/* * Generic driver for the MPSC (UART mode) on Marvell parts (e.g., GT64240, * GT64260, MV64340, MV64360, GT96100, ... ). * * Author: Mark A. Greer <mgreer@mvista.com> * * Based on an old MPSC driver that was in the linuxppc tree. It appears to * have been created by Chris Zankel (formerly of MontaVista) but there * is no proper Copyright so I'm not sure. Apparently, parts were also * taken from PPCBoot (now U-Boot). Also based on drivers/serial/8250.c * by Russell King. * * 2004 (c) MontaVista, Software, Inc. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ /* * The MPSC interface is much like a typical network controller's interface. * That is, you set up separate rings of descriptors for transmitting and * receiving data. There is also a pool of buffers with (one buffer per * descriptor) that incoming data are dma'd into or outgoing data are dma'd * out of. * * The MPSC requires two other controllers to be able to work. The Baud Rate * Generator (BRG) provides a clock at programmable frequencies which determines * the baud rate. The Serial DMA Controller (SDMA) takes incoming data from the * MPSC and DMA's it into memory or DMA's outgoing data and passes it to the * MPSC. It is actually the SDMA interrupt that the driver uses to keep the * transmit and receive "engines" going (i.e., indicate data has been * transmitted or received). * * NOTES: * * 1) Some chips have an erratum where several regs cannot be * read. To work around that, we keep a local copy of those regs in * 'mpsc_port_info'. * * 2) Some chips have an erratum where the ctlr will hang when the SDMA ctlr * accesses system mem with coherency enabled. For that reason, the driver * assumes that coherency for that ctlr has been disabled. This means * that when in a cache coherent system, the driver has to manually manage * the data cache on the areas that it touches because the dma_* macro are * basically no-ops. * * 3) There is an erratum (on PPC) where you can't use the instruction to do * a DMA_TO_DEVICE/cache clean so DMA_BIDIRECTIONAL/flushes are used in places * where a DMA_TO_DEVICE/clean would have [otherwise] sufficed. * * 4) AFAICT, hardware flow control isn't supported by the controller --MAG. */ #if defined(CONFIG_SERIAL_MPSC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/console.h> #include <linux/sysrq.h> #include <linux/serial.h> #include <linux/serial_core.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/mv643xx.h> #include <linux/platform_device.h> #include <linux/gfp.h> #include <asm/io.h> #include <asm/irq.h> #define MPSC_NUM_CTLRS 2 /* * Descriptors and buffers must be cache line aligned. * Buffers lengths must be multiple of cache line size. * Number of Tx & Rx descriptors must be powers of 2. */ #define MPSC_RXR_ENTRIES 32 #define MPSC_RXRE_SIZE dma_get_cache_alignment() #define MPSC_RXR_SIZE (MPSC_RXR_ENTRIES * MPSC_RXRE_SIZE) #define MPSC_RXBE_SIZE dma_get_cache_alignment() #define MPSC_RXB_SIZE (MPSC_RXR_ENTRIES * MPSC_RXBE_SIZE) #define MPSC_TXR_ENTRIES 32 #define MPSC_TXRE_SIZE dma_get_cache_alignment() #define MPSC_TXR_SIZE (MPSC_TXR_ENTRIES * MPSC_TXRE_SIZE) #define MPSC_TXBE_SIZE dma_get_cache_alignment() #define MPSC_TXB_SIZE (MPSC_TXR_ENTRIES * MPSC_TXBE_SIZE) #define MPSC_DMA_ALLOC_SIZE (MPSC_RXR_SIZE + MPSC_RXB_SIZE + MPSC_TXR_SIZE \ + MPSC_TXB_SIZE + dma_get_cache_alignment() /* for alignment */) /* Rx and Tx Ring entry descriptors -- assume entry size is <= cacheline size */ struct mpsc_rx_desc { u16 bufsize; u16 bytecnt; u32 cmdstat; u32 link; u32 buf_ptr; } __attribute((packed)); struct mpsc_tx_desc { u16 bytecnt; u16 shadow; u32 cmdstat; u32 link; u32 buf_ptr; } __attribute((packed)); /* * Some regs that have the erratum that you can't read them are are shared * between the two MPSC controllers. This struct contains those shared regs. */ struct mpsc_shared_regs { phys_addr_t mpsc_routing_base_p; phys_addr_t sdma_intr_base_p; void __iomem *mpsc_routing_base; void __iomem *sdma_intr_base; u32 MPSC_MRR_m; u32 MPSC_RCRR_m; u32 MPSC_TCRR_m; u32 SDMA_INTR_CAUSE_m; u32 SDMA_INTR_MASK_m; }; /* The main driver data structure */ struct mpsc_port_info { struct uart_port port; /* Overlay uart_port structure */ /* Internal driver state for this ctlr */ u8 ready; u8 rcv_data; tcflag_t c_iflag; /* save termios->c_iflag */ tcflag_t c_cflag; /* save termios->c_cflag */ /* Info passed in from platform */ u8 mirror_regs; /* Need to mirror regs? */ u8 cache_mgmt; /* Need manual cache mgmt? */ u8 brg_can_tune; /* BRG has baud tuning? */ u32 brg_clk_src; u16 mpsc_max_idle; int default_baud; int default_bits; int default_parity; int default_flow; /* Physical addresses of various blocks of registers (from platform) */ phys_addr_t mpsc_base_p; phys_addr_t sdma_base_p; phys_addr_t brg_base_p; /* Virtual addresses of various blocks of registers (from platform) */ void __iomem *mpsc_base; void __iomem *sdma_base; void __iomem *brg_base; /* Descriptor ring and buffer allocations */ void *dma_region; dma_addr_t dma_region_p; dma_addr_t rxr; /* Rx descriptor ring */ dma_addr_t rxr_p; /* Phys addr of rxr */ u8 *rxb; /* Rx Ring I/O buf */ u8 *rxb_p; /* Phys addr of rxb */ u32 rxr_posn; /* First desc w/ Rx data */ dma_addr_t txr; /* Tx descriptor ring */ dma_addr_t txr_p; /* Phys addr of txr */ u8 *txb; /* Tx Ring I/O buf */ u8 *txb_p; /* Phys addr of txb */ int txr_head; /* Where new data goes */ int txr_tail; /* Where sent data comes off */ spinlock_t tx_lock; /* transmit lock */ /* Mirrored values of regs we can't read (if 'mirror_regs' set) */ u32 MPSC_MPCR_m; u32 MPSC_CHR_1_m; u32 MPSC_CHR_2_m; u32 MPSC_CHR_10_m; u32 BRG_BCR_m; struct mpsc_shared_regs *shared_regs; }; /* Hooks to platform-specific code */ int mpsc_platform_register_driver(void); void mpsc_platform_unregister_driver(void); /* Hooks back in to mpsc common to be called by platform-specific code */ struct mpsc_port_info *mpsc_device_probe(int index); struct mpsc_port_info *mpsc_device_remove(int index); /* Main MPSC Configuration Register Offsets */ #define MPSC_MMCRL 0x0000 #define MPSC_MMCRH 0x0004 #define MPSC_MPCR 0x0008 #define MPSC_CHR_1 0x000c #define MPSC_CHR_2 0x0010 #define MPSC_CHR_3 0x0014 #define MPSC_CHR_4 0x0018 #define MPSC_CHR_5 0x001c #define MPSC_CHR_6 0x0020 #define MPSC_CHR_7 0x0024 #define MPSC_CHR_8 0x0028 #define MPSC_CHR_9 0x002c #define MPSC_CHR_10 0x0030 #define MPSC_CHR_11 0x0034 #define MPSC_MPCR_FRZ (1 << 9) #define MPSC_MPCR_CL_5 0 #define MPSC_MPCR_CL_6 1 #define MPSC_MPCR_CL_7 2 #define MPSC_MPCR_CL_8 3 #define MPSC_MPCR_SBL_1 0 #define MPSC_MPCR_SBL_2 1 #define MPSC_CHR_2_TEV (1<<1) #define MPSC_CHR_2_TA (1<<7) #define MPSC_CHR_2_TTCS (1<<9) #define MPSC_CHR_2_REV (1<<17) #define MPSC_CHR_2_RA (1<<23) #define MPSC_CHR_2_CRD (1<<25) #define MPSC_CHR_2_EH (1<<31) #define MPSC_CHR_2_PAR_ODD 0 #define MPSC_CHR_2_PAR_SPACE 1 #define MPSC_CHR_2_PAR_EVEN 2 #define MPSC_CHR_2_PAR_MARK 3 /* MPSC Signal Routing */ #define MPSC_MRR 0x0000 #define MPSC_RCRR 0x0004 #define MPSC_TCRR 0x0008 /* Serial DMA Controller Interface Registers */ #define SDMA_SDC 0x0000 #define SDMA_SDCM 0x0008 #define SDMA_RX_DESC 0x0800 #define SDMA_RX_BUF_PTR 0x0808 #define SDMA_SCRDP 0x0810 #define SDMA_TX_DESC 0x0c00 #define SDMA_SCTDP 0x0c10 #define SDMA_SFTDP 0x0c14 #define SDMA_DESC_CMDSTAT_PE (1<<0) #define SDMA_DESC_CMDSTAT_CDL (1<<1) #define SDMA_DESC_CMDSTAT_FR (1<<3) #define SDMA_DESC_CMDSTAT_OR (1<<6) #define SDMA_DESC_CMDSTAT_BR (1<<9) #define SDMA_DESC_CMDSTAT_MI (1<<10) #define SDMA_DESC_CMDSTAT_A (1<<11) #define SDMA_DESC_CMDSTAT_AM (1<<12) #define SDMA_DESC_CMDSTAT_CT (1<<13) #define SDMA_DESC_CMDSTAT_C (1<<14) #define SDMA_DESC_CMDSTAT_ES (1<<15) #define SDMA_DESC_CMDSTAT_L (1<<16) #define SDMA_DESC_CMDSTAT_F (1<<17) #define SDMA_DESC_CMDSTAT_P (1<<18) #define SDMA_DESC_CMDSTAT_EI (1<<23) #define SDMA_DESC_CMDSTAT_O (1<<31) #define SDMA_DESC_DFLT (SDMA_DESC_CMDSTAT_O \ | SDMA_DESC_CMDSTAT_EI) #define SDMA_SDC_RFT (1<<0) #define SDMA_SDC_SFM (1<<1) #define SDMA_SDC_BLMR (1<<6) #define SDMA_SDC_BLMT (1<<7) #define SDMA_SDC_POVR (1<<8) #define SDMA_SDC_RIFB (1<<9) #define SDMA_SDCM_ERD (1<<7) #define SDMA_SDCM_AR (1<<15) #define SDMA_SDCM_STD (1<<16) #define SDMA_SDCM_TXD (1<<23) #define SDMA_SDCM_AT (1<<31) #define SDMA_0_CAUSE_RXBUF (1<<0) #define SDMA_0_CAUSE_RXERR (1<<1) #define SDMA_0_CAUSE_TXBUF (1<<2) #define SDMA_0_CAUSE_TXEND (1<<3) #define SDMA_1_CAUSE_RXBUF (1<<8) #define SDMA_1_CAUSE_RXERR (1<<9) #define SDMA_1_CAUSE_TXBUF (1<<10) #define SDMA_1_CAUSE_TXEND (1<<11) #define SDMA_CAUSE_RX_MASK (SDMA_0_CAUSE_RXBUF | SDMA_0_CAUSE_RXERR \ | SDMA_1_CAUSE_RXBUF | SDMA_1_CAUSE_RXERR) #define SDMA_CAUSE_TX_MASK (SDMA_0_CAUSE_TXBUF | SDMA_0_CAUSE_TXEND \ | SDMA_1_CAUSE_TXBUF | SDMA_1_CAUSE_TXEND) /* SDMA Interrupt registers */ #define SDMA_INTR_CAUSE 0x0000 #define SDMA_INTR_MASK 0x0080 /* Baud Rate Generator Interface Registers */ #define BRG_BCR 0x0000 #define BRG_BTR 0x0004 /* * Define how this driver is known to the outside (we've been assigned a * range on the "Low-density serial ports" major). */ #define MPSC_MAJOR 204 #define MPSC_MINOR_START 44 #define MPSC_DRIVER_NAME "MPSC" #define MPSC_DEV_NAME "ttyMM" #define MPSC_VERSION "1.00" static struct mpsc_port_info mpsc_ports[MPSC_NUM_CTLRS]; static struct mpsc_shared_regs mpsc_shared_regs; static struct uart_driver mpsc_reg; static void mpsc_start_rx(struct mpsc_port_info *pi); static void mpsc_free_ring_mem(struct mpsc_port_info *pi); static void mpsc_release_port(struct uart_port *port); /* ****************************************************************************** * * Baud Rate Generator Routines (BRG) * ****************************************************************************** */ static void mpsc_brg_init(struct mpsc_port_info *pi, u32 clk_src) { u32 v; v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR); v = (v & ~(0xf << 18)) | ((clk_src & 0xf) << 18); if (pi->brg_can_tune) v &= ~(1 << 25); if (pi->mirror_regs) pi->BRG_BCR_m = v; writel(v, pi->brg_base + BRG_BCR); writel(readl(pi->brg_base + BRG_BTR) & 0xffff0000, pi->brg_base + BRG_BTR); } static void mpsc_brg_enable(struct mpsc_port_info *pi) { u32 v; v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR); v |= (1 << 16); if (pi->mirror_regs) pi->BRG_BCR_m = v; writel(v, pi->brg_base + BRG_BCR); } static void mpsc_brg_disable(struct mpsc_port_info *pi) { u32 v; v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR); v &= ~(1 << 16); if (pi->mirror_regs) pi->BRG_BCR_m = v; writel(v, pi->brg_base + BRG_BCR); } /* * To set the baud, we adjust the CDV field in the BRG_BCR reg. * From manual: Baud = clk / ((CDV+1)*2) ==> CDV = (clk / (baud*2)) - 1. * However, the input clock is divided by 16 in the MPSC b/c of how * 'MPSC_MMCRH' was set up so we have to divide the 'clk' used in our * calculation by 16 to account for that. So the real calculation * that accounts for the way the mpsc is set up is: * CDV = (clk / (baud*2*16)) - 1 ==> CDV = (clk / (baud << 5)) - 1. */ static void mpsc_set_baudrate(struct mpsc_port_info *pi, u32 baud) { u32 cdv = (pi->port.uartclk / (baud << 5)) - 1; u32 v; mpsc_brg_disable(pi); v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR); v = (v & 0xffff0000) | (cdv & 0xffff); if (pi->mirror_regs) pi->BRG_BCR_m = v; writel(v, pi->brg_base + BRG_BCR); mpsc_brg_enable(pi); } /* ****************************************************************************** * * Serial DMA Routines (SDMA) * ****************************************************************************** */ static void mpsc_sdma_burstsize(struct mpsc_port_info *pi, u32 burst_size) { u32 v; pr_debug("mpsc_sdma_burstsize[%d]: burst_size: %d\n", pi->port.line, burst_size); burst_size >>= 3; /* Divide by 8 b/c reg values are 8-byte chunks */ if (burst_size < 2) v = 0x0; /* 1 64-bit word */ else if (burst_size < 4) v = 0x1; /* 2 64-bit words */ else if (burst_size < 8) v = 0x2; /* 4 64-bit words */ else v = 0x3; /* 8 64-bit words */ writel((readl(pi->sdma_base + SDMA_SDC) & (0x3 << 12)) | (v << 12), pi->sdma_base + SDMA_SDC); } static void mpsc_sdma_init(struct mpsc_port_info *pi, u32 burst_size) { pr_debug("mpsc_sdma_init[%d]: burst_size: %d\n", pi->port.line, burst_size); writel((readl(pi->sdma_base + SDMA_SDC) & 0x3ff) | 0x03f, pi->sdma_base + SDMA_SDC); mpsc_sdma_burstsize(pi, burst_size); } static u32 mpsc_sdma_intr_mask(struct mpsc_port_info *pi, u32 mask) { u32 old, v; pr_debug("mpsc_sdma_intr_mask[%d]: mask: 0x%x\n", pi->port.line, mask); old = v = (pi->mirror_regs) ? pi->shared_regs->SDMA_INTR_MASK_m : readl(pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK); mask &= 0xf; if (pi->port.line) mask <<= 8; v &= ~mask; if (pi->mirror_regs) pi->shared_regs->SDMA_INTR_MASK_m = v; writel(v, pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK); if (pi->port.line) old >>= 8; return old & 0xf; } static void mpsc_sdma_intr_unmask(struct mpsc_port_info *pi, u32 mask) { u32 v; pr_debug("mpsc_sdma_intr_unmask[%d]: mask: 0x%x\n", pi->port.line,mask); v = (pi->mirror_regs) ? pi->shared_regs->SDMA_INTR_MASK_m : readl(pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK); mask &= 0xf; if (pi->port.line) mask <<= 8; v |= mask; if (pi->mirror_regs) pi->shared_regs->SDMA_INTR_MASK_m = v; writel(v, pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK); } static void mpsc_sdma_intr_ack(struct mpsc_port_info *pi) { pr_debug("mpsc_sdma_intr_ack[%d]: Acknowledging IRQ\n", pi->port.line); if (pi->mirror_regs) pi->shared_regs->SDMA_INTR_CAUSE_m = 0; writeb(0x00, pi->shared_regs->sdma_intr_base + SDMA_INTR_CAUSE + pi->port.line); } static void mpsc_sdma_set_rx_ring(struct mpsc_port_info *pi, struct mpsc_rx_desc *rxre_p) { pr_debug("mpsc_sdma_set_rx_ring[%d]: rxre_p: 0x%x\n", pi->port.line, (u32)rxre_p); writel((u32)rxre_p, pi->sdma_base + SDMA_SCRDP); } static void mpsc_sdma_set_tx_ring(struct mpsc_port_info *pi, struct mpsc_tx_desc *txre_p) { writel((u32)txre_p, pi->sdma_base + SDMA_SFTDP); writel((u32)txre_p, pi->sdma_base + SDMA_SCTDP); } static void mpsc_sdma_cmd(struct mpsc_port_info *pi, u32 val) { u32 v; v = readl(pi->sdma_base + SDMA_SDCM); if (val) v |= val; else v = 0; wmb(); writel(v, pi->sdma_base + SDMA_SDCM); wmb(); } static uint mpsc_sdma_tx_active(struct mpsc_port_info *pi) { return readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_TXD; } static void mpsc_sdma_start_tx(struct mpsc_port_info *pi) { struct mpsc_tx_desc *txre, *txre_p; /* If tx isn't running & there's a desc ready to go, start it */ if (!mpsc_sdma_tx_active(pi)) { txre = (struct mpsc_tx_desc *)(pi->txr + (pi->txr_tail * MPSC_TXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)txre, (ulong)txre + MPSC_TXRE_SIZE); #endif if (be32_to_cpu(txre->cmdstat) & SDMA_DESC_CMDSTAT_O) { txre_p = (struct mpsc_tx_desc *) (pi->txr_p + (pi->txr_tail * MPSC_TXRE_SIZE)); mpsc_sdma_set_tx_ring(pi, txre_p); mpsc_sdma_cmd(pi, SDMA_SDCM_STD | SDMA_SDCM_TXD); } } } static void mpsc_sdma_stop(struct mpsc_port_info *pi) { pr_debug("mpsc_sdma_stop[%d]: Stopping SDMA\n", pi->port.line); /* Abort any SDMA transfers */ mpsc_sdma_cmd(pi, 0); mpsc_sdma_cmd(pi, SDMA_SDCM_AR | SDMA_SDCM_AT); /* Clear the SDMA current and first TX and RX pointers */ mpsc_sdma_set_tx_ring(pi, NULL); mpsc_sdma_set_rx_ring(pi, NULL); /* Disable interrupts */ mpsc_sdma_intr_mask(pi, 0xf); mpsc_sdma_intr_ack(pi); } /* ****************************************************************************** * * Multi-Protocol Serial Controller Routines (MPSC) * ****************************************************************************** */ static void mpsc_hw_init(struct mpsc_port_info *pi) { u32 v; pr_debug("mpsc_hw_init[%d]: Initializing hardware\n", pi->port.line); /* Set up clock routing */ if (pi->mirror_regs) { v = pi->shared_regs->MPSC_MRR_m; v &= ~0x1c7; pi->shared_regs->MPSC_MRR_m = v; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_MRR); v = pi->shared_regs->MPSC_RCRR_m; v = (v & ~0xf0f) | 0x100; pi->shared_regs->MPSC_RCRR_m = v; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_RCRR); v = pi->shared_regs->MPSC_TCRR_m; v = (v & ~0xf0f) | 0x100; pi->shared_regs->MPSC_TCRR_m = v; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_TCRR); } else { v = readl(pi->shared_regs->mpsc_routing_base + MPSC_MRR); v &= ~0x1c7; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_MRR); v = readl(pi->shared_regs->mpsc_routing_base + MPSC_RCRR); v = (v & ~0xf0f) | 0x100; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_RCRR); v = readl(pi->shared_regs->mpsc_routing_base + MPSC_TCRR); v = (v & ~0xf0f) | 0x100; writel(v, pi->shared_regs->mpsc_routing_base + MPSC_TCRR); } /* Put MPSC in UART mode & enabel Tx/Rx egines */ writel(0x000004c4, pi->mpsc_base + MPSC_MMCRL); /* No preamble, 16x divider, low-latency, */ writel(0x04400400, pi->mpsc_base + MPSC_MMCRH); mpsc_set_baudrate(pi, pi->default_baud); if (pi->mirror_regs) { pi->MPSC_CHR_1_m = 0; pi->MPSC_CHR_2_m = 0; } writel(0, pi->mpsc_base + MPSC_CHR_1); writel(0, pi->mpsc_base + MPSC_CHR_2); writel(pi->mpsc_max_idle, pi->mpsc_base + MPSC_CHR_3); writel(0, pi->mpsc_base + MPSC_CHR_4); writel(0, pi->mpsc_base + MPSC_CHR_5); writel(0, pi->mpsc_base + MPSC_CHR_6); writel(0, pi->mpsc_base + MPSC_CHR_7); writel(0, pi->mpsc_base + MPSC_CHR_8); writel(0, pi->mpsc_base + MPSC_CHR_9); writel(0, pi->mpsc_base + MPSC_CHR_10); } static void mpsc_enter_hunt(struct mpsc_port_info *pi) { pr_debug("mpsc_enter_hunt[%d]: Hunting...\n", pi->port.line); if (pi->mirror_regs) { writel(pi->MPSC_CHR_2_m | MPSC_CHR_2_EH, pi->mpsc_base + MPSC_CHR_2); /* Erratum prevents reading CHR_2 so just delay for a while */ udelay(100); } else { writel(readl(pi->mpsc_base + MPSC_CHR_2) | MPSC_CHR_2_EH, pi->mpsc_base + MPSC_CHR_2); while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_EH) udelay(10); } } static void mpsc_freeze(struct mpsc_port_info *pi) { u32 v; pr_debug("mpsc_freeze[%d]: Freezing\n", pi->port.line); v = (pi->mirror_regs) ? pi->MPSC_MPCR_m : readl(pi->mpsc_base + MPSC_MPCR); v |= MPSC_MPCR_FRZ; if (pi->mirror_regs) pi->MPSC_MPCR_m = v; writel(v, pi->mpsc_base + MPSC_MPCR); } static void mpsc_unfreeze(struct mpsc_port_info *pi) { u32 v; v = (pi->mirror_regs) ? pi->MPSC_MPCR_m : readl(pi->mpsc_base + MPSC_MPCR); v &= ~MPSC_MPCR_FRZ; if (pi->mirror_regs) pi->MPSC_MPCR_m = v; writel(v, pi->mpsc_base + MPSC_MPCR); pr_debug("mpsc_unfreeze[%d]: Unfrozen\n", pi->port.line); } static void mpsc_set_char_length(struct mpsc_port_info *pi, u32 len) { u32 v; pr_debug("mpsc_set_char_length[%d]: char len: %d\n", pi->port.line,len); v = (pi->mirror_regs) ? pi->MPSC_MPCR_m : readl(pi->mpsc_base + MPSC_MPCR); v = (v & ~(0x3 << 12)) | ((len & 0x3) << 12); if (pi->mirror_regs) pi->MPSC_MPCR_m = v; writel(v, pi->mpsc_base + MPSC_MPCR); } static void mpsc_set_stop_bit_length(struct mpsc_port_info *pi, u32 len) { u32 v; pr_debug("mpsc_set_stop_bit_length[%d]: stop bits: %d\n", pi->port.line, len); v = (pi->mirror_regs) ? pi->MPSC_MPCR_m : readl(pi->mpsc_base + MPSC_MPCR); v = (v & ~(1 << 14)) | ((len & 0x1) << 14); if (pi->mirror_regs) pi->MPSC_MPCR_m = v; writel(v, pi->mpsc_base + MPSC_MPCR); } static void mpsc_set_parity(struct mpsc_port_info *pi, u32 p) { u32 