/* * NXP (Philips) SCC+++(SCN+++) serial driver * * Copyright (C) 2012 Alexander Shiyan * * Based on sc26xx.c, by Thomas Bogendörfer (tsbogend@alpha.franken.de) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #if defined(CONFIG_SERIAL_SCCNXP_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #define SCCNXP_NAME "uart-sccnxp" #define SCCNXP_MAJOR 204 #define SCCNXP_MINOR 205 #define SCCNXP_MR_REG (0x00) # define MR0_BAUD_NORMAL (0 << 0) # define MR0_BAUD_EXT1 (1 << 0) # define MR0_BAUD_EXT2 (5 << 0) # define MR0_FIFO (1 << 3) # define MR0_TXLVL (1 << 4) # define MR1_BITS_5 (0 << 0) # define MR1_BITS_6 (1 << 0) # define MR1_BITS_7 (2 << 0) # define MR1_BITS_8 (3 << 0) # define MR1_PAR_EVN (0 << 2) # define MR1_PAR_ODD (1 << 2) # define MR1_PAR_NO (4 << 2) # define MR2_STOP1 (7 << 0) # define MR2_STOP2 (0xf << 0) #define SCCNXP_SR_REG (0x01) #define SCCNXP_CSR_REG SCCNXP_SR_REG # define SR_RXRDY (1 << 0) # define SR_FULL (1 << 1) # define SR_TXRDY (1 << 2) # define SR_TXEMT (1 << 3) # define SR_OVR (1 << 4) # define SR_PE (1 << 5) # define SR_FE (1 << 6) # define SR_BRK (1 << 7) #define SCCNXP_CR_REG (0x02) # define CR_RX_ENABLE (1 << 0) # define CR_RX_DISABLE (1 << 1) # define CR_TX_ENABLE (1 << 2) # define CR_TX_DISABLE (1 << 3) # define CR_CMD_MRPTR1 (0x01 << 4) # define CR_CMD_RX_RESET (0x02 << 4) # define CR_CMD_TX_RESET (0x03 << 4) # define CR_CMD_STATUS_RESET (0x04 << 4) # define CR_CMD_BREAK_RESET (0x05 << 4) # define CR_CMD_START_BREAK (0x06 << 4) # define CR_CMD_STOP_BREAK (0x07 << 4) # define CR_CMD_MRPTR0 (0x0b << 4) #define SCCNXP_RHR_REG (0x03) #define SCCNXP_THR_REG SCCNXP_RHR_REG #define SCCNXP_IPCR_REG (0x04) #define SCCNXP_ACR_REG SCCNXP_IPCR_REG # define ACR_BAUD0 (0 << 7) # define ACR_BAUD1 (1 << 7) # define ACR_TIMER_MODE (6 << 4) #define SCCNXP_ISR_REG (0x05) #define SCCNXP_IMR_REG SCCNXP_ISR_REG # define IMR_TXRDY (1 << 0) # define IMR_RXRDY (1 << 1) # define ISR_TXRDY(x) (1 << ((x * 4) + 0)) # define ISR_RXRDY(x) (1 << ((x * 4) + 1)) #define SCCNXP_IPR_REG (0x0d) #define SCCNXP_OPCR_REG SCCNXP_IPR_REG #define SCCNXP_SOP_REG (0x0e) #define SCCNXP_ROP_REG (0x0f) /* Route helpers */ #define MCTRL_MASK(sig) (0xf << (sig)) #define MCTRL_IBIT(cfg, sig) ((((cfg) >> (sig)) & 0xf) - LINE_IP0) #define MCTRL_OBIT(cfg, sig) ((((cfg) >> (sig)) & 0xf) - LINE_OP0) /* Supported chip types */ enum { SCCNXP_TYPE_SC2681 = 2681, SCCNXP_TYPE_SC2691 = 2691, SCCNXP_TYPE_SC2692 = 2692, SCCNXP_TYPE_SC2891 = 2891, SCCNXP_TYPE_SC2892 = 2892, SCCNXP_TYPE_SC28202 = 28202, SCCNXP_TYPE_SC68681 = 68681, SCCNXP_TYPE_SC68692 = 68692, }; struct sccnxp_port { struct uart_driver uart; struct uart_port port[SCCNXP_MAX_UARTS]; const char *name; int irq; u8 imr; u8 addr_mask; int freq_std; int flags; #define SCCNXP_HAVE_IO 0x00000001 #define SCCNXP_HAVE_MR0 0x00000002 #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE struct console console; #endif struct mutex sccnxp_mutex; struct sccnxp_pdata pdata; }; static inline u8 sccnxp_raw_read(void __iomem *base, u8 reg, u8 shift) { return readb(base + (reg << shift)); } static inline void sccnxp_raw_write(void __iomem *base, u8 reg, u8 shift, u8 v) { writeb(v, base + (reg << shift)); } static inline u8 sccnxp_read(struct uart_port *port, u8 