// SPDX-License-Identifier: GPL-2.0 /* * Thermal sensor driver for Allwinner SOC * Copyright (C) 2019 Yangtao Li * * Based on the work of Icenowy Zheng <icenowy@aosc.io> * Based on the work of Ondrej Jirman <megous@megous.com> * Based on the work of Josef Gajdusek <atx@atx.name> */ #include <linux/bitmap.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/thermal.h> #include "thermal_hwmon.h" #define MAX_SENSOR_NUM 4 #define FT_TEMP_MASK GENMASK(11, 0) #define TEMP_CALIB_MASK GENMASK(11, 0) #define CALIBRATE_DEFAULT 0x800 #define SUN8I_THS_CTRL0 0x00 #define SUN8I_THS_CTRL2 0x40 #define SUN8I_THS_IC 0x44 #define SUN8I_THS_IS 0x48 #define SUN8I_THS_MFC 0x70 #define SUN8I_THS_TEMP_CALIB 0x74 #define SUN8I_THS_TEMP_DATA 0x80 #define SUN50I_THS_CTRL0 0x00 #define SUN50I_H6_THS_ENABLE 0x04 #define SUN50I_H6_THS_PC 0x08 #define SUN50I_H6_THS_DIC 0x10 #define SUN50I_H6_THS_DIS 0x20 #define SUN50I_H6_THS_MFC 0x30 #define SUN50I_H6_THS_TEMP_CALIB 0xa0 #define SUN50I_H6_THS_TEMP_DATA 0xc0 #define SUN8I_THS_CTRL0_T_ACQ0(x) (GENMASK(15, 0) & (x)) #define SUN8I_THS_CTRL2_T_ACQ1(x) ((GENMASK(15, 0) & (x)) << 16) #define SUN8I_THS_DATA_IRQ_STS(x) BIT(x + 8) #define SUN50I_THS_CTRL0_T_ACQ(x) (GENMASK(15, 0) & ((x) - 1)) #define SUN50I_THS_CTRL0_T_SAMPLE_PER(x) ((GENMASK(15, 0) & ((x) - 1)) << 16) #define SUN50I_THS_FILTER_EN BIT(2) #define SUN50I_THS_FILTER_TYPE(x) (GENMASK(1, 0) & (x)) #define SUN50I_H6_THS_PC_TEMP_PERIOD(x) ((GENMASK(19, 0) & (x)) << 12) #define SUN50I_H6_THS_DATA_IRQ_STS(x) BIT(x) struct tsensor { struct ths_device *tmdev; struct thermal_zone_device *tzd; int id; }; struct ths_thermal_chip { bool has_mod_clk; bool has_bus_clk_reset; bool needs_sram; int sensor_num; int offset; int scale; int ft_deviation; int temp_data_base; int (*calibrate)(struct ths_device *tmdev, u16 *caldata, int callen); int (*init)(struct ths_device *tmdev); unsigned long (*irq_ack)(struct ths_device *tmdev); int (*calc_temp)(struct ths_device *tmdev, int id, int reg); }; struct ths_device { const struct ths_thermal_chip *chip; struct device *dev; struct regmap *regmap; struct regmap_field *sram_regmap_field; struct reset_control *reset; struct clk *bus_clk; struct clk *mod_clk; struct tsensor sensor[MAX_SENSOR_NUM]; }; /* The H616 needs to have a bit 16 in the SRAM control register cleared. */ static const struct reg_field sun8i_ths_sram_reg_field = REG_FIELD(0x0, 16, 16); /* Temp Unit: millidegree Celsius */ static int sun8i_ths_calc_temp(struct ths_device *tmdev, int id, int reg) { return tmdev->chip->offset - (reg * tmdev->chip->scale / 10); } static int sun50i_h5_calc_temp(struct ths_device *tmdev, int id, int reg) { if (reg >= 0x500) return -1191 * reg / 10 + 223000; else if (!id) return -1452 * reg / 10 + 259000; else return -1590 * reg / 10 + 276000; } static int sun8i_ths_get_temp(struct thermal_zone_device *tz, int *temp) { struct tsensor *s = thermal_zone_device_priv(tz); struct ths_device *tmdev = s->tmdev; int val = 0; regmap_read(tmdev->regmap, tmdev->chip->temp_data_base + 0x4 * s->id, &val); /* ths have no data yet */ if (!val) return -EAGAIN; *temp = tmdev->chip->calc_temp(tmdev, s->id, val); /* * According to the original sdk, there are some platforms(rarely) * that add a fixed offset value after calculating the temperature * value. We can't simply put it on the formula for calculating the * temperature above, because the formula for calculating the * temperature above is also used when the sensor is calibrated. If * do this, the correct calibration formula is hard to know. */ *temp += tmdev->chip->ft_deviation; return 0; } static const struct thermal_zone_device_ops ths_ops = { .get_temp = sun8i_ths_get_temp, }; static const struct regmap_config config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .fast_io = true, .max_register = 0xfc, }; static unsigned long sun8i_h3_irq_ack(struct ths_device *tmdev) { unsigned long irq_bitmap = 0; int i, state; regmap_read(tmdev->regmap, SUN8I_THS_IS, &state); for (i = 0; i < tmdev->chip->sensor_num; i++) { if (state & SUN8I_THS_DATA_IRQ_STS(i)) { regmap_write(tmdev->regmap, SUN8I_THS_IS, SUN8I_THS_DATA_IRQ_STS(i)); bitmap_set(&irq_bitmap, i, 1); } } return irq_bitmap; } static unsigned long sun50i_h6_irq_ack(struct ths_device *tmdev) { unsigned long irq_bitmap = 0; int i, state; regmap_read(tmdev->regmap, SUN50I_H6_THS_DIS, &state); for (i = 0; i < tmdev->chip->sensor_num; i++) { if (state & SUN50I_H6_THS_DATA_IRQ_STS(i)) { regmap_write(tmdev->regmap, SUN50I_H6_THS_DIS, SUN50I_H6_THS_DATA_IRQ_STS(i)); bitmap_set(&irq_bitmap, i, 1); } } return irq_bitmap; } static irqreturn_t sun8i_irq_thread(int irq, void *data) { struct ths_device *tmdev = data; unsigned long irq_bitmap = tmdev->chip->irq_ack(tmdev); int i; for_each_set_bit(i, &irq_bitmap, tmdev->chip->sensor_num) { /* We allow some zones to not register. */ if (IS_ERR(tmdev->sensor[i].tzd)) continue; thermal_zone_device_update(tmdev->sensor[i].tzd, THERMAL_EVENT_UNSPECIFIED); } return IRQ_HANDLED; } static int sun8i_h3_ths_calibrate(struct ths_device *tmdev, u16 *caldata, int callen) { int i; if (!caldata[0] || callen < 2 * tmdev->chip->sensor_num) return -EINVAL; for (i = 0; i < tmdev->chip->sensor_num; i++) { int offset = (i % 2) << 4; regmap_update_bits(tmdev->regmap, SUN8I_THS_TEMP_CALIB + (4 * (i >> 1)), TEMP_CALIB_MASK << offset, caldata[i] << offset); } return 0; } static int sun50i_h6_ths_calibrate(struct ths_device *tmdev, u16 *caldata, int callen) { struct device *dev = tmdev->dev; int i, ft_temp; if (!caldata[0]) return -EINVAL; /* * efuse layout: * * 0 11 16 27 32 43 48 57 * +----------+-----------+-----------+-----------+ * | temp | |sensor0| |sensor1| |sensor2| | * +----------+-----------+-----------+-----------+ * ^ ^ ^ * | | | * | | sensor3[11:8] * | sensor3[7:4] * sensor3[3:0] * * The calibration data on the H6 is the ambient temperature and * sensor values that are filled during the factory test stage. * * The unit of stored FT temperature is 0.1 degree celsius. * * We need to calculate a delta between measured and caluclated * register values and this will become a calibration offset. */ ft_temp = (caldata[0] & FT_TEMP_MASK) * 100; for (i = 0; i < tmdev->chip->sensor_num; i++) { int sensor_reg, sensor_temp, cdata, offset; if (i == 3) sensor_reg = (caldata[1] >> 12) | ((caldata[2] >> 12) << 4) | ((caldata[3] >> 12) << 8); else sensor_reg = caldata[i + 1] & TEMP_CALIB_MASK; sensor_temp = tmdev->chip->calc_temp(tmdev, i, sensor_reg); /* * Calibration data is CALIBRATE_DEFAULT - (calculated * temperature from sensor reading at factory temperature * minus actual factory temperature) * 14.88 (scale from * temperature to register values) */ cdata = CALIBRATE_DEFAULT - ((sensor_temp - ft_temp) * 10 / tmdev->chip->scale); if (cdata & ~TEMP_CALIB_MASK) { /* * Calibration value more than 12-bit, but calibration * register is 12-bit. In this case, ths hardware can * still work without calibration, although the data * won't be so accurate. */ dev_warn(dev, "sensor%d is not calibrated.