v; pr_debug("mpsc_set_parity[%d]: parity bits: 0x%x\n", pi->port.line, p); v = (pi->mirror_regs) ? pi->MPSC_CHR_2_m : readl(pi->mpsc_base + MPSC_CHR_2); p &= 0x3; v = (v & ~0xc000c) | (p << 18) | (p << 2); if (pi->mirror_regs) pi->MPSC_CHR_2_m = v; writel(v, pi->mpsc_base + MPSC_CHR_2); } /* ****************************************************************************** * * Driver Init Routines * ****************************************************************************** */ static void mpsc_init_hw(struct mpsc_port_info *pi) { pr_debug("mpsc_init_hw[%d]: Initializing\n", pi->port.line); mpsc_brg_init(pi, pi->brg_clk_src); mpsc_brg_enable(pi); mpsc_sdma_init(pi, dma_get_cache_alignment()); /* burst a cacheline */ mpsc_sdma_stop(pi); mpsc_hw_init(pi); } static int mpsc_alloc_ring_mem(struct mpsc_port_info *pi) { int rc = 0; pr_debug("mpsc_alloc_ring_mem[%d]: Allocating ring mem\n", pi->port.line); if (!pi->dma_region) { if (!dma_supported(pi->port.dev, 0xffffffff)) { printk(KERN_ERR "MPSC: Inadequate DMA support\n"); rc = -ENXIO; } else if ((pi->dma_region = dma_alloc_noncoherent(pi->port.dev, MPSC_DMA_ALLOC_SIZE, &pi->dma_region_p, GFP_KERNEL)) == NULL) { printk(KERN_ERR "MPSC: Can't alloc Desc region\n"); rc = -ENOMEM; } } return rc; } static void mpsc_free_ring_mem(struct mpsc_port_info *pi) { pr_debug("mpsc_free_ring_mem[%d]: Freeing ring mem\n", pi->port.line); if (pi->dma_region) { dma_free_noncoherent(pi->port.dev, MPSC_DMA_ALLOC_SIZE, pi->dma_region, pi->dma_region_p); pi->dma_region = NULL; pi->dma_region_p = (dma_addr_t)NULL; } } static void mpsc_init_rings(struct mpsc_port_info *pi) { struct mpsc_rx_desc *rxre; struct mpsc_tx_desc *txre; dma_addr_t dp, dp_p; u8 *bp, *bp_p; int i; pr_debug("mpsc_init_rings[%d]: Initializing rings\n", pi->port.line); BUG_ON(pi->dma_region == NULL); memset(pi->dma_region, 0, MPSC_DMA_ALLOC_SIZE); /* * Descriptors & buffers are multiples of cacheline size and must be * cacheline aligned. */ dp = ALIGN((u32)pi->dma_region, dma_get_cache_alignment()); dp_p = ALIGN((u32)pi->dma_region_p, dma_get_cache_alignment()); /* * Partition dma region into rx ring descriptor, rx buffers, * tx ring descriptors, and tx buffers. */ pi->rxr = dp; pi->rxr_p = dp_p; dp += MPSC_RXR_SIZE; dp_p += MPSC_RXR_SIZE; pi->rxb = (u8 *)dp; pi->rxb_p = (u8 *)dp_p; dp += MPSC_RXB_SIZE; dp_p += MPSC_RXB_SIZE; pi->rxr_posn = 0; pi->txr = dp; pi->txr_p = dp_p; dp += MPSC_TXR_SIZE; dp_p += MPSC_TXR_SIZE; pi->txb = (u8 *)dp; pi->txb_p = (u8 *)dp_p; pi->txr_head = 0; pi->txr_tail = 0; /* Init rx ring descriptors */ dp = pi->rxr; dp_p = pi->rxr_p; bp = pi->rxb; bp_p = pi->rxb_p; for (i = 0; i < MPSC_RXR_ENTRIES; i++) { rxre = (struct mpsc_rx_desc *)dp; rxre->bufsize = cpu_to_be16(MPSC_RXBE_SIZE); rxre->bytecnt = cpu_to_be16(0); rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O | SDMA_DESC_CMDSTAT_EI | SDMA_DESC_CMDSTAT_F | SDMA_DESC_CMDSTAT_L); rxre->link = cpu_to_be32(dp_p + MPSC_RXRE_SIZE); rxre->buf_ptr = cpu_to_be32(bp_p); dp += MPSC_RXRE_SIZE; dp_p += MPSC_RXRE_SIZE; bp += MPSC_RXBE_SIZE; bp_p += MPSC_RXBE_SIZE; } rxre->link = cpu_to_be32(pi->rxr_p); /* Wrap last back to first */ /* Init tx ring descriptors */ dp = pi->txr; dp_p = pi->txr_p; bp = pi->txb; bp_p = pi->txb_p; for (i = 0; i < MPSC_TXR_ENTRIES; i++) { txre = (struct mpsc_tx_desc *)dp; txre->link = cpu_to_be32(dp_p + MPSC_TXRE_SIZE); txre->buf_ptr = cpu_to_be32(bp_p); dp += MPSC_TXRE_SIZE; dp_p += MPSC_TXRE_SIZE; bp += MPSC_TXBE_SIZE; bp_p += MPSC_TXBE_SIZE; } txre->link = cpu_to_be32(pi->txr_p); /* Wrap last back to first */ dma_cache_sync(pi->port.dev, (void *)pi->dma_region, MPSC_DMA_ALLOC_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)pi->dma_region, (ulong)pi->dma_region + MPSC_DMA_ALLOC_SIZE); #endif return; } static void mpsc_uninit_rings(struct mpsc_port_info *pi) { pr_debug("mpsc_uninit_rings[%d]: Uninitializing rings\n",pi->port.line); BUG_ON(pi->dma_region == NULL); pi->rxr = 0; pi->rxr_p = 0; pi->rxb = NULL; pi->rxb_p = NULL; pi->rxr_posn = 0; pi->txr = 0; pi->txr_p = 0; pi->txb = NULL; pi->txb_p = NULL; pi->txr_head = 0; pi->txr_tail = 0; } static int mpsc_make_ready(struct mpsc_port_info *pi) { int rc; pr_debug("mpsc_make_ready[%d]: Making cltr ready\n", pi->port.line); if (!pi->ready) { mpsc_init_hw(pi); if ((rc = mpsc_alloc_ring_mem(pi))) return rc; mpsc_init_rings(pi); pi->ready = 1; } return 0; } #ifdef CONFIG_CONSOLE_POLL static int serial_polled; #endif /* ****************************************************************************** * * Interrupt Handling Routines * ****************************************************************************** */ static int mpsc_rx_intr(struct mpsc_port_info *pi) { struct mpsc_rx_desc *rxre; struct tty_struct *tty = pi->port.state->port.tty; u32 cmdstat, bytes_in, i; int rc = 0; u8 *bp; char flag = TTY_NORMAL; pr_debug("mpsc_rx_intr[%d]: Handling Rx intr\n", pi->port.line); rxre = (struct mpsc_rx_desc *)(pi->rxr + (pi->rxr_posn*MPSC_RXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif /* * Loop through Rx descriptors handling ones that have been completed. */ while (!((cmdstat = be32_to_cpu(rxre->cmdstat)) & SDMA_DESC_CMDSTAT_O)) { bytes_in = be16_to_cpu(rxre->bytecnt); #ifdef CONFIG_CONSOLE_POLL if (unlikely(serial_polled)) { serial_polled = 0; return 0; } #endif /* Following use of tty struct directly is deprecated */ if (unlikely(tty_buffer_request_room(tty, bytes_in) < bytes_in)) { if (tty->low_latency) tty_flip_buffer_push(tty); /* * If this failed then we will throw away the bytes * but must do so to clear interrupts. */ } bp = pi->rxb + (pi->rxr_posn * MPSC_RXBE_SIZE); dma_cache_sync(pi->port.dev, (void *)bp, MPSC_RXBE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)bp, (ulong)bp + MPSC_RXBE_SIZE); #endif /* * Other than for parity error, the manual provides little * info on what data will be in a frame flagged by any of * these errors. For parity error, it is the last byte in * the buffer that had the error. As for the rest, I guess * we'll assume there is no data in the buffer. * If there is...it gets lost. */ if (unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR | SDMA_DESC_CMDSTAT_FR | SDMA_DESC_CMDSTAT_OR))) { pi->port.icount.rx++; if (cmdstat & SDMA_DESC_CMDSTAT_BR) { /* Break */ pi->port.icount.brk++; if (uart_handle_break(&pi->port)) goto next_frame; } else if (cmdstat & SDMA_DESC_CMDSTAT_FR) { pi->port.icount.frame++; } else if (cmdstat & SDMA_DESC_CMDSTAT_OR) { pi->port.icount.overrun++; } cmdstat &= pi->port.read_status_mask; if (cmdstat & SDMA_DESC_CMDSTAT_BR) flag = TTY_BREAK; else if (cmdstat & SDMA_DESC_CMDSTAT_FR) flag = TTY_FRAME; else if (cmdstat & SDMA_DESC_CMDSTAT_OR) flag = TTY_OVERRUN; else if (cmdstat & SDMA_DESC_CMDSTAT_PE) flag = TTY_PARITY; } if (uart_handle_sysrq_char(&pi->port, *bp)) { bp++; bytes_in--; #ifdef CONFIG_CONSOLE_POLL if (unlikely(serial_polled)) { serial_polled = 0; return 0; } #endif goto next_frame; } if ((unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR | SDMA_DESC_CMDSTAT_FR | SDMA_DESC_CMDSTAT_OR))) && !