reg) { struct sccnxp_port *s = dev_get_drvdata(port->dev); return sccnxp_raw_read(port->membase, reg & s->addr_mask, port->regshift); } static inline void sccnxp_write(struct uart_port *port, u8 reg, u8 v) { struct sccnxp_port *s = dev_get_drvdata(port->dev); sccnxp_raw_write(port->membase, reg & s->addr_mask, port->regshift, v); } static inline u8 sccnxp_port_read(struct uart_port *port, u8 reg) { return sccnxp_read(port, (port->line << 3) + reg); } static inline void sccnxp_port_write(struct uart_port *port, u8 reg, u8 v) { sccnxp_write(port, (port->line << 3) + reg, v); } static int sccnxp_update_best_err(int a, int b, int *besterr) { int err = abs(a - b); if ((*besterr < 0) || (*besterr > err)) { *besterr = err; return 0; } return 1; } struct baud_table { u8 csr; u8 acr; u8 mr0; int baud; }; const struct baud_table baud_std[] = { { 0, ACR_BAUD0, MR0_BAUD_NORMAL, 50, }, { 0, ACR_BAUD1, MR0_BAUD_NORMAL, 75, }, { 1, ACR_BAUD0, MR0_BAUD_NORMAL, 110, }, { 2, ACR_BAUD0, MR0_BAUD_NORMAL, 134, }, { 3, ACR_BAUD1, MR0_BAUD_NORMAL, 150, }, { 3, ACR_BAUD0, MR0_BAUD_NORMAL, 200, }, { 4, ACR_BAUD0, MR0_BAUD_NORMAL, 300, }, { 0, ACR_BAUD1, MR0_BAUD_EXT1, 450, }, { 1, ACR_BAUD0, MR0_BAUD_EXT2, 880, }, { 3, ACR_BAUD1, MR0_BAUD_EXT1, 900, }, { 5, ACR_BAUD0, MR0_BAUD_NORMAL, 600, }, { 7, ACR_BAUD0, MR0_BAUD_NORMAL, 1050, }, { 2, ACR_BAUD0, MR0_BAUD_EXT2, 1076, }, { 6, ACR_BAUD0, MR0_BAUD_NORMAL, 1200, }, { 10, ACR_BAUD1, MR0_BAUD_NORMAL, 1800, }, { 7, ACR_BAUD1, MR0_BAUD_NORMAL, 2000, }, { 8, ACR_BAUD0, MR0_BAUD_NORMAL, 2400, }, { 5, ACR_BAUD1, MR0_BAUD_EXT1, 3600, }, { 9, ACR_BAUD0, MR0_BAUD_NORMAL, 4800, }, { 10, ACR_BAUD0, MR0_BAUD_NORMAL, 7200, }, { 11, ACR_BAUD0, MR0_BAUD_NORMAL, 9600, }, { 8, ACR_BAUD0, MR0_BAUD_EXT1, 14400, }, { 12, ACR_BAUD1, MR0_BAUD_NORMAL, 19200, }, { 9, ACR_BAUD0, MR0_BAUD_EXT1, 28800, }, { 12, ACR_BAUD0, MR0_BAUD_NORMAL, 38400, }, { 11, ACR_BAUD0, MR0_BAUD_EXT1, 57600, }, { 12, ACR_BAUD1, MR0_BAUD_EXT1, 115200, }, { 12, ACR_BAUD0, MR0_BAUD_EXT1, 230400, }, { 0, 0, 0, 0 } }; static int sccnxp_set_baud(struct uart_port *port, int baud) { struct sccnxp_port *s = dev_get_drvdata(port->dev); int div_std, tmp_baud, bestbaud = baud, besterr = -1; u8 i, acr = 0, csr = 0, mr0 = 0; /* Find best baud from table */ for (i = 0; baud_std[i].baud && besterr; i++) { if (baud_std[i].mr0 && !(s->flags & SCCNXP_HAVE_MR0)) continue; div_std = DIV_ROUND_CLOSEST(s->freq_std, baud_std[i].baud); tmp_baud = DIV_ROUND_CLOSEST(port->uartclk, div_std); if (!sccnxp_update_best_err(baud, tmp_baud, &besterr)) { acr = baud_std[i].acr; csr = baud_std[i].csr; mr0 = baud_std[i].mr0; bestbaud = tmp_baud; } } if (s->flags & SCCNXP_HAVE_MR0) { /* Enable FIFO, set half level for TX */ mr0 |= MR0_FIFO | MR0_TXLVL; /* Update MR0 */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_MRPTR0); sccnxp_port_write(port, SCCNXP_MR_REG, mr0); } sccnxp_port_write(port, SCCNXP_ACR_REG, acr | ACR_TIMER_MODE); sccnxp_port_write(port, SCCNXP_CSR_REG, (csr << 4) | csr); if (baud != bestbaud) dev_dbg(port->dev, "Baudrate desired: %i, calculated: %i\n", baud, bestbaud); return bestbaud; } static void sccnxp_enable_irq(struct uart_port *port, int mask) { struct sccnxp_port *s = dev_get_drvdata(port->dev); s->imr |= mask << (port->line * 4); sccnxp_write(port, SCCNXP_IMR_REG, s->imr); } static void sccnxp_disable_irq(struct uart_port *port, int mask) { struct sccnxp_port *s = dev_get_drvdata(port->dev); s->imr &= ~(mask << (port->line * 4)); sccnxp_write(port, SCCNXP_IMR_REG, s->imr); } static void sccnxp_set_bit(struct uart_port *port, int sig, int state) { u8 bitmask; struct sccnxp_port *s = dev_get_drvdata(port->dev); if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(sig)) { bitmask = 1 << MCTRL_OBIT(s->pdata.mctrl_cfg[port->line], sig); if (state) sccnxp_write(port, SCCNXP_SOP_REG, bitmask); else sccnxp_write(port, SCCNXP_ROP_REG, bitmask); } } static void sccnxp_handle_rx(struct uart_port *port) { u8 sr; unsigned int ch, flag; struct tty_struct *tty = tty_port_tty_get(&port->state->port); if (!tty) return; for (;;) { sr = sccnxp_port_read(port, SCCNXP_SR_REG); if (!(sr & SR_RXRDY)) break; sr &= SR_PE | SR_FE | SR_OVR | SR_BRK; ch = sccnxp_port_read(port, SCCNXP_RHR_REG); port->icount.rx++; flag = TTY_NORMAL; if (unlikely(sr)) { if (sr & SR_BRK) { port->icount.brk++; if (uart_handle_break(port)) continue; } else if (sr & SR_PE) port->icount.parity++; else if (sr & SR_FE) port->icount.frame++; else if (sr & SR_OVR) port->icount.overrun++; sr &= port->read_status_mask; if (sr & SR_BRK) flag = TTY_BREAK; else if (sr & SR_PE) flag = TTY_PARITY; else if (sr & SR_FE) flag = TTY_FRAME; else if (sr & SR_OVR) flag = TTY_OVERRUN; } if (uart_handle_sysrq_char(port, ch)) continue; if (sr & port->ignore_status_mask) continue; uart_insert_char(port, sr, SR_OVR, ch, flag); } tty_flip_buffer_push(tty); tty_kref_put(tty); } static void sccnxp_handle_tx(struct uart_port *port) { u8 sr; struct circ_buf *xmit = &port->state->xmit; struct sccnxp_port *s = dev_get_drvdata(port->dev); if (unlikely(port->x_char)) { sccnxp_port_write(port, SCCNXP_THR_REG, port->x_char); port->icount.tx++; port->x_char = 0; return; } if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { /* Disable TX if FIFO is empty */ if (sccnxp_port_read(port, SCCNXP_SR_REG) & SR_TXEMT) { sccnxp_disable_irq(port, IMR_TXRDY); /* Set direction to input */ if (s->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 0); } return; } while (!uart_circ_empty(xmit)) { sr = sccnxp_port_read(port, SCCNXP_SR_REG); if (!(sr & SR_TXRDY)) break; sccnxp_port_write(port, SCCNXP_THR_REG, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); port->icount.tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); } static irqreturn_t sccnxp_ist(int irq, void *dev_id) { int i; u8 isr; struct sccnxp_port *s = (struct sccnxp_port *)dev_id; mutex_lock(&s->sccnxp_mutex); for (;;) { isr = sccnxp_read(&s->port[0], SCCNXP_ISR_REG); isr &= s->imr; if (!isr) break; dev_dbg(s->port[0].dev, "IRQ status: 0x%02x\n", isr); for (i = 0; i < s->uart.nr; i++) { if (isr & ISR_RXRDY(i)) sccnxp_handle_rx(&s->port[i]); if (isr & ISR_TXRDY(i)) sccnxp_handle_tx(&s->port[i]); } } mutex_unlock(&s->sccnxp_mutex); return IRQ_HANDLED; } static void sccnxp_start_tx(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); /* Set direction to output */ if (s->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 1); sccnxp_enable_irq(port, IMR_TXRDY); mutex_unlock(&s->sccnxp_mutex); } static void