// SPDX-License-Identifier: GPL-2.0-only /* * SPI bus driver for the Topcliff PCH used by Intel SoCs * * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. */ #include <linux/delay.h> #include <linux/pci.h> #include <linux/wait.h> #include <linux/spi/spi.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/spi/spidev.h> #include <linux/module.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/dmaengine.h> #include <linux/pch_dma.h> /* Register offsets */ #define PCH_SPCR 0x00 /* SPI control register */ #define PCH_SPBRR 0x04 /* SPI baud rate register */ #define PCH_SPSR 0x08 /* SPI status register */ #define PCH_SPDWR 0x0C /* SPI write data register */ #define PCH_SPDRR 0x10 /* SPI read data register */ #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ #define PCH_SRST 0x1C /* SPI reset register */ #define PCH_ADDRESS_SIZE 0x20 #define PCH_SPSR_TFD 0x000007C0 #define PCH_SPSR_RFD 0x0000F800 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) #define PCH_RX_THOLD 7 #define PCH_RX_THOLD_MAX 15 #define PCH_TX_THOLD 2 #define PCH_MAX_BAUDRATE 5000000 #define PCH_MAX_FIFO_DEPTH 16 #define STATUS_RUNNING 1 #define STATUS_EXITING 2 #define PCH_SLEEP_TIME 10 #define SSN_LOW 0x02U #define SSN_HIGH 0x03U #define SSN_NO_CONTROL 0x00U #define PCH_MAX_CS 0xFF #define PCI_DEVICE_ID_GE_SPI 0x8816 #define SPCR_SPE_BIT (1 << 0) #define SPCR_MSTR_BIT (1 << 1) #define SPCR_LSBF_BIT (1 << 4) #define SPCR_CPHA_BIT (1 << 5) #define SPCR_CPOL_BIT (1 << 6) #define SPCR_TFIE_BIT (1 << 8) #define SPCR_RFIE_BIT (1 << 9) #define SPCR_FIE_BIT (1 << 10) #define SPCR_ORIE_BIT (1 << 11) #define SPCR_MDFIE_BIT (1 << 12) #define SPCR_FICLR_BIT (1 << 24) #define SPSR_TFI_BIT (1 << 0) #define SPSR_RFI_BIT (1 << 1) #define SPSR_FI_BIT (1 << 2) #define SPSR_ORF_BIT (1 << 3) #define SPBRR_SIZE_BIT (1 << 10) #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ SPCR_ORIE_BIT|SPCR_MDFIE_BIT) #define SPCR_RFIC_FIELD 20 #define SPCR_TFIC_FIELD 16 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) #define PCH_CLOCK_HZ 50000000 #define PCH_MAX_SPBR 1023 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ #define PCI_DEVICE_ID_ML7213_SPI 0x802c #define PCI_DEVICE_ID_ML7223_SPI 0x800F #define PCI_DEVICE_ID_ML7831_SPI 0x8816 /* * Set the number of SPI instance max * Intel EG20T PCH : 1ch * LAPIS Semiconductor ML7213 IOH : 2ch * LAPIS Semiconductor ML7223 IOH : 1ch * LAPIS Semiconductor ML7831 IOH : 1ch */ #define PCH_SPI_MAX_DEV 2 #define PCH_BUF_SIZE 4096 #define PCH_DMA_TRANS_SIZE 12 static int use_dma = 1; struct pch_spi_dma_ctrl { struct pci_dev *dma_dev; struct dma_async_tx_descriptor *desc_tx; struct dma_async_tx_descriptor *desc_rx; struct pch_dma_slave param_tx; struct pch_dma_slave param_rx; struct dma_chan *chan_tx; struct dma_chan *chan_rx; struct scatterlist *sg_tx_p; struct scatterlist *sg_rx_p; struct scatterlist sg_tx; struct scatterlist sg_rx; int nent; void *tx_buf_virt; void *rx_buf_virt; dma_addr_t tx_buf_dma; dma_addr_t rx_buf_dma; }; /** * struct pch_spi_data - Holds the SPI channel specific details * @io_remap_addr: The remapped PCI base address * @io_base_addr: Base address * @master: Pointer to the SPI master structure * @work: Reference to work queue handler * @wait: Wait queue for waking up upon receiving an * interrupt. * @transfer_complete: Status of SPI Transfer * @bcurrent_msg_processing: Status flag for message processing * @lock: Lock for protecting this structure * @queue: SPI Message queue * @status: Status of the SPI driver * @bpw_len: Length of data to be transferred in bits per * word * @transfer_active: Flag showing active transfer * @tx_index: Transmit data count; for bookkeeping during * transfer * @rx_index: Receive data count; for bookkeeping during * transfer * @pkt_tx_buff: Buffer for data to be transmitted * @pkt_rx_buff: Buffer for received data * @n_curnt_chip: The chip number that this SPI driver currently * operates on * @current_chip: Reference to the current chip that this SPI * driver currently operates on * @current_msg: The current message that this SPI driver is * handling * @cur_trans: The current transfer that this SPI driver is * handling * @board_dat: Reference to the SPI device data structure * @plat_dev: platform_device structure * @ch: SPI channel number * @dma: Local DMA information * @use_dma: True if DMA is to be used * @irq_reg_sts: Status of IRQ registration * @save_total_len: Save length while data is being transferred */ struct pch_spi_data { void __iomem *io_remap_addr; unsigned long io_base_addr; struct spi_master *master; struct work_struct work; wait_queue_head_t wait; u8 transfer_complete; u8 bcurrent_msg_processing; spinlock_t lock; struct list_head queue; u8 status; u32 bpw_len; u8 transfer_active; u32 tx_index; u32 rx_index; u16 *pkt_tx_buff; u16 *pkt_rx_buff; u8 n_curnt_chip; struct spi_device *current_chip; struct spi_message *current_msg; struct spi_transfer *cur_trans; struct pch_spi_board_data *board_dat; struct platform_device *plat_dev; int ch; struct pch_spi_dma_ctrl dma; int use_dma; u8 irq_reg_sts; int save_total_len; }; /** * struct