(cmdstat & pi->port.ignore_status_mask)) { tty_insert_flip_char(tty, *bp, flag); } else { for (i=0; i<bytes_in; i++) tty_insert_flip_char(tty, *bp++, TTY_NORMAL); pi->port.icount.rx += bytes_in; } next_frame: rxre->bytecnt = cpu_to_be16(0); wmb(); rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O | SDMA_DESC_CMDSTAT_EI | SDMA_DESC_CMDSTAT_F | SDMA_DESC_CMDSTAT_L); wmb(); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif /* Advance to next descriptor */ pi->rxr_posn = (pi->rxr_posn + 1) & (MPSC_RXR_ENTRIES - 1); rxre = (struct mpsc_rx_desc *) (pi->rxr + (pi->rxr_posn * MPSC_RXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif rc = 1; } /* Restart rx engine, if its stopped */ if ((readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_ERD) == 0) mpsc_start_rx(pi); tty_flip_buffer_push(tty); return rc; } static void mpsc_setup_tx_desc(struct mpsc_port_info *pi, u32 count, u32 intr) { struct mpsc_tx_desc *txre; txre = (struct mpsc_tx_desc *)(pi->txr + (pi->txr_head * MPSC_TXRE_SIZE)); txre->bytecnt = cpu_to_be16(count); txre->shadow = txre->bytecnt; wmb(); /* ensure cmdstat is last field updated */ txre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O | SDMA_DESC_CMDSTAT_F | SDMA_DESC_CMDSTAT_L | ((intr) ? SDMA_DESC_CMDSTAT_EI : 0)); wmb(); dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)txre, (ulong)txre + MPSC_TXRE_SIZE); #endif } static void mpsc_copy_tx_data(struct mpsc_port_info *pi) { struct circ_buf *xmit = &pi->port.state->xmit; u8 *bp; u32 i; /* Make sure the desc ring isn't full */ while (CIRC_CNT(pi->txr_head, pi->txr_tail, MPSC_TXR_ENTRIES) < (MPSC_TXR_ENTRIES - 1)) { if (pi->port.x_char) { /* * Ideally, we should use the TCS field in * CHR_1 to put the x_char out immediately but * errata prevents us from being able to read * CHR_2 to know that its safe to write to * CHR_1. Instead, just put it in-band with * all the other Tx data. */ bp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE); *bp = pi->port.x_char; pi->port.x_char = 0; i = 1; } else if (!uart_circ_empty(xmit) && !uart_tx_stopped(&pi->port)) { i = min((u32)MPSC_TXBE_SIZE, (u32)uart_circ_chars_pending(xmit)); i = min(i, (u32)CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); bp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE); memcpy(bp, &xmit->buf[xmit->tail], i); xmit->tail = (xmit->tail + i) & (UART_XMIT_SIZE - 1); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&pi->port); } else { /* All tx data copied into ring bufs */ return; } dma_cache_sync(pi->port.dev, (void *)bp, MPSC_TXBE_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)bp, (ulong)bp + MPSC_TXBE_SIZE); #endif mpsc_setup_tx_desc(pi, i, 1); /* Advance to next descriptor */ pi->txr_head = (pi->txr_head + 1) & (MPSC_TXR_ENTRIES - 1); } } static int mpsc_tx_intr(struct mpsc_port_info *pi) { struct mpsc_tx_desc *txre; int rc = 0; unsigned long iflags; spin_lock_irqsave(&pi->tx_lock, iflags); if (!mpsc_sdma_tx_active(pi)) { txre = (struct mpsc_tx_desc *)(pi->txr + (pi->txr_tail * MPSC_TXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)txre, (ulong)txre + MPSC_TXRE_SIZE); #endif while (!(be32_to_cpu(txre->cmdstat) & SDMA_DESC_CMDSTAT_O)) { rc = 1; pi->port.icount.tx += be16_to_cpu(txre->bytecnt); pi->txr_tail = (pi->txr_tail+1) & (MPSC_TXR_ENTRIES-1); /* If no more data to tx, fall out of loop */ if (pi->txr_head == pi->txr_tail) break; txre = (struct mpsc_tx_desc *)(pi->txr + (pi->txr_tail * MPSC_TXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)txre, (ulong)txre + MPSC_TXRE_SIZE); #endif } mpsc_copy_tx_data(pi); mpsc_sdma_start_tx(pi); /* start next desc if ready */ } spin_unlock_irqrestore(&pi->tx_lock, iflags); return rc; } /* * This is the driver's interrupt handler. To avoid a race, we first clear * the interrupt, then handle any completed Rx/Tx descriptors. When done * handling those descriptors, we restart the Rx/Tx engines if they're stopped. */ static irqreturn_t mpsc_sdma_intr(int irq, void *dev_id) { struct mpsc_port_info *pi = dev_id; ulong iflags; int rc = IRQ_NONE; pr_debug("mpsc_sdma_intr[%d]: SDMA Interrupt Received\n",pi->port.line); spin_lock_irqsave(&pi->port.lock, iflags); mpsc_sdma_intr_ack(pi); if (mpsc_rx_intr(pi)) rc = IRQ_HANDLED; if (mpsc_tx_intr(pi)) rc = IRQ_HANDLED; spin_unlock_irqrestore(&pi->port.lock, iflags); pr_debug("mpsc_sdma_intr[%d]: SDMA Interrupt Handled\n", pi->port.line); return rc; } /* ****************************************************************************** * * serial_core.c Interface routines * ****************************************************************************** */ static uint mpsc_tx_empty(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; ulong iflags; uint rc; spin_lock_irqsave(&pi->port.lock, iflags); rc = mpsc_sdma_tx_active(pi) ? 0 : TIOCSER_TEMT; spin_unlock_irqrestore(&pi->port.lock, iflags); return rc; } static void mpsc_set_mctrl(struct uart_port *port, uint mctrl) { /* Have no way to set modem control lines AFAICT */ } static uint mpsc_get_mctrl(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; u32 mflags, status; status = (pi->mirror_regs) ? pi->MPSC_CHR_10_m : readl(pi->mpsc_base + MPSC_CHR_10); mflags = 0; if (status & 0x1) mflags |= TIOCM_CTS; if (status & 0x2) mflags |= TIOCM_CAR; return mflags | TIOCM_DSR; /* No way to tell if DSR asserted */ } static void mpsc_stop_tx(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; pr_debug("mpsc_stop_tx[%d]\n", port->line); mpsc_freeze(pi); } static void mpsc_start_tx(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; unsigned long iflags; spin_lock_irqsave(&pi->tx_lock, iflags); mpsc_unfreeze(pi); mpsc_copy_tx_data(pi); mpsc_sdma_start_tx(pi); spin_unlock_irqrestore(&pi->tx_lock, iflags); pr_debug("mpsc_start_tx[%d]\n", port->line); } static void mpsc_start_rx(struct mpsc_port_info *pi) { pr_debug("mpsc_start_rx[%d]: Starting...