sccnxp_stop_tx(struct uart_port *port) { /* Do nothing */ } static void sccnxp_stop_rx(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_DISABLE); mutex_unlock(&s->sccnxp_mutex); } static unsigned int sccnxp_tx_empty(struct uart_port *port) { u8 val; struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); val = sccnxp_port_read(port, SCCNXP_SR_REG); mutex_unlock(&s->sccnxp_mutex); return (val & SR_TXEMT) ? TIOCSER_TEMT : 0; } static void sccnxp_enable_ms(struct uart_port *port) { /* Do nothing */ } static void sccnxp_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct sccnxp_port *s = dev_get_drvdata(port->dev); if (!(s->flags & SCCNXP_HAVE_IO)) return; mutex_lock(&s->sccnxp_mutex); sccnxp_set_bit(port, DTR_OP, mctrl & TIOCM_DTR); sccnxp_set_bit(port, RTS_OP, mctrl & TIOCM_RTS); mutex_unlock(&s->sccnxp_mutex); } static unsigned int sccnxp_get_mctrl(struct uart_port *port) { u8 bitmask, ipr; struct sccnxp_port *s = dev_get_drvdata(port->dev); unsigned int mctrl = TIOCM_DSR | TIOCM_CTS | TIOCM_CAR; if (!(s->flags & SCCNXP_HAVE_IO)) return mctrl; mutex_lock(&s->sccnxp_mutex); ipr = ~sccnxp_read(port, SCCNXP_IPCR_REG); if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(DSR_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], DSR_IP); mctrl &= ~TIOCM_DSR; mctrl |= (ipr & bitmask) ? TIOCM_DSR : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(CTS_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], CTS_IP); mctrl &= ~TIOCM_CTS; mctrl |= (ipr & bitmask) ? TIOCM_CTS : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(DCD_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], DCD_IP); mctrl &= ~TIOCM_CAR; mctrl |= (ipr & bitmask) ? TIOCM_CAR : 0; } if (s->pdata.mctrl_cfg[port->line] & MCTRL_MASK(RNG_IP)) { bitmask = 1 << MCTRL_IBIT(s->pdata.mctrl_cfg[port->line], RNG_IP); mctrl &= ~TIOCM_RNG; mctrl |= (ipr & bitmask) ? TIOCM_RNG : 0; } mutex_unlock(&s->sccnxp_mutex); return mctrl; } static void sccnxp_break_ctl(struct uart_port *port, int break_state) { struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); sccnxp_port_write(port, SCCNXP_CR_REG, break_state ? CR_CMD_START_BREAK : CR_CMD_STOP_BREAK); mutex_unlock(&s->sccnxp_mutex); } static void sccnxp_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct sccnxp_port *s = dev_get_drvdata(port->dev); u8 mr1, mr2; int baud; mutex_lock(&s->sccnxp_mutex); /* Mask termios capabilities we don't support */ termios->c_cflag &= ~CMSPAR; /* Disable RX & TX, reset break condition, status and FIFOs */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_RX_RESET | CR_RX_DISABLE | CR_TX_DISABLE); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_TX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_STATUS_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_BREAK_RESET); /* Word size */ switch (termios->c_cflag & CSIZE) { case CS5: mr1 = MR1_BITS_5; break; case CS6: mr1 = MR1_BITS_6; break; case CS7: mr1 = MR1_BITS_7; break; case CS8: default: mr1 = MR1_BITS_8; break; } /* Parity */ if (termios->c_cflag & PARENB) { if (termios->c_cflag & PARODD) mr1 |= MR1_PAR_ODD; } else mr1 |= MR1_PAR_NO; /* Stop bits */ mr2 = (termios->c_cflag & CSTOPB) ? MR2_STOP2 : MR2_STOP1; /* Update desired format */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_MRPTR1); sccnxp_port_write(port, SCCNXP_MR_REG, mr1); sccnxp_port_write(port, SCCNXP_MR_REG, mr2); /* Set read status mask */ port->read_status_mask = SR_OVR; if (termios->c_iflag & INPCK) port->read_status_mask |= SR_PE | SR_FE; if (termios->c_iflag & (BRKINT | PARMRK)) port->read_status_mask |= SR_BRK; /* Set status ignore mask */ port->ignore_status_mask = 0; if (termios->c_iflag & IGNBRK) port->ignore_status_mask |= SR_BRK; if (!