\n", i); continue; } offset = (i % 2) * 16; regmap_update_bits(tmdev->regmap, SUN50I_H6_THS_TEMP_CALIB + (i / 2 * 4), TEMP_CALIB_MASK << offset, cdata << offset); } return 0; } static int sun8i_ths_calibrate(struct ths_device *tmdev) { struct nvmem_cell *calcell; struct device *dev = tmdev->dev; u16 *caldata; size_t callen; int ret = 0; calcell = nvmem_cell_get(dev, "calibration"); if (IS_ERR(calcell)) { if (PTR_ERR(calcell) == -EPROBE_DEFER) return -EPROBE_DEFER; /* * Even if the external calibration data stored in sid is * not accessible, the THS hardware can still work, although * the data won't be so accurate. * * The default value of calibration register is 0x800 for * every sensor, and the calibration value is usually 0x7xx * or 0x8xx, so they won't be away from the default value * for a lot. * * So here we do not return error if the calibration data is * not available, except the probe needs deferring. */ goto out; } caldata = nvmem_cell_read(calcell, &callen); if (IS_ERR(caldata)) { ret = PTR_ERR(caldata); goto out; } tmdev->chip->calibrate(tmdev, caldata, callen); kfree(caldata); out: if (!IS_ERR(calcell)) nvmem_cell_put(calcell); return ret; } static void sun8i_ths_reset_control_assert(void *data) { reset_control_assert(data); } static struct regmap *sun8i_ths_get_sram_regmap(struct device_node *node) { struct device_node *sram_node; struct platform_device *sram_pdev; struct regmap *regmap = NULL; sram_node = of_parse_phandle(node, "allwinner,sram", 0); if (!sram_node) return ERR_PTR(-ENODEV); sram_pdev = of_find_device_by_node(sram_node); if (!sram_pdev) { /* platform device might not be probed yet */ regmap = ERR_PTR(-EPROBE_DEFER); goto out_put_node; } /* If no regmap is found then the other device driver is at fault */ regmap = dev_get_regmap(&sram_pdev->dev, NULL); if (!regmap) regmap = ERR_PTR(-EINVAL); platform_device_put(sram_pdev); out_put_node: of_node_put(sram_node); return regmap; } static int sun8i_ths_resource_init(struct ths_device *tmdev) { struct device *dev = tmdev->dev; struct platform_device *pdev = to_platform_device(dev); void __iomem *base; int ret; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); tmdev->regmap = devm_regmap_init_mmio(dev, base, &config); if (IS_ERR(tmdev->regmap)) return PTR_ERR(tmdev->regmap); if (tmdev->chip->has_bus_clk_reset) { tmdev->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(tmdev->reset)) return PTR_ERR(tmdev->reset); ret = reset_control_deassert(tmdev->reset); if (ret) return ret; ret = devm_add_action_or_reset(dev, sun8i_ths_reset_control_assert, tmdev->reset); if (ret) return ret; tmdev->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus"); if (IS_ERR(tmdev->bus_clk)) return PTR_ERR(tmdev->bus_clk); } if (tmdev->chip->has_mod_clk) { tmdev->mod_clk = devm_clk_get_enabled(&pdev->dev, "mod"); if (IS_ERR(tmdev->mod_clk)) return PTR_ERR(tmdev->mod_clk); } ret = clk_set_rate(tmdev->mod_clk, 24000000); if (ret) return ret; if (tmdev->chip->needs_sram) { struct regmap *regmap; regmap = sun8i_ths_get_sram_regmap(dev->of_node); if (IS_ERR(regmap)) return PTR_ERR(regmap); tmdev->sram_regmap_field = devm_regmap_field_alloc(dev, regmap, sun8i_ths_sram_reg_field); if (IS_ERR(tmdev->sram_regmap_field)) return PTR_ERR(tmdev->sram_regmap_field); } ret = sun8i_ths_calibrate(tmdev); if (ret) return ret; return 0; } static int sun8i_h3_thermal_init(struct ths_device *tmdev) { int val; /* average over 4 samples */ regmap_write(tmdev->regmap, SUN8I_THS_MFC, SUN50I_THS_FILTER_EN | SUN50I_THS_FILTER_TYPE(1)); /* * clkin = 24MHz * filter_samples = 4 * period = 0.25s * * x = period * clkin / 4096 / filter_samples - 1 * = 365 */ val = GENMASK(7 + tmdev->chip->sensor_num, 8); regmap_write(tmdev->regmap, SUN8I_THS_IC, SUN50I_H6_THS_PC_TEMP_PERIOD(365) | val); /* * T_acq = 20us * clkin = 24MHz * * x = T_acq * clkin - 1 * = 479 */ regmap_write(tmdev->regmap, SUN8I_THS_CTRL0, SUN8I_THS_CTRL0_T_ACQ0(479)); val = GENMASK(tmdev->chip->sensor_num - 1, 0); regmap_write(tmdev->regmap, SUN8I_THS_CTRL2, SUN8I_THS_CTRL2_T_ACQ1(479) | val); return 0; } static int sun50i_h6_thermal_init(struct ths_device *tmdev) { int val; /* The H616 needs to have a bit in the SRAM control register cleared. */ if (tmdev->sram_regmap_field) regmap_field_write(tmdev->sram_regmap_field, 0); /* * The manual recommends an overall sample frequency of 50 KHz (20us, * 480 cycles at 24 MHz), which provides plenty of time for both the * acquisition time (>24 cycles) and the actual conversion time * (>14 cycles). * The lower half of the CTRL register holds the "acquire time", in * clock cycles, which the manual recommends to be 2us: * 24MHz * 2us = 48 cycles. * The high half of THS_CTRL encodes the sample frequency, in clock * cycles: 24MHz * 20us = 480 cycles. * This is explained in the H616 manual, but apparently wrongly * described in the H6 manual, although the BSP code does the same * for both SoCs. */ regmap_write(tmdev->regmap, SUN50I_THS_CTRL0, SUN50I_THS_CTRL0_T_ACQ(48) | SUN50I_THS_CTRL0_T_SAMPLE_PER(480)); /* average over 4 samples */ regmap_write(tmdev->regmap, SUN50I_H6_THS_MFC, SUN50I_THS_FILTER_EN | SUN50I_THS_FILTER_TYPE(1)); /* * clkin = 24MHz * filter_samples = 4 * period = 0.25s * * x = period * clkin / 4096 / filter_samples - 1 * = 365 */ regmap_write(tmdev->regmap, SUN50I_H6_THS_PC, SUN50I_H6_THS_PC_TEMP_PERIOD(365)); /* enable sensor */ val = GENMASK(tmdev->chip->sensor_num - 1, 0); regmap_write(tmdev->regmap, SUN50I_H6_THS_ENABLE, val); /* thermal data interrupt enable */ val = GENMASK(tmdev->chip->sensor_num - 1, 0); regmap_write(tmdev->regmap, SUN50I_H6_THS_DIC, val); return 0; } static int sun8i_ths_register(struct ths_device *tmdev) { int i; for (i = 0; i < tmdev->chip->sensor_num; i++) { tmdev->sensor[i].tmdev = tmdev; tmdev->sensor[i].id = i; tmdev->sensor[i].tzd = devm_thermal_of_zone_register(tmdev->dev, i, &tmdev->sensor[i], &ths_ops); /* * If an individual zone fails to register for reasons * other than probe deferral (eg, a bad DT) then carry * on, other zones might register successfully. */ if (IS_ERR(tmdev->sensor[i].tzd)) { if (PTR_ERR(tmdev->sensor[i].tzd) == -EPROBE_DEFER) return PTR_ERR(tmdev->sensor[i].tzd); continue; } devm_thermal_add_hwmon_sysfs(tmdev->dev, tmdev->sensor[i].tzd); } return 0; } static int sun8i_ths_probe(struct platform_device *pdev) { struct ths_device *tmdev; struct device *dev = &pdev->dev; int ret, irq; tmdev = devm_kzalloc(dev, sizeof(*tmdev), GFP_KERNEL); if (!tmdev) return -ENOMEM; tmdev->dev = dev; tmdev->chip = of_device_get_match_data(&pdev->dev); if (!tmdev->chip) return -EINVAL; ret = sun8i_ths_resource_init(tmdev); if (ret) return ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = tmdev->chip->init(tmdev); if (ret) return ret; ret = sun8i_ths_register(tmdev); if (ret) return ret; /* * Avoid entering the interrupt handler, the thermal device is not * registered yet, we deffer the registration of the interrupt to * the end. */ ret = devm_request_threaded_irq(dev, irq, NULL, sun8i_irq_thread, IRQF_ONESHOT, "ths", tmdev); if (ret) return ret; return 0; } static const struct ths_thermal_chip sun8i_a83t_ths = { .sensor_num = 3, .scale = 705, .offset = 191668, .temp_data_base = SUN8I_THS_TEMP_DATA, .calibrate = sun8i_h3_ths_calibrate, .init = sun8i_h3_thermal_init, .irq_ack = sun8i_h3_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun8i_h3_ths = { .sensor_num = 1, .scale = 1211, .offset = 217000, .has_mod_clk = true, .has_bus_clk_reset = true, .temp_data_base = SUN8I_THS_TEMP_DATA, .calibrate = sun8i_h3_ths_calibrate, .init = sun8i_h3_thermal_init, .irq_ack = sun8i_h3_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun8i_r40_ths = { .sensor_num = 2, .offset = 251086, .scale = 1130, .has_mod_clk = true, .has_bus_clk_reset = true, .temp_data_base = SUN8I_THS_TEMP_DATA, .calibrate = sun8i_h3_ths_calibrate, .init = sun8i_h3_thermal_init, .irq_ack = sun8i_h3_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun50i_a64_ths = { .sensor_num = 3, .offset = 260890, .scale = 1170, .has_mod_clk = true, .has_bus_clk_reset = true, .temp_data_base = SUN8I_THS_TEMP_DATA, .calibrate = sun8i_h3_ths_calibrate, .init = sun8i_h3_thermal_init, .irq_ack = sun8i_h3_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun50i_a100_ths = { .sensor_num = 3, .has_bus_clk_reset = true, .ft_deviation = 8000, .offset = 187744, .scale = 672, .temp_data_base = SUN50I_H6_THS_TEMP_DATA, .calibrate = sun50i_h6_ths_calibrate, .init = sun50i_h6_thermal_init, .irq_ack = sun50i_h6_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun50i_h5_ths = { .sensor_num = 2, .has_mod_clk = true, .has_bus_clk_reset = true, .temp_data_base = SUN8I_THS_TEMP_DATA, .calibrate = sun8i_h3_ths_calibrate, .init = sun8i_h3_thermal_init, .irq_ack = sun8i_h3_irq_ack, .calc_temp = sun50i_h5_calc_temp, }; static const struct ths_thermal_chip sun50i_h6_ths = { .sensor_num = 2, .has_bus_clk_reset = true, .ft_deviation = 7000, .offset = 187744, .scale = 672, .temp_data_base = SUN50I_H6_THS_TEMP_DATA, .calibrate = sun50i_h6_ths_calibrate, .init = sun50i_h6_thermal_init, .irq_ack = sun50i_h6_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun20i_d1_ths = { .sensor_num = 1, .has_bus_clk_reset = true, .offset = 188552, .scale = 673, .temp_data_base = SUN50I_H6_THS_TEMP_DATA, .calibrate = sun50i_h6_ths_calibrate, .init = sun50i_h6_thermal_init, .irq_ack = sun50i_h6_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct ths_thermal_chip sun50i_h616_ths = { .sensor_num = 4, .has_bus_clk_reset = true, .needs_sram = true, .ft_deviation = 8000, .offset = 263655, .scale = 810, .temp_data_base = SUN50I_H6_THS_TEMP_DATA, .calibrate = sun50i_h6_ths_calibrate, .init = sun50i_h6_thermal_init, .irq_ack = sun50i_h6_irq_ack, .calc_temp = sun8i_ths_calc_temp, }; static const struct of_device_id of_ths_match[] = { { .compatible = "allwinner,sun8i-a83t-ths", .data = &sun8i_a83t_ths }, { .compatible = "allwinner,sun8i-h3-ths", .data = &sun8i_h3_ths }, { .compatible = "allwinner,sun8i-r40-ths", .data = &sun8i_r40_ths }, { .compatible = "allwinner,sun50i-a64-ths", .data = &sun50i_a64_ths }, { .compatible = "allwinner,sun50i-a100-ths", .data = &sun50i_a100_ths }, { .compatible = "allwinner,sun50i-h5-ths", .data = &sun50i_h5_ths }, { .compatible = "allwinner,sun50i-h6-ths", .data = &sun50i_h6_ths }, { .compatible = "allwinner,sun20i-d1-ths", .data = &sun20i_d1_ths }, { .compatible = "allwinner,sun50i-h616-ths", .data = &sun50i_h616_ths }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, of_ths_match); static struct platform_driver ths_driver = { .probe = sun8i_ths_probe, .driver = { .name = "sun8i-thermal", .of_match_table = of_ths_match, }, }; module_platform_driver(ths_driver); MODULE_DESCRIPTION("Thermal sensor driver for Allwinner SOC"); MODULE_LICENSE("GPL v2");