\n", pi->port.line); if (pi->rcv_data) { mpsc_enter_hunt(pi); mpsc_sdma_cmd(pi, SDMA_SDCM_ERD); } } static void mpsc_stop_rx(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; pr_debug("mpsc_stop_rx[%d]: Stopping...\n", port->line); if (pi->mirror_regs) { writel(pi->MPSC_CHR_2_m | MPSC_CHR_2_RA, pi->mpsc_base + MPSC_CHR_2); /* Erratum prevents reading CHR_2 so just delay for a while */ udelay(100); } else { writel(readl(pi->mpsc_base + MPSC_CHR_2) | MPSC_CHR_2_RA, pi->mpsc_base + MPSC_CHR_2); while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_RA) udelay(10); } mpsc_sdma_cmd(pi, SDMA_SDCM_AR); } static void mpsc_enable_ms(struct uart_port *port) { } static void mpsc_break_ctl(struct uart_port *port, int ctl) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; ulong flags; u32 v; v = ctl ? 0x00ff0000 : 0; spin_lock_irqsave(&pi->port.lock, flags); if (pi->mirror_regs) pi->MPSC_CHR_1_m = v; writel(v, pi->mpsc_base + MPSC_CHR_1); spin_unlock_irqrestore(&pi->port.lock, flags); } static int mpsc_startup(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; u32 flag = 0; int rc; pr_debug("mpsc_startup[%d]: Starting up MPSC, irq: %d\n", port->line, pi->port.irq); if ((rc = mpsc_make_ready(pi)) == 0) { /* Setup IRQ handler */ mpsc_sdma_intr_ack(pi); /* If irq's are shared, need to set flag */ if (mpsc_ports[0].port.irq == mpsc_ports[1].port.irq) flag = IRQF_SHARED; if (request_irq(pi->port.irq, mpsc_sdma_intr, flag, "mpsc-sdma", pi)) printk(KERN_ERR "MPSC: Can't get SDMA IRQ %d\n", pi->port.irq); mpsc_sdma_intr_unmask(pi, 0xf); mpsc_sdma_set_rx_ring(pi, (struct mpsc_rx_desc *)(pi->rxr_p + (pi->rxr_posn * MPSC_RXRE_SIZE))); } return rc; } static void mpsc_shutdown(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; pr_debug("mpsc_shutdown[%d]: Shutting down MPSC\n", port->line); mpsc_sdma_stop(pi); free_irq(pi->port.irq, pi); } static void mpsc_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; u32 baud; ulong flags; u32 chr_bits, stop_bits, par; pi->c_iflag = termios->c_iflag; pi->c_cflag = termios->c_cflag; switch (termios->c_cflag & CSIZE) { case CS5: chr_bits = MPSC_MPCR_CL_5; break; case CS6: chr_bits = MPSC_MPCR_CL_6; break; case CS7: chr_bits = MPSC_MPCR_CL_7; break; case CS8: default: chr_bits = MPSC_MPCR_CL_8; break; } if (termios->c_cflag & CSTOPB) stop_bits = MPSC_MPCR_SBL_2; else stop_bits = MPSC_MPCR_SBL_1; par = MPSC_CHR_2_PAR_EVEN; if (termios->c_cflag & PARENB) if (termios->c_cflag & PARODD) par = MPSC_CHR_2_PAR_ODD; #ifdef CMSPAR if (termios->c_cflag & CMSPAR) { if (termios->c_cflag & PARODD) par = MPSC_CHR_2_PAR_MARK; else par = MPSC_CHR_2_PAR_SPACE; } #endif baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk); spin_lock_irqsave(&pi->port.lock, flags); uart_update_timeout(port, termios->c_cflag, baud); mpsc_set_char_length(pi, chr_bits); mpsc_set_stop_bit_length(pi, stop_bits); mpsc_set_parity(pi, par); mpsc_set_baudrate(pi, baud); /* Characters/events to read */ pi->port.read_status_mask = SDMA_DESC_CMDSTAT_OR; if (termios->c_iflag & INPCK) pi->port.read_status_mask |= SDMA_DESC_CMDSTAT_PE | SDMA_DESC_CMDSTAT_FR; if (termios->c_iflag & (BRKINT | PARMRK)) pi->port.read_status_mask |= SDMA_DESC_CMDSTAT_BR; /* Characters/events to ignore */ pi->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_PE | SDMA_DESC_CMDSTAT_FR; if (termios->c_iflag & IGNBRK) { pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_BR; if (termios->c_iflag & IGNPAR) pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_OR; } if ((termios->c_cflag & CREAD)) { if (!pi->rcv_data) { pi->rcv_data = 1; mpsc_start_rx(pi); } } else if (pi->rcv_data) { mpsc_stop_rx(port); pi->rcv_data = 0; } spin_unlock_irqrestore(&pi->port.lock, flags); } static const char *mpsc_type(struct uart_port *port) { pr_debug("mpsc_type[%d]: port type: %s\n", port->line,MPSC_DRIVER_NAME); return MPSC_DRIVER_NAME; } static int mpsc_request_port(struct uart_port *port) { /* Should make chip/platform specific call */ return 0; } static void mpsc_release_port(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; if (pi->ready) { mpsc_uninit_rings(pi); mpsc_free_ring_mem(pi); pi->ready = 0; } } static void mpsc_config_port(struct uart_port *port, int flags) { } static int mpsc_verify_port(struct uart_port *port, struct serial_struct *ser) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; int rc = 0; pr_debug("mpsc_verify_port[%d]: Verifying port data\n", pi->port.line); if (ser->type != PORT_UNKNOWN && ser->type != PORT_MPSC) rc = -EINVAL; else if (pi->port.irq != ser->irq) rc = -EINVAL; else if (ser->io_type != SERIAL_IO_MEM) rc = -EINVAL; else if (pi->port.uartclk / 16 != ser->baud_base) /* Not sure */ rc = -EINVAL; else if ((void *)pi->port.mapbase != ser->iomem_base) rc = -EINVAL; else if (pi->port.iobase != ser->port) rc = -EINVAL; else if (ser->hub6 != 0) rc = -EINVAL; return rc; } #ifdef CONFIG_CONSOLE_POLL /* Serial polling routines for writing and reading from the uart while * in an interrupt or debug context. */ static char poll_buf[2048]; static int poll_ptr; static int poll_cnt; static void mpsc_put_poll_char(struct uart_port *port, unsigned char c); static int mpsc_get_poll_char(struct uart_port *port) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; struct mpsc_rx_desc *rxre; u32 cmdstat, bytes_in, i; u8 *bp; if (!serial_polled) serial_polled = 1; pr_debug("mpsc_rx_intr[%d]: Handling Rx intr\n", pi->port.line); if (poll_cnt) { poll_cnt--; return poll_buf[poll_ptr++]; } poll_ptr = 0; poll_cnt = 0; while (poll_cnt == 0) { rxre = (struct mpsc_rx_desc *)(pi->rxr + (pi->rxr_posn*MPSC_RXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif /* * Loop through Rx descriptors handling ones that have * been completed. */ while (poll_cnt == 0 && !((cmdstat = be32_to_cpu(rxre->cmdstat)) & SDMA_DESC_CMDSTAT_O)){ bytes_in = be16_to_cpu(rxre->bytecnt); bp = pi->rxb + (pi->rxr_posn * MPSC_RXBE_SIZE); dma_cache_sync(pi->port.dev, (void *) bp, MPSC_RXBE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)bp, (ulong)bp + MPSC_RXBE_SIZE); #endif if ((unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR | SDMA_DESC_CMDSTAT_FR | SDMA_DESC_CMDSTAT_OR))) && !