/* * otg_fsm.c - ChipIdea USB IP core OTG FSM driver * * Copyright (C) 2014 Freescale Semiconductor, Inc. * * Author: Jun Li * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * This file mainly handles OTG fsm, it includes OTG fsm operations * for HNP and SRP. * * TODO List * - ADP * - OTG test device */ #include #include #include #include #include #include "ci.h" #include "bits.h" #include "otg.h" #include "otg_fsm.h" static struct ci_otg_fsm_timer *otg_timer_initializer (struct ci_hdrc *ci, void (*function)(void *, unsigned long), unsigned long expires, unsigned long data) { struct ci_otg_fsm_timer *timer; timer = devm_kzalloc(ci->dev, sizeof(struct ci_otg_fsm_timer), GFP_KERNEL); if (!timer) return NULL; timer->function = function; timer->expires = expires; timer->data = data; return timer; } /* Add for otg: interact with user space app */ static ssize_t get_a_bus_req(struct device *dev, struct device_attribute *attr, char *buf) { char *next; unsigned size, t; struct ci_hdrc *ci = dev_get_drvdata(dev); next = buf; size = PAGE_SIZE; t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req); size -= t; next += t; return PAGE_SIZE - size; } static ssize_t set_a_bus_req(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci_hdrc *ci = dev_get_drvdata(dev); if (count > 2) return -1; mutex_lock(&ci->fsm.lock); if (buf[0] == '0') { ci->fsm.a_bus_req = 0; } else if (buf[0] == '1') { /* If a_bus_drop is TRUE, a_bus_req can't be set */ if (ci->fsm.a_bus_drop) { mutex_unlock(&ci->fsm.lock); return count; } ci->fsm.a_bus_req = 1; } ci_otg_queue_work(ci); mutex_unlock(&ci->fsm.lock); return count; } static DEVICE_ATTR(a_bus_req, S_IRUGO | S_IWUSR, get_a_bus_req, set_a_bus_req); static ssize_t get_a_bus_drop(struct device *dev, struct device_attribute *attr, char *buf) { char *next; unsigned size, t; struct ci_hdrc *ci = dev_get_drvdata(dev); next = buf; size = PAGE_SIZE; t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop); size -= t; next += t; return PAGE_SIZE - size; } static ssize_t set_a_bus_drop(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci_hdrc *ci = dev_get_drvdata(dev); if (count > 2) return -1; mutex_lock(&ci->fsm.lock); if (buf[0] == '0') { ci->fsm.a_bus_drop = 0; } else if (buf[0] == '1') { ci->fsm.a_bus_drop = 1; ci->fsm.a_bus_req = 0; } ci_otg_queue_work(ci); mutex_unlock(&ci->fsm.lock); return count; } static DEVICE_ATTR(a_bus_drop, S_IRUGO | S_IWUSR, get_a_bus_drop, set_a_bus_drop); static ssize_t get_b_bus_req(struct device *dev, struct device_attribute *attr, char *buf) { char *next; unsigned size, t; struct ci_hdrc *ci = dev_get_drvdata(dev); next = buf; size = PAGE_SIZE; t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req); size -= t; next += t; return PAGE_SIZE - size; } static ssize_t set_b_bus_req(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci_hdrc *ci = dev_get_drvdata(dev); if (count > 2) return -1; mutex_lock(&ci->fsm.lock); if (buf[0] == '0') ci->fsm.b_bus_req = 0; else if (buf[0] == '1') ci->fsm.b_bus_req = 1; ci_otg_queue_work(ci); mutex_unlock(&ci->fsm.lock); return count; } static DEVICE_ATTR(b_bus_req, S_IRUGO | S_IWUSR, get_b_bus_req, set_b_bus_req); static ssize_t set_a_clr_err(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci_hdrc *ci = dev_get_drvdata(dev); if (count > 2) return -1; mutex_lock(&ci->fsm.lock); if (buf[0] == '1') ci->fsm.a_clr_err = 1; ci_otg_queue_work(ci); mutex_unlock(&ci->fsm.lock); return count; } static DEVICE_ATTR(a_clr_err, S_IWUSR, NULL, set_a_clr_err); static struct attribute *inputs_attrs[] = { &dev_attr_a_bus_req.attr, &dev_attr_a_bus_drop.attr, &dev_attr_b_bus_req.attr, &dev_attr_a_clr_err.attr, NULL, }; static struct attribute_group inputs_attr_group = { .name = "inputs", .attrs = inputs_attrs, }; /* * Add timer