroy a previously-instantiated DMA controller. */ void cppi_dma_controller_destroy(struct dma_controller *c) { struct cppi *cppi; cppi = container_of(c, struct cppi, controller); cppi_controller_stop(cppi); if (cppi->irq) free_irq(cppi->irq, cppi->musb); /* assert: caller stopped the controller first */ dma_pool_destroy(cppi->pool); kfree(cppi); } EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy); /* * Context: controller irqlocked, endpoint selected */ static int cppi_channel_abort(struct dma_channel *channel) { struct cppi_channel *cppi_ch; struct cppi *controller; void __iomem *mbase; void __iomem *tibase; void __iomem *regs; u32 value; struct cppi_descriptor *queue; cppi_ch = container_of(channel, struct cppi_channel, channel); controller = cppi_ch->controller; switch (channel->status) { case MUSB_DMA_STATUS_BUS_ABORT: case MUSB_DMA_STATUS_CORE_ABORT: /* from RX or TX fault irq handler */ case MUSB_DMA_STATUS_BUSY: /* the hardware needs shutting down */ regs = cppi_ch->hw_ep->regs; break; case MUSB_DMA_STATUS_UNKNOWN: case MUSB_DMA_STATUS_FREE: return 0; default: return -EINVAL; } if (!cppi_ch->transmit && cppi_ch->head) cppi_dump_rxq(3, "/abort", cppi_ch); mbase = controller->mregs; tibase = controller->tibase; queue = cppi_ch->head; cppi_ch->head = NULL; cppi_ch->tail = NULL; /* REVISIT should rely on caller having done this, * and caller should rely on us not changing it. * peripheral code is safe ... check host too. */ musb_ep_select(mbase, cppi_ch->index + 1); if (cppi_ch->transmit) { struct cppi_tx_stateram __iomem *tx_ram; /* REVISIT put timeouts on these controller handshakes */ cppi_dump_tx(6, cppi_ch, " (teardown)"); /* teardown DMA engine then usb core */ do { value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); } while (!(value & CPPI_TEAR_READY)); musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); tx_ram = cppi_ch->state_ram; do { value = musb_readl(&tx_ram->tx_complete, 0); } while (0xFFFFFFFC != value); /* FIXME clean up the transfer state ... here? * the completion routine should get called with * an appropriate status code. */ value = musb_readw(regs, MUSB_TXCSR); value &= ~MUSB_TXCSR_DMAENAB; value |= MUSB_TXCSR_FLUSHFIFO; musb_writew(regs, MUSB_TXCSR, value); musb_writew(regs, MUSB_TXCSR, value); /* * 1. Write to completion Ptr value 0x1(bit 0 set) * (write back mode) * 2. Wait for abort interrupt and then put the channel in * compare mode by writing 1 to the tx_complete register. */ cppi_reset_tx(tx_ram, 1); cppi_ch->head = NULL; musb_writel(&tx_ram->tx_complete, 0, 1); cppi_dump_tx(5, cppi_ch, " (done teardown)"); /* REVISIT tx side _should_ clean up the same way * as the RX side ... this does no cleanup at all! */ } else /* RX */ { u16 csr; /* NOTE: docs don't guarantee any of this works ... we * expect that if the usb core stops telling the cppi core * to pull more data from it, then it'll be safe to flush * current RX DMA state iff any pending fifo transfer is done. */ core_rxirq_disable(tibase, cppi_ch->index + 1); /* for host, ensure ReqPkt is never set again */ if (is_host_active(cppi_ch->controller->musb)) { value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); value &= ~((0x3) << (cppi_ch->index * 2)); musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); } csr = musb_readw(regs, MUSB_RXCSR); /* for host, clear (just) ReqPkt at end of current packet(s) */ if (is_host_active(cppi_ch->controller->musb)) { csr |= MUSB_RXCSR_H_WZC_BITS; csr &= ~MUSB_RXCSR_H_REQPKT; } else csr |= MUSB_RXCSR_P_WZC_BITS; /* clear dma enable */ csr &= ~(MUSB_RXCSR_DMAENAB); musb_writew(regs, MUSB_RXCSR, csr); csr = musb_readw(regs, MUSB_RXCSR); /* Quiesce: wait for current dma to finish (if not cleanup). * We can't use bit zero of stateram->rx_sop, since that * refers to an entire "DMA packet" not just emptying the * current fifo. Most segments need multiple usb packets. */ if (channel->status == MUSB_DMA_STATUS_BUSY) udelay(50); /* scan the current list, reporting any data that was * transferred and acking any IRQ */ cppi_rx_scan(controller, cppi_ch->index); /* clobber the existing state once it's idle * * NOTE: arguably, we should also wait for all the other * RX channels to quiesce (how??) and then temporarily * disable RXCPPI_CTRL_REG ... but it seems that we can * rely on the controller restarting from state ram, with * only RXCPPI_BUFCNT state being bogus. BUFCNT will * correct itself after the next DMA transfer though. * * REVISIT does using rndis mode change that? */ cppi_reset_rx(cppi_ch->state_ram); /* next DMA request _should_ load cppi head ptr */ /* ... we don't "free" that list, only mutate it in place. */ cppi_dump_rx(5, cppi_ch, " (done abort)"); /* clean up previously pending bds */ cppi_bd_free(cppi_ch, cppi_ch->last_processed); cppi_ch->last_processed = NULL; while (queue) { struct cppi_descriptor *tmp = queue->next; cppi_bd_free(cppi_ch, queue); queue = tmp; } } channel->status = MUSB_DMA_STATUS_FREE; cppi_ch->buf_dma = 0; cppi_ch->offset = 0; cppi_ch->buf_len = 0; cppi_ch->maxpacket = 0; return 0; } /* TBD Queries: * * Power Management ... probably turn off cppi during suspend, restart; * check state ram? Clocking is presumably shared with usb core. */