(termios->c_cflag & CREAD)) port->ignore_status_mask |= SR_PE | SR_OVR | SR_FE | SR_BRK; /* Setup baudrate */ baud = uart_get_baud_rate(port, termios, old, 50, (s->flags & SCCNXP_HAVE_MR0) ? 230400 : 38400); baud = sccnxp_set_baud(port, baud); /* Update timeout according to new baud rate */ uart_update_timeout(port, termios->c_cflag, baud); if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, baud, baud); /* Enable RX & TX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_ENABLE | CR_TX_ENABLE); mutex_unlock(&s->sccnxp_mutex); } static int sccnxp_startup(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); if (s->flags & SCCNXP_HAVE_IO) { /* Outputs are controlled manually */ sccnxp_write(port, SCCNXP_OPCR_REG, 0); } /* Reset break condition, status and FIFOs */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_RX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_TX_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_STATUS_RESET); sccnxp_port_write(port, SCCNXP_CR_REG, CR_CMD_BREAK_RESET); /* Enable RX & TX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_ENABLE | CR_TX_ENABLE); /* Enable RX interrupt */ sccnxp_enable_irq(port, IMR_RXRDY); mutex_unlock(&s->sccnxp_mutex); return 0; } static void sccnxp_shutdown(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); mutex_lock(&s->sccnxp_mutex); /* Disable interrupts */ sccnxp_disable_irq(port, IMR_TXRDY | IMR_RXRDY); /* Disable TX & RX */ sccnxp_port_write(port, SCCNXP_CR_REG, CR_RX_DISABLE | CR_TX_DISABLE); /* Leave direction to input */ if (s->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(port, DIR_OP, 0); mutex_unlock(&s->sccnxp_mutex); } static const char *sccnxp_type(struct uart_port *port) { struct sccnxp_port *s = dev_get_drvdata(port->dev); return (port->type == PORT_SC26XX) ? s->name : NULL; } static void sccnxp_release_port(struct uart_port *port) { /* Do nothing */ } static int sccnxp_request_port(struct uart_port *port) { /* Do nothing */ return 0; } static void sccnxp_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_SC26XX; } static int sccnxp_verify_port(struct uart_port *port, struct serial_struct *s) { if ((s->type == PORT_UNKNOWN) || (s->type == PORT_SC26XX)) return 0; if (s->irq == port->irq) return 0; return -EINVAL; } static const struct uart_ops sccnxp_ops = { .tx_empty = sccnxp_tx_empty, .set_mctrl = sccnxp_set_mctrl, .get_mctrl = sccnxp_get_mctrl, .stop_tx = sccnxp_stop_tx, .start_tx = sccnxp_start_tx, .stop_rx = sccnxp_stop_rx, .enable_ms = sccnxp_enable_ms, .break_ctl = sccnxp_break_ctl, .startup = sccnxp_startup, .shutdown = sccnxp_shutdown, .set_termios = sccnxp_set_termios, .type = sccnxp_type, .release_port = sccnxp_release_port, .request_port = sccnxp_request_port, .config_port = sccnxp_config_port, .verify_port = sccnxp_verify_port, }; #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE static void sccnxp_console_putchar(struct uart_port *port, int c) { int tryes = 100000; while (tryes--) { if (sccnxp_port_read(port, SCCNXP_SR_REG) & SR_TXRDY) { sccnxp_port_write(port, SCCNXP_THR_REG, c); break; } barrier(); } } static void sccnxp_console_write(struct console *co, const char *c, unsigned n) { struct sccnxp_port *s = (struct sccnxp_port *)co->data; struct uart_port *port = &s->port[co->index]; mutex_lock(&s->sccnxp_mutex); uart_console_write(port, c, n, sccnxp_console_putchar); mutex_unlock(&s->sccnxp_mutex); } static int sccnxp_console_setup(struct console *co, char *options) { struct sccnxp_port *s = (struct sccnxp_port *)co->data; struct uart_port *port = &s->port[(co->index > 0) ? co->index : 0]; int baud = 9600, bits = 8, parity = 'n', flow = 'n'; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } #endif static int __devinit sccnxp_probe(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); int chiptype = pdev->id_entry->driver_data; struct sccnxp_pdata *pdata = dev_get_platdata(&pdev->dev); int i, ret, fifosize, freq_min, freq_max; struct sccnxp_port *s; void __iomem *membase; if (!res) { dev_err(&pdev->dev, "Missing memory resource data\n"); return -EADDRNOTAVAIL; } dev_set_name(&pdev->dev, SCCNXP_NAME); s = devm_kzalloc(&pdev->dev, sizeof(struct sccnxp_port), GFP_KERNEL); if (!s) { dev_err(&pdev->dev, "Error allocating port structure\n"); return -ENOMEM; } platform_set_drvdata(pdev, s); mutex_init(&s->sccnxp_mutex); /* Individual chip settings */ switch (chiptype) { case SCCNXP_TYPE_SC2681: s->name = "SC2681"; s->uart.nr = 2; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO; fifosize = 3; freq_min = 1000000; freq_max = 4000000; break; case SCCNXP_TYPE_SC2691: s->name = "SC2691"; s->uart.nr = 1; s->freq_std = 3686400; s->addr_mask = 0x07; s->flags = 0; fifosize = 3; freq_min = 1000000; freq_max = 4000000; break; case SCCNXP_TYPE_SC2692: s->name = "SC2692"; s->uart.nr = 2; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO; fifosize = 3; freq_min = 1000000; freq_max = 4000000; break; case SCCNXP_TYPE_SC2891: s->name = "SC2891"; s->uart.nr = 1; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0; fifosize = 16; freq_min = 100000; freq_max = 8000000; break; case SCCNXP_TYPE_SC2892: s->name = "SC2892"; s->uart.nr = 2; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0; fifosize = 16; freq_min = 100000; freq_max = 8000000; break; case SCCNXP_TYPE_SC28202: s->name = "SC28202"; s->uart.nr = 2; s->freq_std = 14745600; s->addr_mask = 0x7f; s->flags = SCCNXP_HAVE_IO | SCCNXP_HAVE_MR0; fifosize = 256; freq_min = 1000000; freq_max = 50000000; break; case SCCNXP_TYPE_SC68681: s->name = "SC68681"; s->uart.nr = 2; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO; fifosize = 3; freq_min = 1000000; freq_max = 4000000; break; case SCCNXP_TYPE_SC68692: s->name = "SC68692"; s->uart.nr = 2; s->freq_std = 3686400; s->addr_mask = 0x0f; s->flags = SCCNXP_HAVE_IO; fifosize = 3; freq_min = 1000000; freq_max = 4000000; break; default: dev_err(&pdev->dev, "Unsupported chip type %i\n", chiptype); ret = -ENOTSUPP; goto err_out; } if (!pdata) { dev_warn(&pdev->dev, "No platform data