to active timer list */ static void ci_otg_add_timer(struct ci_hdrc *ci, enum ci_otg_fsm_timer_index t) { struct ci_otg_fsm_timer *tmp_timer; struct ci_otg_fsm_timer *timer = ci->fsm_timer->timer_list[t]; struct list_head *active_timers = &ci->fsm_timer->active_timers; if (t >= NUM_CI_OTG_FSM_TIMERS) return; /* * Check if the timer is already in the active list, * if so update timer count */ list_for_each_entry(tmp_timer, active_timers, list) if (tmp_timer == timer) { timer->count = timer->expires; return; } timer->count = timer->expires; list_add_tail(&timer->list, active_timers); /* Enable 1ms irq */ if (!(hw_read_otgsc(ci, OTGSC_1MSIE))) hw_write_otgsc(ci, OTGSC_1MSIE, OTGSC_1MSIE); } /* * Remove timer from active timer list */ static void ci_otg_del_timer(struct ci_hdrc *ci, enum ci_otg_fsm_timer_index t) { struct ci_otg_fsm_timer *tmp_timer, *del_tmp; struct ci_otg_fsm_timer *timer = ci->fsm_timer->timer_list[t]; struct list_head *active_timers = &ci->fsm_timer->active_timers; if (t >= NUM_CI_OTG_FSM_TIMERS) return; list_for_each_entry_safe(tmp_timer, del_tmp, active_timers, list) if (tmp_timer == timer) list_del(&timer->list); /* Disable 1ms irq if there is no any active timer */ if (list_empty(active_timers)) hw_write_otgsc(ci, OTGSC_1MSIE, 0); } /* * Reduce timer count by 1, and find timeout conditions. * Called by otg 1ms timer interrupt */ static inline int ci_otg_tick_timer(struct ci_hdrc *ci) { struct ci_otg_fsm_timer *tmp_timer, *del_tmp; struct list_head *active_timers = &ci->fsm_timer->active_timers; int expired = 0; list_for_each_entry_safe(tmp_timer, del_tmp, active_timers, list) { tmp_timer->count--; /* check if timer expires */ if (!tmp_timer->count) { list_del(&tmp_timer->list); tmp_timer->function(ci, tmp_timer->data); expired = 1; } } /* disable 1ms irq if there is no any timer active */ if ((expired == 1) && list_empty(active_timers)) hw_write_otgsc(ci, OTGSC_1MSIE, 0); return expired; } /* The timeout callback function to set time out bit */ static void set_tmout(void *ptr, unsigned long indicator) { *(int *)indicator = 1; } static void set_tmout_and_fsm(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; set_tmout(ci, indicator); ci_otg_queue_work(ci); } static void a_wait_vfall_tmout_func(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; set_tmout(ci, indicator); /* Disable port power */ hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP, 0); /* Clear exsiting DP irq */ hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS); /* Enable data pulse irq */ hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE); ci_otg_queue_work(ci); } static void b_ase0_brst_tmout_func(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; set_tmout(ci, indicator); if (!hw_read_otgsc(ci, OTGSC_BSV)) ci->fsm.b_sess_vld = 0; ci_otg_queue_work(ci); } static void b_ssend_srp_tmout_func(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; set_tmout(ci, indicator); /* only vbus fall below B_sess_vld in b_idle state */ if (ci->fsm.otg->state == OTG_STATE_B_IDLE) ci_otg_queue_work(ci); } static void b_sess_vld_tmout_func(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; /* Check if A detached */ if (!(hw_read_otgsc(ci, OTGSC_BSV))) { ci->fsm.b_sess_vld = 0; ci_otg_add_timer(ci, B_SSEND_SRP); ci_otg_queue_work(ci); } } static void b_data_pulse_end(void *ptr, unsigned long indicator) { struct ci_hdrc *ci = (struct ci_hdrc *)ptr; ci->fsm.b_srp_done = 1; ci->fsm.b_bus_req = 0; if (ci->fsm.power_up) ci->fsm.power_up = 0; hw_write_otgsc(ci, OTGSC_HABA, 0); ci_otg_queue_work(ci); } /* Initialize timers */ static int ci_otg_init_timers(struct ci_hdrc *ci) { struct otg_fsm *fsm = &ci->fsm; /* FSM used timers */ ci->fsm_timer->timer_list[A_WAIT_VRISE] = otg_timer_initializer(ci, &set_tmout_and_fsm, TA_WAIT_VRISE, (unsigned