(cmdstat & pi->port.ignore_status_mask)) { poll_buf[poll_cnt] = *bp; poll_cnt++; } else { for (i = 0; i < bytes_in; i++) { poll_buf[poll_cnt] = *bp++; poll_cnt++; } pi->port.icount.rx += bytes_in; } rxre->bytecnt = cpu_to_be16(0); wmb(); rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O | SDMA_DESC_CMDSTAT_EI | SDMA_DESC_CMDSTAT_F | SDMA_DESC_CMDSTAT_L); wmb(); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif /* Advance to next descriptor */ pi->rxr_posn = (pi->rxr_posn + 1) & (MPSC_RXR_ENTRIES - 1); rxre = (struct mpsc_rx_desc *)(pi->rxr + (pi->rxr_posn * MPSC_RXRE_SIZE)); dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE, DMA_FROM_DEVICE); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ invalidate_dcache_range((ulong)rxre, (ulong)rxre + MPSC_RXRE_SIZE); #endif } /* Restart rx engine, if its stopped */ if ((readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_ERD) == 0) mpsc_start_rx(pi); } if (poll_cnt) { poll_cnt--; return poll_buf[poll_ptr++]; } return 0; } static void mpsc_put_poll_char(struct uart_port *port, unsigned char c) { struct mpsc_port_info *pi = (struct mpsc_port_info *)port; u32 data; data = readl(pi->mpsc_base + MPSC_MPCR); writeb(c, pi->mpsc_base + MPSC_CHR_1); mb(); data = readl(pi->mpsc_base + MPSC_CHR_2); data |= MPSC_CHR_2_TTCS; writel(data, pi->mpsc_base + MPSC_CHR_2); mb(); while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_TTCS); } #endif static struct uart_ops mpsc_pops = { .tx_empty = mpsc_tx_empty, .set_mctrl = mpsc_set_mctrl, .get_mctrl = mpsc_get_mctrl, .stop_tx = mpsc_stop_tx, .start_tx = mpsc_start_tx, .stop_rx = mpsc_stop_rx, .enable_ms = mpsc_enable_ms, .break_ctl = mpsc_break_ctl, .startup = mpsc_startup, .shutdown = mpsc_shutdown, .set_termios = mpsc_set_termios, .type = mpsc_type, .release_port = mpsc_release_port, .request_port = mpsc_request_port, .config_port = mpsc_config_port, .verify_port = mpsc_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = mpsc_get_poll_char, .poll_put_char = mpsc_put_poll_char, #endif }; /* ****************************************************************************** * * Console Interface Routines * ****************************************************************************** */ #ifdef CONFIG_SERIAL_MPSC_CONSOLE static void mpsc_console_write(struct console *co, const char *s, uint count) { struct mpsc_port_info *pi = &mpsc_ports[co->index]; u8 *bp, *dp, add_cr = 0; int i; unsigned long iflags; spin_lock_irqsave(&pi->tx_lock, iflags); while (pi->txr_head != pi->txr_tail) { while (mpsc_sdma_tx_active(pi)) udelay(100); mpsc_sdma_intr_ack(pi); mpsc_tx_intr(pi); } while (mpsc_sdma_tx_active(pi)) udelay(100); while (count > 0) { bp = dp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE); for (i = 0; i < MPSC_TXBE_SIZE; i++) { if (count == 0) break; if (add_cr) { *(dp++) = '\r'; add_cr = 0; } else { *(dp++) = *s; if (*(s++) == '\n') { /* add '\r' after '\n' */ add_cr = 1; count++; } } count--; } dma_cache_sync(pi->port.dev, (void *)bp, MPSC_TXBE_SIZE, DMA_BIDIRECTIONAL); #if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE) if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */ flush_dcache_range((ulong)bp, (ulong)bp + MPSC_TXBE_SIZE); #endif mpsc_setup_tx_desc(pi, i, 0); pi->txr_head = (pi->txr_head + 1) & (MPSC_TXR_ENTRIES - 1); mpsc_sdma_start_tx(pi); while (mpsc_sdma_tx_active(pi)) udelay(100); pi->txr_tail = (pi->txr_tail + 1) & (MPSC_TXR_ENTRIES - 1); } spin_unlock_irqrestore(&pi->tx_lock, iflags); } static int __init mpsc_console_setup(struct console *co, char *options) { struct mpsc_port_info *pi; int baud, bits, parity, flow; pr_debug("mpsc_console_setup[%d]: options: %s\n", co->index, options); if (co->index >= MPSC_NUM_CTLRS) co->index = 0; pi = &mpsc_ports[co->index]; baud = pi->default_baud; bits = pi->default_bits; parity = pi->default_parity; flow = pi->default_flow; if (!pi->port.ops) return -ENODEV; spin_lock_init(&pi->port.lock); /* Temporary fix--copied from 8250.c */ if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(&pi->port, co, baud, parity, bits, flow); } static struct console mpsc_console = { .name = MPSC_DEV_NAME, .write = mpsc_console_write, .device = uart_console_device, .setup = mpsc_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &mpsc_reg, }; static int __init mpsc_late_console_init(void) { pr_debug("mpsc_late_console_init: Enter\n"); if (!(mpsc_console.flags & CON_ENABLED)) register_console(&mpsc_console); return 0; } late_initcall(mpsc_late_console_init); #define MPSC_CONSOLE &mpsc_console #else #define MPSC_CONSOLE NULL #endif /* ****************************************************************************** * * Dummy Platform Driver to extract & map shared register regions * ****************************************************************************** */ static void mpsc_resource_err(char *s) { printk(KERN_WARNING "MPSC: Platform device resource error in %s\n", s); } static int mpsc_shared_map_regs(struct platform_device *pd) { struct resource *r; if ((r = platform_get_resource(pd, IORESOURCE_MEM, MPSC_ROUTING_BASE_ORDER)) && request_mem_region(r->start, MPSC_ROUTING_REG_BLOCK_SIZE, "mpsc_routing_regs")) { mpsc_shared_regs.mpsc_routing_base = ioremap(r->start, MPSC_ROUTING_REG_BLOCK_SIZE); mpsc_shared_regs.mpsc_routing_base_p = r->start; } else { mpsc_resource_err("MPSC routing base"); return -ENOMEM; } if ((r = platform_get_resource(pd, IORESOURCE_MEM, MPSC_SDMA_INTR_BASE_ORDER)) && request_mem_region(r->start, MPSC_SDMA_INTR_REG_BLOCK_SIZE, "sdma_intr_regs")) { mpsc_shared_regs.sdma_intr_base = ioremap(r->start, MPSC_SDMA_INTR_REG_BLOCK_SIZE); mpsc_shared_regs.sdma_intr_base_p = r->start; } else { iounmap(mpsc_shared_regs.mpsc_routing_base); release_mem_region(mpsc_shared_regs.mpsc_routing_base_p, MPSC_ROUTING_REG_BLOCK_SIZE); mpsc_resource_err("SDMA intr base"); return -ENOMEM; } return 0; } static void mpsc_shared_unmap_regs(void) { if (!mpsc_shared_regs.mpsc_routing_base) { iounmap(mpsc_shared_regs.mpsc_routing_base); release_mem_region(mpsc_shared_regs.mpsc_routing_base_p, MPSC_ROUTING_REG_BLOCK_SIZE); } if (!mpsc_shared_regs.sdma_intr_base) { iounmap(mpsc_shared_regs.sdma_intr_base); release_mem_region(mpsc_shared_regs.sdma_intr_base_p, MPSC_SDMA_INTR_REG_BLOCK_SIZE); } mpsc_shared_regs.mpsc_routing_base = NULL; mpsc_shared_regs.sdma_intr_base = NULL; mpsc_shared_regs.mpsc_routing_base_p = 0; mpsc_shared_regs.sdma_intr_base_p = 0; } static int mpsc_shared_drv_probe(struct platform_device *dev) { struct mpsc_shared_pdata *pdata; int rc = -ENODEV; if (dev->id == 0) { if (!