supplied, using defaults\n"); s->pdata.frequency = s->freq_std; } else memcpy(&s->pdata, pdata, sizeof(struct sccnxp_pdata)); s->irq = platform_get_irq(pdev, 0); if (s->irq <= 0) { dev_err(&pdev->dev, "Missing irq resource data\n"); ret = -ENXIO; goto err_out; } /* Check input frequency */ if ((s->pdata.frequency < freq_min) || (s->pdata.frequency > freq_max)) { dev_err(&pdev->dev, "Frequency out of bounds\n"); ret = -EINVAL; goto err_out; } membase = devm_request_and_ioremap(&pdev->dev, res); if (!membase) { dev_err(&pdev->dev, "Failed to ioremap\n"); ret = -EIO; goto err_out; } s->uart.owner = THIS_MODULE; s->uart.dev_name = "ttySC"; s->uart.major = SCCNXP_MAJOR; s->uart.minor = SCCNXP_MINOR; #ifdef CONFIG_SERIAL_SCCNXP_CONSOLE s->uart.cons = &s->console; s->uart.cons->device = uart_console_device; s->uart.cons->write = sccnxp_console_write; s->uart.cons->setup = sccnxp_console_setup; s->uart.cons->flags = CON_PRINTBUFFER; s->uart.cons->index = -1; s->uart.cons->data = s; strcpy(s->uart.cons->name, "ttySC"); #endif ret = uart_register_driver(&s->uart); if (ret) { dev_err(&pdev->dev, "Registering UART driver failed\n"); goto err_out; } for (i = 0; i < s->uart.nr; i++) { s->port[i].line = i; s->port[i].dev = &pdev->dev; s->port[i].irq = s->irq; s->port[i].type = PORT_SC26XX; s->port[i].fifosize = fifosize; s->port[i].flags = UPF_SKIP_TEST | UPF_FIXED_TYPE; s->port[i].iotype = UPIO_MEM; s->port[i].mapbase = res->start; s->port[i].membase = membase; s->port[i].regshift = s->pdata.reg_shift; s->port[i].uartclk = s->pdata.frequency; s->port[i].ops = &sccnxp_ops; uart_add_one_port(&s->uart, &s->port[i]); /* Set direction to input */ if (s->flags & SCCNXP_HAVE_IO) sccnxp_set_bit(&s->port[i], DIR_OP, 0); } /* Disable interrupts */ s->imr = 0; sccnxp_write(&s->port[0], SCCNXP_IMR_REG, 0); /* Board specific configure */ if (s->pdata.init) s->pdata.init(); ret = devm_request_threaded_irq(&pdev->dev, s->irq, NULL, sccnxp_ist, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&pdev->dev), s); if (!ret) return 0; dev_err(&pdev->dev, "Unable to reguest IRQ %i\n", s->irq); err_out: platform_set_drvdata(pdev, NULL); return ret; } static int __devexit sccnxp_remove(struct platform_device *pdev) { int i; struct sccnxp_port *s = platform_get_drvdata(pdev); devm_free_irq(&pdev->dev, s->irq, s); for (i = 0; i < s->uart.nr; i++) uart_remove_one_port(&s->uart, &s->port[i]); uart_unregister_driver(&s->uart); platform_set_drvdata(pdev, NULL); if (s->pdata.exit) s->pdata.exit(); return 0; } static const struct platform_device_id sccnxp_id_table[] = { { "sc2681", SCCNXP_TYPE_SC2681 }, { "sc2691", SCCNXP_TYPE_SC2691 }, { "sc2692", SCCNXP_TYPE_SC2692 }, { "sc2891", SCCNXP_TYPE_SC2891 }, { "sc2892", SCCNXP_TYPE_SC2892 }, { "sc28202", SCCNXP_TYPE_SC28202 }, { "sc68681", SCCNXP_TYPE_SC68681 }, { "sc68692", SCCNXP_TYPE_SC68692 }, { }, }; MODULE_DEVICE_TABLE(platform, sccnxp_id_table); static struct platform_driver sccnxp_uart_driver = { .driver = { .name = SCCNXP_NAME, .owner = THIS_MODULE, }, .probe = sccnxp_probe, .remove = sccnxp_remove, .id_table = sccnxp_id_table, }; module_platform_driver(sccnxp_uart_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Alexander Shiyan "); MODULE_DESCRIPTION("SCCNXP serial driver");