pch_spi_board_data - Holds the SPI device specific details * @pdev: Pointer to the PCI device * @suspend_sts: Status of suspend * @num: The number of SPI device instance */ struct pch_spi_board_data { struct pci_dev *pdev; u8 suspend_sts; int num; }; struct pch_pd_dev_save { int num; struct platform_device *pd_save[PCH_SPI_MAX_DEV]; struct pch_spi_board_data *board_dat; }; static const struct pci_device_id pch_spi_pcidev_id[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, { } }; /** * pch_spi_writereg() - Performs register writes * @master: Pointer to struct spi_master. * @idx: Register offset. * @val: Value to be written to register. */ static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) { struct pch_spi_data *data = spi_master_get_devdata(master); iowrite32(val, (data->io_remap_addr + idx)); } /** * pch_spi_readreg() - Performs register reads * @master: Pointer to struct spi_master. * @idx: Register offset. */ static inline u32 pch_spi_readreg(struct spi_master *master, int idx) { struct pch_spi_data *data = spi_master_get_devdata(master); return ioread32(data->io_remap_addr + idx); } static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, u32 set, u32 clr) { u32 tmp = pch_spi_readreg(master, idx); tmp = (tmp & ~clr) | set; pch_spi_writereg(master, idx, tmp); } static void pch_spi_set_master_mode(struct spi_master *master) { pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); } /** * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs * @master: Pointer to struct spi_master. */ static void pch_spi_clear_fifo(struct spi_master *master) { pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); } static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, void __iomem *io_remap_addr) { u32 n_read, tx_index, rx_index, bpw_len; u16 *pkt_rx_buffer, *pkt_tx_buff; int read_cnt; u32 reg_spcr_val; void __iomem *spsr; void __iomem *spdrr; void __iomem *spdwr; spsr = io_remap_addr + PCH_SPSR; iowrite32(reg_spsr_val, spsr); if (data->transfer_active) { rx_index = data->rx_index; tx_index = data->tx_index; bpw_len = data->bpw_len; pkt_rx_buffer = data->pkt_rx_buff; pkt_tx_buff = data->pkt_tx_buff; spdrr = io_remap_addr + PCH_SPDRR; spdwr = io_remap_addr + PCH_SPDWR; n_read = PCH_READABLE(reg_spsr_val); for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { pkt_rx_buffer[rx_index++] = ioread32(spdrr); if (tx_index < bpw_len) iowrite32(pkt_tx_buff[tx_index++], spdwr); } /* disable RFI if not needed */ if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ /* reset rx threshold */ reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); } /* update counts */ data->tx_index = tx_index; data->rx_index = rx_index; /* if transfer complete interrupt */ if (reg_spsr_val & SPSR_FI_BIT) { if ((tx_index == bpw_len) && (rx_index == tx_index)) { /* disable interrupts */ pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); /* transfer is completed; inform pch_spi_process_messages */ data->transfer_complete = true; data->transfer_active = false; wake_up(&data->wait); } else { dev_vdbg(&data->master->dev, "%s : Transfer is not completed", __func__); } } } } /** * pch_spi_handler() - Interrupt handler * @irq: The interrupt number. * @dev_id: Pointer to struct pch_spi_board_data. */ static irqreturn_t pch_spi_handler(int irq, void *dev_id) { u32 reg_spsr_val; void __iomem *spsr; void __iomem *io_remap_addr; irqreturn_t ret = IRQ_NONE; struct pch_spi_data *data = dev_id; struct pch_spi_board_data *board_dat = data->board_dat; if (board_dat->suspend_sts) { dev_dbg(&board_dat->pdev->dev, "%s returning due to suspend\n", __func__); return IRQ_NONE; } io_remap_addr = data->io_remap_addr; spsr = io_remap_addr + PCH_SPSR; reg_spsr_val = ioread32(spsr); if (reg_spsr_val & SPSR_ORF_BIT) { dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); if (data->current_msg->complete) { data->transfer_complete = true; data->current_msg->status = -EIO; data->current_msg->complete(data->current_msg->context); data->bcurrent_msg_processing = false; data->current_msg = NULL; data->cur_trans = NULL; } } if (data->use_dma) return IRQ_NONE; /* Check if the interrupt is for SPI device */ if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); ret = IRQ_HANDLED; } dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", __func__, ret); return ret; } /** * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR * @master: Pointer to struct spi_master. * @speed_hz: Baud rate. */ static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) { u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); /* if baud rate is less than we can support limit it */ if (n_spbr > PCH_MAX_SPBR) n_spbr = PCH_MAX_SPBR; pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); } /** * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR * @master: Pointer to struct spi_master. * @bits_per_word: Bits per word for SPI transfer. */ static void pch_spi_set_bits_per_word(struct spi_master *master, u8 bits_per_word) { if (bits_per_word == 8) pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); else pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); } /** * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer * @spi: Pointer to struct spi_device. */ static void pch_spi_setup_transfer(struct spi_device *spi) { u32 flags = 0; dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", __func__, pch_spi_readreg(spi->master, PCH_SPBRR), spi->max_speed_hz); pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); /* set bits per word */ pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); if (!