(rc = mpsc_shared_map_regs(dev))) { pdata = (struct mpsc_shared_pdata *) dev->dev.platform_data; mpsc_shared_regs.MPSC_MRR_m = pdata->mrr_val; mpsc_shared_regs.MPSC_RCRR_m= pdata->rcrr_val; mpsc_shared_regs.MPSC_TCRR_m= pdata->tcrr_val; mpsc_shared_regs.SDMA_INTR_CAUSE_m = pdata->intr_cause_val; mpsc_shared_regs.SDMA_INTR_MASK_m = pdata->intr_mask_val; rc = 0; } } return rc; } static int mpsc_shared_drv_remove(struct platform_device *dev) { int rc = -ENODEV; if (dev->id == 0) { mpsc_shared_unmap_regs(); mpsc_shared_regs.MPSC_MRR_m = 0; mpsc_shared_regs.MPSC_RCRR_m = 0; mpsc_shared_regs.MPSC_TCRR_m = 0; mpsc_shared_regs.SDMA_INTR_CAUSE_m = 0; mpsc_shared_regs.SDMA_INTR_MASK_m = 0; rc = 0; } return rc; } static struct platform_driver mpsc_shared_driver = { .probe = mpsc_shared_drv_probe, .remove = mpsc_shared_drv_remove, .driver = { .name = MPSC_SHARED_NAME, }, }; /* ****************************************************************************** * * Driver Interface Routines * ****************************************************************************** */ static struct uart_driver mpsc_reg = { .owner = THIS_MODULE, .driver_name = MPSC_DRIVER_NAME, .dev_name = MPSC_DEV_NAME, .major = MPSC_MAJOR, .minor = MPSC_MINOR_START, .nr = MPSC_NUM_CTLRS, .cons = MPSC_CONSOLE, }; static int mpsc_drv_map_regs(struct mpsc_port_info *pi, struct platform_device *pd) { struct resource *r; if ((r = platform_get_resource(pd, IORESOURCE_MEM, MPSC_BASE_ORDER)) && request_mem_region(r->start, MPSC_REG_BLOCK_SIZE, "mpsc_regs")) { pi->mpsc_base = ioremap(r->start, MPSC_REG_BLOCK_SIZE); pi->mpsc_base_p = r->start; } else { mpsc_resource_err("MPSC base"); goto err; } if ((r = platform_get_resource(pd, IORESOURCE_MEM, MPSC_SDMA_BASE_ORDER)) && request_mem_region(r->start, MPSC_SDMA_REG_BLOCK_SIZE, "sdma_regs")) { pi->sdma_base = ioremap(r->start,MPSC_SDMA_REG_BLOCK_SIZE); pi->sdma_base_p = r->start; } else { mpsc_resource_err("SDMA base"); if (pi->mpsc_base) { iounmap(pi->mpsc_base); pi->mpsc_base = NULL; } goto err; } if ((r = platform_get_resource(pd,IORESOURCE_MEM,MPSC_BRG_BASE_ORDER)) && request_mem_region(r->start, MPSC_BRG_REG_BLOCK_SIZE, "brg_regs")) { pi->brg_base = ioremap(r->start, MPSC_BRG_REG_BLOCK_SIZE); pi->brg_base_p = r->start; } else { mpsc_resource_err("BRG base"); if (pi->mpsc_base) { iounmap(pi->mpsc_base); pi->mpsc_base = NULL; } if (pi->sdma_base) { iounmap(pi->sdma_base); pi->sdma_base = NULL; } goto err; } return 0; err: return -ENOMEM; } static void mpsc_drv_unmap_regs(struct mpsc_port_info *pi) { if (!pi->mpsc_base) { iounmap(pi->mpsc_base); release_mem_region(pi->mpsc_base_p, MPSC_REG_BLOCK_SIZE); } if (!pi->sdma_base) { iounmap(pi->sdma_base); release_mem_region(pi->sdma_base_p, MPSC_SDMA_REG_BLOCK_SIZE); } if (!pi->brg_base) { iounmap(pi->brg_base); release_mem_region(pi->brg_base_p, MPSC_BRG_REG_BLOCK_SIZE); } pi->mpsc_base = NULL; pi->sdma_base = NULL; pi->brg_base = NULL; pi->mpsc_base_p = 0; pi->sdma_base_p = 0; pi->brg_base_p = 0; } static void mpsc_drv_get_platform_data(struct mpsc_port_info *pi, struct platform_device *pd, int num) { struct mpsc_pdata *pdata; pdata = (struct mpsc_pdata *)pd->dev.platform_data; pi->port.uartclk = pdata->brg_clk_freq; pi->port.iotype = UPIO_MEM; pi->port.line = num; pi->port.type = PORT_MPSC; pi->port.fifosize = MPSC_TXBE_SIZE; pi->port.membase = pi->mpsc_base; pi->port.mapbase = (ulong)pi->mpsc_base; pi->port.ops = &mpsc_pops; pi->mirror_regs = pdata->mirror_regs; pi->cache_mgmt = pdata->cache_mgmt; pi->brg_can_tune = pdata->brg_can_tune; pi->brg_clk_src = pdata->brg_clk_src; pi->mpsc_max_idle = pdata->max_idle; pi->default_baud = pdata->default_baud; pi->default_bits = pdata->default_bits; pi->default_parity = pdata->default_parity; pi->default_flow = pdata->default_flow; /* Initial values of mirrored regs */ pi->MPSC_CHR_1_m = pdata->chr_1_val; pi->MPSC_CHR_2_m = pdata->chr_2_val; pi->MPSC_CHR_10_m = pdata->chr_10_val; pi->MPSC_MPCR_m = pdata->mpcr_val; pi->BRG_BCR_m = pdata->bcr_val; pi->shared_regs = &mpsc_shared_regs; pi->port.irq = platform_get_irq(pd, 0); } static int mpsc_drv_probe(struct platform_device *dev) { struct mpsc_port_info *pi; int rc = -ENODEV; pr_debug("mpsc_drv_probe: Adding MPSC %d\n", dev->id); if (dev->id < MPSC_NUM_CTLRS) { pi = &mpsc_ports[dev->id]; if (!(rc = mpsc_drv_map_regs(pi, dev))) { mpsc_drv_get_platform_data(pi, dev, dev->id); pi->port.dev = &dev->dev; if (!(rc = mpsc_make_ready(pi))) { spin_lock_init(&pi->tx_lock); if (!(rc = uart_add_one_port(&mpsc_reg, &pi->port))) { rc = 0; } else { mpsc_release_port((struct uart_port *) pi); mpsc_drv_unmap_regs(pi); } } else { mpsc_drv_unmap_regs(pi); } } } return rc; } static int mpsc_drv_remove(struct platform_device *dev) { pr_debug("mpsc_drv_exit: Removing MPSC %d\n", dev->id); if (dev->id < MPSC_NUM_CTLRS) { uart_remove_one_port(&mpsc_reg, &mpsc_ports[dev->id].port); mpsc_release_port((struct uart_port *) &mpsc_ports[dev->id].port); mpsc_drv_unmap_regs(&mpsc_ports[dev->id]); return 0; } else { return -ENODEV; } } static struct platform_driver mpsc_driver = { .probe = mpsc_drv_probe, .remove = mpsc_drv_remove, .driver = { .name = MPSC_CTLR_NAME, .owner = THIS_MODULE, }, }; static int __init mpsc_drv_init(void) { int rc; printk(KERN_INFO "Serial: MPSC driver\n"); memset(mpsc_ports, 0, sizeof(mpsc_ports)); memset(&mpsc_shared_regs, 0, sizeof(mpsc_shared_regs)); if (!(rc = uart_register_driver(&mpsc_reg))) { if (!(rc = platform_driver_register(&mpsc_shared_driver))) { if ((rc = platform_driver_register(&mpsc_driver))) { platform_driver_unregister(&mpsc_shared_driver); uart_unregister_driver(&mpsc_reg); } } else { uart_unregister_driver(&mpsc_reg); } } return rc; } static void __exit mpsc_drv_exit(void) { platform_driver_unregister(&mpsc_driver); platform_driver_unregister(&mpsc_shared_driver); uart_unregister_driver(&mpsc_reg); memset(mpsc_ports, 0, sizeof(mpsc_ports)); memset(&mpsc_shared_regs, 0, sizeof(mpsc_shared_regs)); } module_init(mpsc_drv_init); module_exit(mpsc_drv_exit); MODULE_AUTHOR("Mark A. Greer <mgreer@mvista.com>"); MODULE_DESCRIPTION("Generic Marvell MPSC serial/UART driver"); MODULE_VERSION(MPSC_VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_CHARDEV_MAJOR(MPSC_MAJOR); MODULE_ALIAS("platform:" MPSC_CTLR_NAME);