// SPDX-License-Identifier: GPL-2.0 // // Copyright 2018 SiFive, Inc. // // SiFive SPI controller driver (master mode only) // // Author: SiFive, Inc. // sifive@sifive.com #include <linux/clk.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/io.h> #include <linux/log2.h> #define SIFIVE_SPI_DRIVER_NAME "sifive_spi" #define SIFIVE_SPI_MAX_CS 32 #define SIFIVE_SPI_DEFAULT_DEPTH 8 #define SIFIVE_SPI_DEFAULT_MAX_BITS 8 /* register offsets */ #define SIFIVE_SPI_REG_SCKDIV 0x00 /* Serial clock divisor */ #define SIFIVE_SPI_REG_SCKMODE 0x04 /* Serial clock mode */ #define SIFIVE_SPI_REG_CSID 0x10 /* Chip select ID */ #define SIFIVE_SPI_REG_CSDEF 0x14 /* Chip select default */ #define SIFIVE_SPI_REG_CSMODE 0x18 /* Chip select mode */ #define SIFIVE_SPI_REG_DELAY0 0x28 /* Delay control 0 */ #define SIFIVE_SPI_REG_DELAY1 0x2c /* Delay control 1 */ #define SIFIVE_SPI_REG_FMT 0x40 /* Frame format */ #define SIFIVE_SPI_REG_TXDATA 0x48 /* Tx FIFO data */ #define SIFIVE_SPI_REG_RXDATA 0x4c /* Rx FIFO data */ #define SIFIVE_SPI_REG_TXMARK 0x50 /* Tx FIFO watermark */ #define SIFIVE_SPI_REG_RXMARK 0x54 /* Rx FIFO watermark */ #define SIFIVE_SPI_REG_FCTRL 0x60 /* SPI flash interface control */ #define SIFIVE_SPI_REG_FFMT 0x64 /* SPI flash instruction format */ #define SIFIVE_SPI_REG_IE 0x70 /* Interrupt Enable Register */ #define SIFIVE_SPI_REG_IP 0x74 /* Interrupt Pendings Register */ /* sckdiv bits */ #define SIFIVE_SPI_SCKDIV_DIV_MASK 0xfffU /* sckmode bits */ #define SIFIVE_SPI_SCKMODE_PHA BIT(0) #define SIFIVE_SPI_SCKMODE_POL BIT(1) #define SIFIVE_SPI_SCKMODE_MODE_MASK (SIFIVE_SPI_SCKMODE_PHA | \ SIFIVE_SPI_SCKMODE_POL) /* csmode bits */ #define SIFIVE_SPI_CSMODE_MODE_AUTO 0U #define SIFIVE_SPI_CSMODE_MODE_HOLD 2U #define SIFIVE_SPI_CSMODE_MODE_OFF 3U /* delay0 bits */ #define SIFIVE_SPI_DELAY0_CSSCK(x) ((u32)(x)) #define SIFIVE_SPI_DELAY0_CSSCK_MASK 0xffU #define SIFIVE_SPI_DELAY0_SCKCS(x) ((u32)(x) << 16) #define SIFIVE_SPI_DELAY0_SCKCS_MASK (0xffU << 16) /* delay1 bits */ #define SIFIVE_SPI_DELAY1_INTERCS(x) ((u32)(x)) #define SIFIVE_SPI_DELAY1_INTERCS_MASK 0xffU #define SIFIVE_SPI_DELAY1_INTERXFR(x) ((u32)(x) << 16) #define SIFIVE_SPI_DELAY1_INTERXFR_MASK (0xffU << 16) /* fmt bits */ #define SIFIVE_SPI_FMT_PROTO_SINGLE 0U #define SIFIVE_SPI_FMT_PROTO_DUAL 1U #define SIFIVE_SPI_FMT_PROTO_QUAD 2U #define SIFIVE_SPI_FMT_PROTO_MASK 3U #define SIFIVE_SPI_FMT_ENDIAN BIT(2) #define SIFIVE_SPI_FMT_DIR BIT(3) #define SIFIVE_SPI_FMT_LEN(x) ((u32)(x) << 16) #define SIFIVE_SPI_FMT_LEN_MASK (0xfU << 16) /* txdata bits */ #define SIFIVE_SPI_TXDATA_DATA_MASK 0xffU #define SIFIVE_SPI_TXDATA_FULL BIT(31) /* rxdata bits */ #define SIFIVE_SPI_RXDATA_DATA_MASK 0xffU #define SIFIVE_SPI_RXDATA_EMPTY BIT(31) /* ie and ip bits */ #define SIFIVE_SPI_IP_TXWM BIT(0) #define SIFIVE_SPI_IP_RXWM BIT(1) struct sifive_spi { void __iomem *regs; /* virt. address of control registers */ struct clk *clk; /* bus clock */ unsigned int fifo_depth; /* fifo depth in words */ u32 cs_inactive; /* level of the CS pins when inactive */ struct completion done; /* wake-up from interrupt */ }; static void sifive_spi_write(struct sifive_spi *spi, int offset, u32 value) { iowrite32(value, spi->regs + offset); } static u32 sifive_spi_read(struct sifive_spi *spi, int offset) { return ioread32(spi->regs + offset); } static void sifive_spi_init(struct sifive_spi *spi) { /* Watermark interrupts are disabled by default */ sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0); /* Default watermark FIFO threshold values */ sifive_spi_write(spi, SIFIVE_SPI_REG_TXMARK, 1); sifive_spi_write(spi, SIFIVE_SPI_REG_RXMARK, 0); /* Set CS/SCK Delays and Inactive Time to defaults */ sifive_spi_write(spi, SIFIVE_SPI_REG_DELAY0, SIFIVE_SPI_DELAY0_CSSCK(1) | SIFIVE_SPI_DELAY0_SCKCS(1)); sifive_spi_write(spi, SIFIVE_SPI_REG_DELAY1, SIFIVE_SPI_DELAY1_INTERCS(1) | SIFIVE_SPI_DELAY1_INTERXFR(0)); /* Exit specialized memory-mapped SPI flash mode */ sifive_spi_write(spi, SIFIVE_SPI_REG_FCTRL, 0); } static int sifive_spi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct sifive_spi *spi = spi_master_get_devdata(master); struct spi_device *device = msg->spi; /* Update the chip select polarity */ if (device->mode & SPI_CS_HIGH) spi->cs_inactive &= ~BIT(device->chip_select); else spi->cs_inactive |= BIT(device->chip_select); sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, spi->cs_inactive); /* Select the correct device */ sifive_spi_write(spi, SIFIVE_SPI_REG_CSID, device->chip_select); /* Set clock mode */ sifive_spi_write(spi, SIFIVE_SPI_REG_SCKMODE, device->mode & SIFIVE_SPI_SCKMODE_MODE_MASK); return 0; } static void sifive_spi_set_cs(struct spi_device *device, bool is_high) { struct sifive_spi *spi = spi_master_get_devdata(device->master); /* Reverse polarity is handled by SCMR/CPOL. Not inverted CS. */ if (device->mode & SPI_CS_HIGH) is_high = !is_high; sifive_spi_write(spi, SIFIVE_SPI_REG_CSMODE, is_high ? SIFIVE_SPI_CSMODE_MODE_AUTO : SIFIVE_SPI_CSMODE_MODE_HOLD); } static int sifive_spi_prep_transfer(struct sifive_spi *spi, struct spi_device *device, struct spi_transfer *t) { u32 cr; unsigned int mode; /* Calculate and program the clock rate */ cr = DIV_ROUND_UP(clk_get_rate(spi->clk) >> 1, t->speed_hz) - 1; cr &= SIFIVE_SPI_SCKDIV_DIV_MASK; sifive_spi_write(spi, SIFIVE_SPI_REG_SCKDIV, cr); mode = max_t(unsigned int, t->rx_nbits, t->tx_nbits); /* Set frame format */ cr = SIFIVE_SPI_FMT_LEN(t->bits_per_word); switch (mode) { case SPI_NBITS_QUAD: cr |= SIFIVE_SPI_FMT_PROTO_QUAD; break; case SPI_NBITS_DUAL: cr |= SIFIVE_SPI_FMT_PROTO_DUAL; break; default: cr |= SIFIVE_SPI_FMT_PROTO_SINGLE; break; } if (device->mode & SPI_LSB_FIRST) cr |= SIFIVE_SPI_FMT_ENDIAN; if (!t->rx_buf) cr |= SIFIVE_SPI_FMT_DIR; sifive_spi_write(spi, SIFIVE_SPI_REG_FMT, cr); /* We will want to poll if the time we need to wait is * less than the context switching time. * Let's call that threshold 5us. The operation will take: * (8/mode) * fifo_depth / hz <= 5 * 10^-6 * 1600000 * fifo_depth <= hz * mode */ return 1600000 * spi->fifo_depth <= t->speed_hz * mode; } static irqreturn_t sifive_spi_irq(int irq, void *dev_id) { struct sifive_spi *spi = dev_id; u32 ip = sifive_spi_read(spi, SIFIVE_SPI_REG_IP); if (ip & (SIFIVE_SPI_IP_TXWM | SIFIVE_SPI_IP_RXWM)) { /* Disable interrupts until next transfer */ sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0); complete(&spi->done); return IRQ_HANDLED; } return IRQ_NONE; } static void sifive_spi_wait(struct sifive_spi *spi, u32 bit, int poll) { if (poll) { u32 cr; do { cr = sifive_spi_read(spi, SIFIVE_SPI_REG_IP); } while (!(cr & bit)); } else { reinit_completion(&spi->done); sifive_spi_write(spi, SIFIVE_SPI_REG_IE, bit); wait_for_completion(&spi->done); } } static void sifive_spi_tx(struct sifive_spi *spi, const u8 *tx_ptr) { WARN_ON_ONCE((sifive_spi_read(spi, SIFIVE_SPI_REG_TXDATA) & SIFIVE_SPI_TXDATA_FULL) != 0); sifive_spi_write(spi, SIFIVE_SPI_REG_TXDATA, *tx_ptr & SIFIVE_SPI_TXDATA_DATA_MASK); } static void sifive_spi_rx(struct sifive_spi *spi, u8 *rx_ptr) { u32 data = sifive_spi_read(spi, SIFIVE_SPI_REG_RXDATA); WARN_ON_ONCE((data & SIFIVE_SPI_RXDATA_EMPTY) != 0); *rx_ptr = data & SIFIVE_SPI_RXDATA_DATA_MASK; } static int sifive_spi_transfer_one(struct spi_master *master, struct spi_device *device, struct spi_transfer *t) { struct sifive_spi *spi = spi_master_get_devdata(master); int poll = sifive_spi_prep_transfer(spi, device, t); const u8 *tx_ptr = t->tx_buf; u8 *rx_ptr = t->rx_buf; unsigned int remaining_words = t->len; while (remaining_words) { unsigned int n_words = min(remaining_words, spi->fifo_depth); unsigned int i; /* Enqueue n_words for transmission */ for (i = 0; i < n_words; i++) sifive_spi_tx(spi, tx_ptr++); if (rx_ptr) { /* Wait for transmission + reception to complete */ sifive_spi_write(spi, SIFIVE_SPI_REG_RXMARK, n_words - 1); sifive_spi_wait(spi, SIFIVE_SPI_IP_RXWM, poll); /* Read out all the data from the RX FIFO */ for (i = 0; i < n_words; i++) sifive_spi_rx(spi, rx_ptr++); } else { /* Wait for transmission to complete */ sifive_spi_wait(spi, SIFIVE_SPI_IP_TXWM, poll); } remaining_words -= n_words; } return 0; } static int sifive_spi_probe(struct platform_device *pdev) { struct sifive_spi *spi; int ret, irq, num_cs; u32 cs_bits, max_bits_per_word; struct spi_master *master; master = spi_alloc_master(&pdev->dev, sizeof(struct sifive_spi)); if (!master) { dev_err(&pdev->dev, "out of memory\n"); return -ENOMEM; } spi = spi_master_get_devdata(master); init_completion(&spi->done); platform_set_drvdata(pdev, master); spi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(spi->regs)) { ret = PTR_ERR(spi->regs); goto put_master; } spi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(spi->clk)) { dev_err(&pdev->dev, "Unable to find bus clock\n"); ret = PTR_ERR(spi->clk); goto put_master; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto put_master; } /* Optional parameters */ ret = of_property_read_u32(pdev->dev.of_node, "sifive,fifo-depth", &spi->fifo_depth); if (ret < 0) spi->fifo_depth = SIFIVE_SPI_DEFAULT_DEPTH; ret = of_property_read_u32(pdev->dev.of_node, "sifive,max-bits-per-word", &max_bits_per_word); if (!ret && max_bits_per_word < 8) { dev_err(&pdev->dev, "Only 8bit SPI words supported by the driver\n"); ret = -EINVAL; goto put_master; } /* Spin up the bus clock before hitting registers */ ret = clk_prepare_enable(spi->clk); if (ret) { dev_err(&pdev->dev, "Unable to enable bus clock\n"); goto put_master; } /* probe the number of CS lines */ spi->cs_inactive = sifive_spi_read(spi, SIFIVE_SPI_REG_CSDEF); sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, 0xffffffffU); cs_bits = sifive_spi_read(spi, SIFIVE_SPI_REG_CSDEF); sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, spi->cs_inactive); if (!cs_bits) { dev_err(&pdev->dev, "Could not auto probe CS lines\n"); ret = -EINVAL; goto disable_clk; } num_cs = ilog2(cs_bits) + 1; if (num_cs > SIFIVE_SPI_MAX_CS) { dev_err(&pdev->dev, "Invalid number of spi slaves\n"); ret = -EINVAL; goto disable_clk; } /* Define our master */ master->dev.of_node = pdev->dev.of_node; master->bus_num = pdev->id; master->num_chipselect = num_cs; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD; /* TODO: add driver support for bits_per_word < 8 * we need to "left-align" the bits (unless SPI_LSB_FIRST) */ master->bits_per_word_mask = SPI_BPW_MASK(8); master->flags = SPI_CONTROLLER_MUST_TX | SPI_MASTER_GPIO_SS; master->prepare_message = sifive_spi_prepare_message; master->set_cs = sifive_spi_set_cs; master->transfer_one = sifive_spi_transfer_one; pdev->dev.dma_mask = NULL; /* Configure the SPI master hardware */ sifive_spi_init(spi); /* Register for SPI Interrupt */ ret = devm_request_irq(&pdev->dev, irq, sifive_spi_irq, 0, dev_name(&pdev->dev), spi); if (ret) { dev_err(&pdev->dev, "Unable to bind to interrupt\n"); goto disable_clk; } dev_info(&pdev->dev, "mapped; irq=%d, cs=%d\n", irq, master->num_chipselect); ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "spi_register_master failed\n"); goto disable_clk; } return 0; disable_clk: clk_disable_unprepare(spi->clk); put_master: spi_master_put(master); return ret; } static int sifive_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct sifive_spi *spi = spi_master_get_devdata(master); /* Disable all the interrupts just in case */ sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0); clk_disable_unprepare(spi->clk); return 0; } static const struct of_device_id sifive_spi_of_match[] = { { .compatible = "sifive,spi0", }, {} }; MODULE_DEVICE_TABLE(of, sifive_spi_of_match); static struct platform_driver sifive_spi_driver = { .probe = sifive_spi_probe, .remove = sifive_spi_remove, .driver = { .name = SIFIVE_SPI_DRIVER_NAME, .of_match_table = sifive_spi_of_match, }, }; module_platform_driver(sifive_spi_driver); MODULE_AUTHOR("SiFive, Inc. <sifive@sifive.com>"); MODULE_DESCRIPTION("SiFive SPI driver"); MODULE_LICENSE("GPL");