(spi->mode & SPI_LSB_FIRST)) flags |= SPCR_LSBF_BIT; if (spi->mode & SPI_CPOL) flags |= SPCR_CPOL_BIT; if (spi->mode & SPI_CPHA) flags |= SPCR_CPHA_BIT; pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ pch_spi_clear_fifo(spi->master); } /** * pch_spi_reset() - Clears SPI registers * @master: Pointer to struct spi_master. */ static void pch_spi_reset(struct spi_master *master) { /* write 1 to reset SPI */ pch_spi_writereg(master, PCH_SRST, 0x1); /* clear reset */ pch_spi_writereg(master, PCH_SRST, 0x0); } static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) { struct pch_spi_data *data = spi_master_get_devdata(pspi->master); int retval; unsigned long flags; /* We won't process any messages if we have been asked to terminate */ if (data->status == STATUS_EXITING) { dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); retval = -ESHUTDOWN; goto err_out; } /* If suspended ,return -EINVAL */ if (data->board_dat->suspend_sts) { dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); retval = -EINVAL; goto err_out; } /* set status of message */ pmsg->actual_length = 0; dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); pmsg->status = -EINPROGRESS; spin_lock_irqsave(&data->lock, flags); /* add message to queue */ list_add_tail(&pmsg->queue, &data->queue); spin_unlock_irqrestore(&data->lock, flags); dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); schedule_work(&data->work); dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); retval = 0; err_out: dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); return retval; } static inline void pch_spi_select_chip(struct pch_spi_data *data, struct spi_device *pspi) { if (data->current_chip != NULL) { if (pspi->chip_select != data->n_curnt_chip) { dev_dbg(&pspi->dev, "%s : different slave\n", __func__); data->current_chip = NULL; } } data->current_chip = pspi; data->n_curnt_chip = data->current_chip->chip_select; dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); pch_spi_setup_transfer(pspi); } static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) { int size; u32 n_writes; int j; struct spi_message *pmsg, *tmp; const u8 *tx_buf; const u16 *tx_sbuf; /* set baud rate if needed */ if (data->cur_trans->speed_hz) { dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); } /* set bits per word if needed */ if (data->cur_trans->bits_per_word && (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); pch_spi_set_bits_per_word(data->master, data->cur_trans->bits_per_word); *bpw = data->cur_trans->bits_per_word; } else { *bpw = data->current_msg->spi->bits_per_word; } /* reset Tx/Rx index */ data->tx_index = 0; data->rx_index = 0; data->bpw_len = data->cur_trans->len / (*bpw / 8); /* find alloc size */ size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); if (data->pkt_tx_buff != NULL) { data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); if (!data->pkt_rx_buff) { kfree(data->pkt_tx_buff); data->pkt_tx_buff = NULL; } } if (!data->pkt_rx_buff) { /* flush queue and set status of all transfers to -ENOMEM */ list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { pmsg->status = -ENOMEM; if (pmsg->complete) pmsg->complete(pmsg->context); /* delete from queue */ list_del_init(&pmsg->queue); } return; } /* copy Tx Data */ if (data->cur_trans->tx_buf != NULL) { if (*bpw == 8) { tx_buf = data->cur_trans->tx_buf; for (j = 0; j < data->bpw_len; j++) data->pkt_tx_buff[j] = *tx_buf++; } else { tx_sbuf = data->cur_trans->tx_buf; for (j = 0; j < data->bpw_len; j++) data->pkt_tx_buff[j] = *tx_sbuf++; } } /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ n_writes = data->bpw_len; if (n_writes > PCH_MAX_FIFO_DEPTH) n_writes = PCH_MAX_FIFO_DEPTH; dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); for (j = 0; j < n_writes; j++) pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); /* update tx_index */ data->tx_index = j; /* reset transfer complete flag */ data->transfer_complete = false; data->transfer_active = true; } static void pch_spi_nomore_transfer(struct pch_spi_data *data) { struct spi_message *pmsg, *tmp; dev_dbg(&data->master->dev, "%s called\n", __func__); /* Invoke complete callback * [To the spi core..indicating end of transfer] */ data->current_msg->status = 0; if (data->current_msg->complete) { dev_dbg(&data->master->dev, "%s:Invoking callback of SPI core\n", __func__); data->current_msg->complete(data->current_msg->context); } /* update status in global variable */ data->bcurrent_msg_processing = false; dev_dbg(&data->master->dev, "%s:data->bcurrent_msg_processing = false\n", __func__); data->current_msg = NULL; data->cur_trans = NULL; /* check if we have items in list and not suspending * return 1 if list empty */ if ((list_empty(&data->queue) == 0) && (!data->board_dat->suspend_sts) && (data->status != STATUS_EXITING)) { /* We have some more work to do (either there is more tranint * bpw;sfer requests in the current message or there are *more messages) */ dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); schedule_work(&data->work); } else if (data->board_dat->suspend_sts || data->status == STATUS_EXITING) { dev_dbg(&data->master->dev, "%s suspend/remove initiated, flushing queue\n", __func__); list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { pmsg->status = -EIO; if (pmsg->complete) pmsg->complete(pmsg->context); /* delete from queue */ list_del_init(&pmsg->queue); } } } static void pch_spi_set_ir(struct pch_spi_data *data) { /* enable interrupts, set threshold, enable SPI */ if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) /* set receive threshold to PCH_RX_THOLD */ pch_spi_setclr_reg(data->master, PCH_SPCR, PCH_RX_THOLD << SPCR_RFIC_FIELD | SPCR_FIE_BIT | SPCR_RFIE_BIT | SPCR_ORIE_BIT | SPCR_SPE_BIT, MASK_RFIC_SPCR_BITS | PCH_ALL); else /* set receive threshold to maximum */ pch_spi_setclr_reg(data->master, PCH_SPCR, PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | SPCR_FIE_BIT | SPCR_ORIE_BIT | SPCR_SPE_BIT, MASK_RFIC_SPCR_BITS | PCH_ALL); /* Wait until the transfer completes; go to sleep after initiating the transfer. */ dev_dbg(&data->master->dev, "%s:waiting for transfer to get over\n", __func__); wait_event_interruptible(data->wait, data->transfer_complete); /* clear all interrupts */ pch_spi_writereg(data->master, PCH_SPSR, pch_spi_readreg(data->master, PCH_SPSR)); /* Disable interrupts and SPI transfer */ pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); /* clear FIFO */ pch_spi_clear_fifo(data->master); } static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) { int j; u8 *rx_buf; u16 *rx_sbuf; /* copy Rx Data */ if (!data->cur_trans->rx_buf) return; if (bpw == 8) { rx_buf = data->cur_trans->rx_buf; for (j = 0; j < data->bpw_len; j++) *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; } else { rx_sbuf = data->cur_trans->rx_buf; for (j = 0; j < data->bpw_len; j++) *rx_sbuf++ = data->pkt_rx_buff[j]; } } static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) { int j; u8 *rx_buf; u16 *rx_sbuf; const u8 *rx_dma_buf; const u16 *rx_dma_sbuf; /* copy Rx Data */ if (!data->cur_trans->rx_buf) return; if (bpw == 8) { rx_buf = data->cur_trans->rx_buf; rx_dma_buf = data->dma.rx_buf_virt; for (j = 0; j < data->bpw_len; j++) *rx_buf++ = *rx_dma_buf++ & 0xFF; data->cur_trans->rx_buf = rx_buf; } else { rx_sbuf = data->cur_trans->rx_buf; rx_dma_sbuf = data->dma.rx_buf_virt; for (j = 0; j < data->bpw_len; j++) *rx_sbuf++ = *rx_dma_sbuf++; data->cur_trans->rx_buf = rx_sbuf; } } static int pch_spi_start_transfer(struct pch_spi_data *data) { struct pch_spi_dma_ctrl *dma; unsigned long flags; int rtn; dma = &data->dma; spin_lock_irqsave(&data->lock, flags); /* disable interrupts, SPI set enable */ pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); spin_unlock_irqrestore(&data->lock, flags); /* Wait until the transfer completes; go to sleep after initiating the transfer. */ dev_dbg(&data->master->dev, "%s:waiting for transfer to get over\n", __func__); rtn = wait_event_interruptible_timeout(data->wait, data->transfer_complete, msecs_to_jiffies(2 * HZ)); if (!rtn) dev_err(&data->master->dev, "%s wait-event timeout\n", __func__); dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, DMA_FROM_DEVICE); dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, DMA_FROM_DEVICE); memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); async_tx_ack(dma->desc_rx); async_tx_ack(dma->desc_tx); kfree(dma->sg_tx_p); kfree(dma->sg_rx_p); spin_lock_irqsave(&data->lock, flags); /* clear fifo threshold, disable interrupts, disable SPI transfer */ pch_spi_setclr_reg(data->master, PCH_SPCR, 0, MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | SPCR_SPE_BIT); /* clear all interrupts */ pch_spi_writereg(data->master, PCH_SPSR, pch_spi_readreg(data->master, PCH_SPSR)); /* clear FIFO */ pch_spi_clear_fifo(data->master); spin_unlock_irqrestore(&data->lock, flags); return rtn; } static void pch_dma_rx_complete(void *arg) { struct pch_spi_data *data = arg; /* transfer is completed;inform pch_spi_process_messages_dma */ data->transfer_complete = true; wake_up_interruptible(&data->wait); } static bool pch_spi_filter(struct dma_chan *chan, void *slave) { struct pch_dma_slave *param = slave; if ((chan->chan_id == param->chan_id) && (param->dma_dev == chan->device->dev)) { chan->private = param; return true; } else { return false; } } static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) { dma_cap_mask_t mask; struct dma_chan *chan; struct pci_dev *dma_dev; struct pch_dma_slave *param; struct pch_spi_dma_ctrl *dma; unsigned int width; if (bpw == 8) width = PCH_DMA_WIDTH_1_BYTE; else width = PCH_DMA_WIDTH_2_BYTES; dma = &data->dma; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* Get