long)&fsm->a_wait_vrise_tmout); if (ci->fsm_timer->timer_list[A_WAIT_VRISE] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[A_WAIT_VFALL] = otg_timer_initializer(ci, &a_wait_vfall_tmout_func, TA_WAIT_VFALL, (unsigned long)&fsm->a_wait_vfall_tmout); if (ci->fsm_timer->timer_list[A_WAIT_VFALL] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[A_WAIT_BCON] = otg_timer_initializer(ci, &set_tmout_and_fsm, TA_WAIT_BCON, (unsigned long)&fsm->a_wait_bcon_tmout); if (ci->fsm_timer->timer_list[A_WAIT_BCON] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[A_AIDL_BDIS] = otg_timer_initializer(ci, &set_tmout_and_fsm, TA_AIDL_BDIS, (unsigned long)&fsm->a_aidl_bdis_tmout); if (ci->fsm_timer->timer_list[A_AIDL_BDIS] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[A_BIDL_ADIS] = otg_timer_initializer(ci, &set_tmout_and_fsm, TA_BIDL_ADIS, (unsigned long)&fsm->a_bidl_adis_tmout); if (ci->fsm_timer->timer_list[A_BIDL_ADIS] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_ASE0_BRST] = otg_timer_initializer(ci, &b_ase0_brst_tmout_func, TB_ASE0_BRST, (unsigned long)&fsm->b_ase0_brst_tmout); if (ci->fsm_timer->timer_list[B_ASE0_BRST] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_SE0_SRP] = otg_timer_initializer(ci, &set_tmout_and_fsm, TB_SE0_SRP, (unsigned long)&fsm->b_se0_srp); if (ci->fsm_timer->timer_list[B_SE0_SRP] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_SSEND_SRP] = otg_timer_initializer(ci, &b_ssend_srp_tmout_func, TB_SSEND_SRP, (unsigned long)&fsm->b_ssend_srp); if (ci->fsm_timer->timer_list[B_SSEND_SRP] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_SRP_FAIL] = otg_timer_initializer(ci, &set_tmout, TB_SRP_FAIL, (unsigned long)&fsm->b_srp_done); if (ci->fsm_timer->timer_list[B_SRP_FAIL] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_DATA_PLS] = otg_timer_initializer(ci, &b_data_pulse_end, TB_DATA_PLS, 0); if (ci->fsm_timer->timer_list[B_DATA_PLS] == NULL) return -ENOMEM; ci->fsm_timer->timer_list[B_SESS_VLD] = otg_timer_initializer(ci, &b_sess_vld_tmout_func, TB_SESS_VLD, 0); if (ci->fsm_timer->timer_list[B_SESS_VLD] == NULL) return -ENOMEM; return 0; } /* -------------------------------------------------------------*/ /* Operations that will be called from OTG Finite State Machine */ /* -------------------------------------------------------------*/ static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); if (t < NUM_OTG_FSM_TIMERS) ci_otg_add_timer(ci, t); return; } static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); if (t < NUM_OTG_FSM_TIMERS) ci_otg_del_timer(ci, t); return; } /* * A-device drive vbus: turn on vbus regulator and enable port power * Data pulse irq should be disabled while vbus is on. */ static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on) { int ret; struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); if (on) { /* Enable power power */ hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP, PORTSC_PP); if (ci->platdata->reg_vbus) { ret = regulator_enable(ci->platdata->reg_vbus); if (ret) { dev_err(ci->dev, "Failed to enable vbus regulator, ret=%d\n", ret); return; } } /* Disable data pulse irq */ hw_write_otgsc(ci, OTGSC_DPIE, 0); fsm->a_srp_det = 0; fsm->power_up = 0; } else { if (ci->platdata->reg_vbus) regulator_disable(ci->platdata->reg_vbus); fsm->a_bus_drop = 1; fsm->a_bus_req = 0; } } /* * Control data line by Run Stop bit. */ static void ci_otg_loc_conn(struct otg_fsm *fsm, int on) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); if (on) hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); else hw_write(ci, OP_USBCMD, USBCMD_RS, 0); } /* * Generate SOF by host. * This is controlled through suspend/resume the port. * In host mode, controller will automatically send SOF. * Suspend