DMA's dev information */ dma_dev = pci_get_slot(data->board_dat->pdev->bus, PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); /* Set Tx DMA */ param = &dma->param_tx; param->dma_dev = &dma_dev->dev; param->chan_id = data->ch * 2; /* Tx = 0, 2 */ param->tx_reg = data->io_base_addr + PCH_SPDWR; param->width = width; chan = dma_request_channel(mask, pch_spi_filter, param); if (!chan) { dev_err(&data->master->dev, "ERROR: dma_request_channel FAILS(Tx)\n"); goto out; } dma->chan_tx = chan; /* Set Rx DMA */ param = &dma->param_rx; param->dma_dev = &dma_dev->dev; param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */ param->rx_reg = data->io_base_addr + PCH_SPDRR; param->width = width; chan = dma_request_channel(mask, pch_spi_filter, param); if (!chan) { dev_err(&data->master->dev, "ERROR: dma_request_channel FAILS(Rx)\n"); dma_release_channel(dma->chan_tx); dma->chan_tx = NULL; goto out; } dma->chan_rx = chan; dma->dma_dev = dma_dev; return; out: pci_dev_put(dma_dev); data->use_dma = 0; } static void pch_spi_release_dma(struct pch_spi_data *data) { struct pch_spi_dma_ctrl *dma; dma = &data->dma; if (dma->chan_tx) { dma_release_channel(dma->chan_tx); dma->chan_tx = NULL; } if (dma->chan_rx) { dma_release_channel(dma->chan_rx); dma->chan_rx = NULL; } pci_dev_put(dma->dma_dev); } static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) { const u8 *tx_buf; const u16 *tx_sbuf; u8 *tx_dma_buf; u16 *tx_dma_sbuf; struct scatterlist *sg; struct dma_async_tx_descriptor *desc_tx; struct dma_async_tx_descriptor *desc_rx; int num; int i; int size; int rem; int head; unsigned long flags; struct pch_spi_dma_ctrl *dma; dma = &data->dma; /* set baud rate if needed */ if (data->cur_trans->speed_hz) { dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); spin_lock_irqsave(&data->lock, flags); pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); spin_unlock_irqrestore(&data->lock, flags); } /* set bits per word if needed */ if (data->cur_trans->bits_per_word && (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); spin_lock_irqsave(&data->lock, flags); pch_spi_set_bits_per_word(data->master, data->cur_trans->bits_per_word); spin_unlock_irqrestore(&data->lock, flags); *bpw = data->cur_trans->bits_per_word; } else { *bpw = data->current_msg->spi->bits_per_word; } data->bpw_len = data->cur_trans->len / (*bpw / 8); if (data->bpw_len > PCH_BUF_SIZE) { data->bpw_len = PCH_BUF_SIZE; data->cur_trans->len -= PCH_BUF_SIZE; } /* copy Tx Data */ if (data->cur_trans->tx_buf != NULL) { if (*bpw == 8) { tx_buf = data->cur_trans->tx_buf; tx_dma_buf = dma->tx_buf_virt; for (i = 0; i < data->bpw_len; i++) *tx_dma_buf++ = *tx_buf++; } else { tx_sbuf = data->cur_trans->tx_buf; tx_dma_sbuf = dma->tx_buf_virt; for (i = 0; i < data->bpw_len; i++) *tx_dma_sbuf++ = *tx_sbuf++; } } /* Calculate Rx parameter for DMA transmitting */ if (data->bpw_len > PCH_DMA_TRANS_SIZE) { if (data->bpw_len % PCH_DMA_TRANS_SIZE) { num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; rem = data->bpw_len % PCH_DMA_TRANS_SIZE; } else { num = data->bpw_len / PCH_DMA_TRANS_SIZE; rem = PCH_DMA_TRANS_SIZE; } size = PCH_DMA_TRANS_SIZE; } else { num = 1; size = data->bpw_len; rem = data->bpw_len; } dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", __func__, num, size, rem); spin_lock_irqsave(&data->lock, flags); /* set receive fifo threshold and transmit fifo threshold */ pch_spi_setclr_reg(data->master, PCH_SPCR, ((size - 1) << SPCR_RFIC_FIELD) | (PCH_TX_THOLD << SPCR_TFIC_FIELD), MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); spin_unlock_irqrestore(&data->lock, flags); /* RX */ dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC); if (!dma->sg_rx_p) return; sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ /* offset, length setting */ sg = dma->sg_rx_p; for (i = 0; i < num; i++, sg++) { if (i == (num - 2)) { sg->offset = size * i; sg->offset = sg->offset * (*bpw / 8); sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, sg->offset); sg_dma_len(sg) = rem; } else if (i == (num - 1)) { sg->offset = size * (i - 1) + rem; sg->offset = sg->offset * (*bpw / 8); sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, sg->offset); sg_dma_len(sg) = size; } else { sg->offset = size * i; sg->offset = sg->offset * (*bpw / 8); sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, sg->offset); sg_dma_len(sg) = size; } sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; } sg = dma->sg_rx_p; desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, num, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_rx) { dev_err(&data->master->dev, "%s:dmaengine_prep_slave_sg Failed\n", __func__); return; } dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); desc_rx->callback = pch_dma_rx_complete; desc_rx->callback_param = data; dma->nent = num; dma->desc_rx = desc_rx; /* Calculate Tx parameter for DMA transmitting */ if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; } else { num = data->bpw_len / PCH_DMA_TRANS_SIZE; rem = data->bpw_len % PCH_DMA_TRANS_SIZE + PCH_DMA_TRANS_SIZE - head; } size = PCH_DMA_TRANS_SIZE; } else { num = 1; size = data->bpw_len; rem = data->bpw_len; head = 0; } dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC); if (!dma->sg_tx_p) return; sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ /* offset, length setting */ sg = dma->sg_tx_p; for (i = 0; i < num; i++, sg++) { if (i == 0) { sg->offset = 0; sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, sg->offset); sg_dma_len(sg) = size + head; } else if (i == (num - 1)) { sg->offset = head + size * i; sg->offset = sg->offset * (*bpw / 8); sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, sg->offset); sg_dma_len(sg) = rem; } else { sg->offset = head + size * i; sg->offset = sg->offset * (*bpw / 8); sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, sg->offset); sg_dma_len(sg) = size; } sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; } sg = dma->sg_tx_p; desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, sg, num, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_tx) { dev_err(&data->master->dev, "%s:dmaengine_prep_slave_sg Failed\n", __func__); return; } dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); desc_tx->callback = NULL; desc_tx->callback_param = data; dma->nent = num; dma->desc_tx = desc_tx; dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); spin_lock_irqsave(&data->lock, flags); pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); desc_rx->tx_submit(desc_rx); desc_tx->tx_submit(desc_tx); spin_unlock_irqrestore(&data->lock, flags); /* reset transfer complete flag */ data->transfer_complete = false; } static void pch_spi_process_messages(struct work_struct *pwork) { struct spi_message *pmsg, *tmp; struct pch_spi_data *data; int bpw; data = container_of(pwork, struct pch_spi_data, work); dev_dbg(&data->master->dev, "%s data initialized\n", __func__); spin_lock(&data->lock); /* check if suspend has been initiated;if yes flush queue */ if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { dev_dbg(&data->master->dev, "%s suspend/remove initiated, flushing queue\n", __func__); list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { pmsg->status = -EIO; if (pmsg->complete) { spin_unlock(&data->lock); pmsg->complete(pmsg->context); spin_lock(&data->lock); } /* delete from queue */ list_del_init(&pmsg->queue); } spin_unlock(&data->lock); return; } data->bcurrent_msg_processing = true; dev_dbg(&data->master->dev, "%s Set data->bcurrent_msg_processing= true\n", __func__); /* Get the message from the queue and delete it from there. */ data->current_msg = list_entry(data->queue.next, struct spi_message, queue); list_del_init(&data->current_msg->queue); data->current_msg->status = 0; pch_spi_select_chip(data, data->current_msg->spi); spin_unlock(&data->lock); if (data->use_dma) pch_spi_request_dma(data, data->current_msg->spi->bits_per_word); pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); do { int cnt; /* If we are already processing a message get the next transfer structure from the message otherwise retrieve the 1st transfer request from the message. */ spin_lock(&data->lock); if (data->cur_trans == NULL) { data->cur_trans = list_entry(data->current_msg->transfers.next, struct spi_transfer, transfer_list); dev_dbg(&data->master->dev, "%s :Getting 1st transfer message\n", __func__); } else { data->cur_trans = list_entry(data->cur_trans->transfer_list.next, struct spi_transfer, transfer_list); dev_dbg(&data->master->dev, "%s :Getting next transfer message\n", __func__); } spin_unlock(&data->lock); if (!data->cur_trans->len) goto out; cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; data->save_total_len = data->cur_trans->len; if (data->use_dma) { int i; char *save_rx_buf = data->cur_trans->rx_buf; for (i = 0; i < cnt; i++) { pch_spi_handle_dma(data, &bpw); if (!pch_spi_start_transfer(data)) { data->transfer_complete = true; data->current_msg->status = -EIO; data->current_msg->complete (data->current_msg->context); data->bcurrent_msg_processing = false; data->current_msg = NULL; data->cur_trans = NULL; goto out; } pch_spi_copy_rx_data_for_dma(data, bpw); } data->cur_trans->rx_buf = save_rx_buf; } else { pch_spi_set_tx(data, &bpw); pch_spi_set_ir(data); pch_spi_copy_rx_data(data, bpw); kfree(data->pkt_rx_buff); data->pkt_rx_buff = NULL; kfree(data->pkt_tx_buff); data->pkt_tx_buff = NULL; } /* increment message count */ data->cur_trans->len = data->save_total_len; data->current_msg->actual_length += data->cur_trans->len; dev_dbg(&data->master->dev, "%s:data->current_msg->actual_length=%d\n", __func__, data->current_msg->actual_length); spi_transfer_delay_exec(data->cur_trans); spin_lock(&data->lock); /* No more transfer in this message. */ if ((data->cur_trans->transfer_list.next) == &(data->current_msg->transfers)) { pch_spi_nomore_transfer(data); } spin_unlock(&data->lock); } while (data->cur_trans != NULL); out: pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); if (data->use_dma) pch_spi_release_dma(data); } static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, struct pch_spi_data *data) { dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); flush_work(&data->work); } static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, struct pch_spi_data *data) { dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); /* reset PCH SPI h/w */ pch_spi_reset(data->master); dev_dbg(&board_dat->pdev->dev, "%s pch_spi_reset invoked successfully\n", __func__); dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); return 0; } static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, struct pch_spi_data *data) { struct pch_spi_dma_ctrl *dma; dma = &data->dma; if (dma->tx_buf_dma) dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, dma->tx_buf_virt, dma->tx_buf_dma); if (dma->rx_buf_dma) dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, dma->rx_buf_virt, dma->rx_buf_dma); } static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, struct pch_spi_data *data) { struct pch_spi_dma_ctrl *dma; int ret; dma = &data->dma; ret = 0; /* Get Consistent memory for Tx DMA */ dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); if (!dma->tx_buf_virt) ret = -ENOMEM; /* Get Consistent memory for Rx DMA */ dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); if (!dma->rx_buf_virt) ret = -ENOMEM; return ret; } static int pch_spi_pd_probe(struct platform_device *plat_dev) { int ret; struct spi_master *master; struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); struct pch_spi_data *data; dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); master = spi_alloc_master(&board_dat->pdev->dev, sizeof(struct pch_spi_data)); if (!master) { dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", plat_dev->id); return -ENOMEM; } data = spi_master_get_devdata(master); data->master = master; platform_set_drvdata(plat_dev, data); /* baseaddress + address offset) */ data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + PCH_ADDRESS_SIZE * plat_dev->id; data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); if (!data->io_remap_addr) { dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); ret = -ENOMEM; goto err_pci_iomap; } data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", plat_dev->id, data->io_remap_addr); /* initialize members of SPI master */ master->num_chipselect = PCH_MAX_CS; master->transfer = pch_spi_transfer; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); master->max_speed_hz = PCH_MAX_BAUDRATE; master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; data->board_dat = board_dat; data->plat_dev = plat_dev; data->n_curnt_chip = 255; data->status = STATUS_RUNNING; data->ch = plat_dev->id; data->use_dma = use_dma; INIT_LIST_HEAD(&data->queue); spin_lock_init(&data->lock); INIT_WORK(&data->work, pch_spi_process_messages); init_waitqueue_head(&data->wait); ret = pch_spi_get_resources(board_dat, data); if (ret) { dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); goto err_spi_get_resources; } ret = request_irq(board_dat->pdev->irq, pch_spi_handler, IRQF_SHARED, KBUILD_MODNAME, data); if (ret) { dev_err(&plat_dev->dev, "%s request_irq failed\n", __func__); goto err_request_irq; } data->irq_reg_sts = true; pch_spi_set_master_mode(master); if (use_dma) { dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); ret = pch_alloc_dma_buf(board_dat, data); if (ret) goto err_spi_register_master; } ret = spi_register_master(master); if (ret != 0) { dev_err(&plat_dev->dev, "%s spi_register_master FAILED\n", __func__); goto err_spi_register_master; } return 0; err_spi_register_master: pch_free_dma_buf(board_dat, data); free_irq(board_dat->pdev->irq, data); err_request_irq: pch_spi_free_resources(board_dat, data); err_spi_get_resources: pci_iounmap(board_dat->pdev, data->io_remap_addr); err_pci_iomap: spi_master_put(master); return ret; } static int pch_spi_pd_remove(struct platform_device *plat_dev) { struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); struct pch_spi_data *data = platform_get_drvdata(plat_dev); int count; unsigned long flags; dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", __func__, plat_dev->id, board_dat->pdev->irq); if (use_dma) pch_free_dma_buf(board_dat, data); /* check for any pending messages; no action is taken if the queue * is still full; but at least we tried. Unload anyway */ count = 500; spin_lock_irqsave(&data->lock, flags); data->status = STATUS_EXITING; while ((list_empty(&data->queue) == 0) && --count) { dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", __func__); spin_unlock_irqrestore(&data->lock, flags); msleep(PCH_SLEEP_TIME); spin_lock_irqsave(&data->lock, flags); } spin_unlock_irqrestore(&data->lock, flags); pch_spi_free_resources(board_dat, data); /* disable interrupts & free IRQ */ if (data->irq_reg_sts) { /* disable interrupts */ pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); data->irq_reg_sts = false; free_irq(board_dat->pdev->irq, data); } pci_iounmap(board_dat->pdev, data->io_remap_addr); spi_unregister_master(data->master); return 0; } #ifdef CONFIG_PM static int pch_spi_pd_suspend(struct platform_device *pd_dev, pm_message_t state) { u8 count; struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); struct pch_spi_data *data = platform_get_drvdata(pd_dev); dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); if (!board_dat) { dev_err(&pd_dev->dev, "%s pci_get_drvdata returned NULL\n", __func__); return -EFAULT; } /* check if the current message is processed: Only after thats done the transfer will be suspended */ count = 255; while ((--count) > 0) { if (!(data->bcurrent_msg_processing)) break; msleep(PCH_SLEEP_TIME); } /* Free IRQ */ if (data->irq_reg_sts) { /* disable all interrupts */ pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); pch_spi_reset(data->master); free_irq(board_dat->pdev->irq, data); data->irq_reg_sts = false; dev_dbg(&pd_dev->dev, "%s free_irq invoked successfully.\n", __func__); } return 0; } static int pch_spi_pd_resume(struct platform_device *pd_dev) { struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); struct pch_spi_data *data = platform_get_drvdata(pd_dev); int retval; if (!board_dat) { dev_err(&pd_dev->dev, "%s pci_get_drvdata returned NULL\n", __func__); return -EFAULT; } if (!data->irq_reg_sts) { /* register IRQ */ retval = request_irq(board_dat->pdev->irq, pch_spi_handler, IRQF_SHARED, KBUILD_MODNAME, data); if (retval < 0) { dev_err(&pd_dev->dev, "%s request_irq failed\n", __func__); return retval; } /* reset PCH SPI h/w */ pch_spi_reset(data->master); pch_spi_set_master_mode(data->master); data->irq_reg_sts = true; } return 0; } #else #define pch_spi_pd_suspend NULL #define pch_spi_pd_resume NULL #endif static struct platform_driver pch_spi_pd_driver = { .driver = { .name = "pch-spi", }, .probe = pch_spi_pd_probe, .remove = pch_spi_pd_remove, .suspend = pch_spi_pd_suspend, .resume = pch_spi_pd_resume }; static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct pch_spi_board_data *board_dat; struct platform_device *pd_dev = NULL; int retval; int i; struct pch_pd_dev_save *pd_dev_save; pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL); if (!pd_dev_save) return -ENOMEM; board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL); if (!board_dat) { retval = -ENOMEM; goto err_no_mem; } retval = pci_request_regions(pdev, KBUILD_MODNAME); if (retval) { dev_err(&pdev->dev, "%s request_region failed\n", __func__); goto pci_request_regions; } board_dat->pdev = pdev; board_dat->num = id->driver_data; pd_dev_save->num = id->driver_data; pd_dev_save->board_dat = board_dat; retval = pci_enable_device(pdev); if (retval) { dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); goto pci_enable_device; } for (i = 0; i < board_dat->num; i++) { pd_dev = platform_device_alloc("pch-spi", i); if (!pd_dev) { dev_err(&pdev->dev, "platform_device_alloc failed\n"); retval = -ENOMEM; goto err_platform_device; } pd_dev_save->pd_save[i] = pd_dev; pd_dev->dev.parent = &pdev->dev; retval = platform_device_add_data(pd_dev, board_dat, sizeof(*board_dat)); if (retval) { dev_err(&pdev->dev, "platform_device_add_data failed\n"); platform_device_put(pd_dev); goto err_platform_device; } retval = platform_device_add(pd_dev); if (retval) { dev_err(&pdev->dev, "platform_device_add failed\n"); platform_device_put(pd_dev); goto err_platform_device; } } pci_set_drvdata(pdev, pd_dev_save); return 0; err_platform_device: while (--i >= 0) platform_device_unregister(pd_dev_save->pd_save[i]); pci_disable_device(pdev); pci_enable_device: pci_release_regions(pdev); pci_request_regions: kfree(board_dat); err_no_mem: kfree(pd_dev_save); return retval; } static void pch_spi_remove(struct pci_dev *pdev) { int i; struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); for (i = 0; i < pd_dev_save->num; i++) platform_device_unregister(pd_dev_save->pd_save[i]); pci_disable_device(pdev); pci_release_regions(pdev); kfree(pd_dev_save->board_dat); kfree(pd_dev_save); } static int __maybe_unused pch_spi_suspend(struct device *dev) { struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); dev_dbg(dev, "%s ENTRY\n", __func__); pd_dev_save->board_dat->suspend_sts = true; return 0; } static int __maybe_unused pch_spi_resume(struct device *dev) { struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev); dev_dbg(dev, "%s ENTRY\n", __func__); /* set suspend status to false */ pd_dev_save->board_dat->suspend_sts = false; return 0; } static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume); static struct pci_driver pch_spi_pcidev_driver = { .name = "pch_spi", .id_table = pch_spi_pcidev_id, .probe = pch_spi_probe, .remove = pch_spi_remove, .driver.pm = &pch_spi_pm_ops, }; static int __init pch_spi_init(void) { int ret; ret = platform_driver_register(&pch_spi_pd_driver); if (ret) return ret; ret = pci_register_driver(&pch_spi_pcidev_driver); if (ret) { platform_driver_unregister(&pch_spi_pd_driver); return ret; } return 0; } module_init(pch_spi_init); static void __exit pch_spi_exit(void) { pci_unregister_driver(&pch_spi_pcidev_driver); platform_driver_unregister(&pch_spi_pd_driver); } module_exit(pch_spi_exit); module_param(use_dma, int, 0644); MODULE_PARM_DESC(use_dma, "to use DMA for data transfers pass 1 else 0; default 1"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);