will block the data on the port. */ static void ci_otg_loc_sof(struct otg_fsm *fsm, int on) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); if (on) hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_FPR, PORTSC_FPR); else hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_SUSP, PORTSC_SUSP); } /* * Start SRP pulsing by data-line pulsing, * no v-bus pulsing followed */ static void ci_otg_start_pulse(struct otg_fsm *fsm) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); /* Hardware Assistant Data pulse */ hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP); ci_otg_add_timer(ci, B_DATA_PLS); } static int ci_otg_start_host(struct otg_fsm *fsm, int on) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); mutex_unlock(&fsm->lock); if (on) { ci_role_stop(ci); ci_role_start(ci, CI_ROLE_HOST); } else { ci_role_stop(ci); hw_device_reset(ci, USBMODE_CM_DC); ci_role_start(ci, CI_ROLE_GADGET); } mutex_lock(&fsm->lock); return 0; } static int ci_otg_start_gadget(struct otg_fsm *fsm, int on) { struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); mutex_unlock(&fsm->lock); if (on) usb_gadget_vbus_connect(&ci->gadget); else usb_gadget_vbus_disconnect(&ci->gadget); mutex_lock(&fsm->lock); return 0; } static struct otg_fsm_ops ci_otg_ops = { .drv_vbus = ci_otg_drv_vbus, .loc_conn = ci_otg_loc_conn, .loc_sof = ci_otg_loc_sof, .start_pulse = ci_otg_start_pulse, .add_timer = ci_otg_fsm_add_timer, .del_timer = ci_otg_fsm_del_timer, .start_host = ci_otg_start_host, .start_gadget = ci_otg_start_gadget, }; int ci_otg_fsm_work(struct ci_hdrc *ci) { /* * Don't do fsm transition for B device * when there is no gadget class driver */ if (ci->fsm.id && !(ci->driver) && ci->fsm.otg->state < OTG_STATE_A_IDLE) return 0; if (otg_statemachine(&ci->fsm)) { if (ci->fsm.otg->state == OTG_STATE_A_IDLE) { /* * Further state change for cases: * a_idle to b_idle; or * a_idle to a_wait_vrise due to ID change(1->0), so * B-dev becomes A-dev can try to start new session * consequently; or * a_idle to a_wait_vrise when power up */ if ((ci->fsm.id) || (ci->id_event) || (ci->fsm.power_up)) ci_otg_queue_work(ci); if (ci->id_event) ci->id_event = false; } else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) { if (ci->fsm.b_sess_vld) { ci->fsm.power_up = 0; /* * Further transite to b_periphearl state * when register gadget driver with vbus on */ ci_otg_queue_work(ci); } } } return 0; } /* * Update fsm variables in each state if catching expected interrupts, * called by otg fsm isr. */ static void ci_otg_fsm_event(struct ci_hdrc *ci) { u32 intr_sts, otg_bsess_vld, port_conn; struct otg_fsm *fsm = &ci->fsm; intr_sts = hw_read_intr_status(ci); otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV); port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS); switch (ci->fsm.otg->state) { case OTG_STATE_A_WAIT_BCON: if (port_conn) { fsm->b_conn = 1; fsm->a_bus_req = 1; ci_otg_queue_work(ci); } break; case OTG_STATE_B_IDLE: if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) { fsm->b_sess_vld = 1; ci_otg_queue_work(ci); } break; case OTG_STATE_B_PERIPHERAL: if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) { fsm->a_bus_suspend = 1; ci_otg_queue_work(ci); } else if (intr_sts & USBi_PCI) { if (fsm->a_bus_suspend == 1) fsm->a_bus_suspend = 0; } break; case OTG_STATE_B_HOST: if ((intr_sts & USBi_PCI) && !port_conn) { fsm->a_conn = 0; fsm->b_bus_req = 0; ci_otg_queue_work(ci); ci_otg_add_timer(ci, B_SESS_VLD); } break; case OTG_STATE_A_PERIPHERAL: if (intr_sts & USBi_SLI) { fsm->b_bus_suspend = 1; /* * Init a timer to know how long this suspend * will contine, if time out, indicates B no longer * wants to be host role */ ci_otg_add_timer(ci, A_BIDL_ADIS); } if (intr_sts & USBi_URI) ci_otg_del_timer(ci, A_BIDL_ADIS); if (intr_sts & USBi_PCI) { if (fsm->b_bus_suspend == 1) { ci_otg_del_timer(ci, A_BIDL_ADIS); fsm->b_bus_suspend = 0; } } break; case OTG_STATE_A_SUSPEND: if ((intr_sts & USBi_PCI) && !port_conn) { fsm->b_conn = 0; /* if gadget driver is binded */ if (ci->driver) { /* A device to be peripheral mode */ ci->gadget.is_a_peripheral = 1; } ci_otg_queue_work(ci); } break; case OTG_STATE_A_HOST: if ((intr_sts & USBi_PCI) && !port_conn) { fsm->b_conn = 0; ci_otg_queue_work(ci); } break; case OTG_STATE_B_WAIT_ACON: if ((intr_sts & USBi_PCI) && port_conn) { fsm->a_conn = 1; ci_otg_queue_work(ci); } break; default: break; } } /* * ci_otg_irq - otg fsm related irq handling * and also update otg fsm variable by monitoring usb host and udc * state change interrupts. * @ci: ci_hdrc */ irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci) { irqreturn_t retval = IRQ_NONE; u32 otgsc, otg_int_src = 0; struct otg_fsm *fsm = &ci->fsm; otgsc = hw_read_otgsc(ci, ~0); otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8); fsm->id = (otgsc & OTGSC_ID) ? 1 : 0; if (otg_int_src) { if (otg_int_src & OTGSC_1MSIS) { hw_write_otgsc(ci, OTGSC_1MSIS, OTGSC_1MSIS); retval = ci_otg_tick_timer(ci); return IRQ_HANDLED; } else if (otg_int_src & OTGSC_DPIS) { hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS); fsm->a_srp_det = 1; fsm->a_bus_drop = 0; } else if (otg_int_src & OTGSC_IDIS) { hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS); if (fsm->id == 0) { fsm->a_bus_drop = 0; fsm->a_bus_req = 1; ci->id_event = true; } } else if (otg_int_src & OTGSC_BSVIS) { hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS); if (otgsc & OTGSC_BSV) { fsm->b_sess_vld = 1; ci_otg_del_timer(ci, B_SSEND_SRP); ci_otg_del_timer(ci, B_SRP_FAIL); fsm->b_ssend_srp = 0; } else { fsm->b_sess_vld = 0; if (fsm->id) ci_otg_add_timer(ci, B_SSEND_SRP); } } else if (otg_int_src & OTGSC_AVVIS) { hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS); if (otgsc & OTGSC_AVV) { fsm->a_vbus_vld = 1; } else { fsm->a_vbus_vld = 0; fsm->b_conn = 0; } } ci_otg_queue_work(ci); return IRQ_HANDLED; } ci_otg_fsm_event(ci); return retval; } void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci) { ci_otg_queue_work(ci); } int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci) { int retval = 0; struct usb_otg *otg; otg = devm_kzalloc(ci->dev, sizeof(struct usb_otg), GFP_KERNEL); if (!otg) { dev_err(ci->dev, "Failed to allocate usb_otg structure for ci hdrc otg!\n"); return -ENOMEM; } otg->phy = ci->transceiver; otg->gadget = &ci->gadget; ci->fsm.otg = otg; ci->transceiver->otg = ci->fsm.otg; ci->fsm.power_up = 1; ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0; ci->fsm.otg->state = OTG_STATE_UNDEFINED; ci->fsm.ops = &ci_otg_ops; mutex_init(&ci->fsm.lock); ci->fsm_timer = devm_kzalloc(ci->dev, sizeof(struct ci_otg_fsm_timer_list), GFP_KERNEL); if (!ci->fsm_timer) { dev_err(ci->dev, "Failed to allocate timer structure for ci hdrc otg!\n"); return -ENOMEM; } INIT_LIST_HEAD(&ci->fsm_timer->active_timers); retval = ci_otg_init_timers(ci); if (retval) { dev_err(ci->dev, "Couldn't init OTG timers\n"); return retval; } retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group); if (retval < 0) { dev_dbg(ci->dev, "Can't register sysfs attr group: %d\n", retval); return retval; } /* Enable A vbus valid irq */ hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE); if (ci->fsm.id) { ci->fsm.b_ssend_srp = hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1; ci->fsm.b_sess_vld = hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0; /* Enable BSV irq */ hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE); } return 0; } void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci) { sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group); }