// SPDX-License-Identifier: GPL-2.0-or-later /* * parport-to-butterfly adapter * * Copyright (C) 2005 David Brownell */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/device.h> #include <linux/parport.h> #include <linux/sched.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/spi/flash.h> #include <linux/mtd/partitions.h> /* * This uses SPI to talk with an "AVR Butterfly", which is a $US20 card * with a battery powered AVR microcontroller and lots of goodies. You * can use GCC to develop firmware for this. * * See Documentation/spi/butterfly.rst for information about how to build * and use this custom parallel port cable. */ /* DATA output bits (pins 2..9 == D0..D7) */ #define butterfly_nreset (1 << 1) /* pin 3 */ #define spi_sck_bit (1 << 0) /* pin 2 */ #define spi_mosi_bit (1 << 7) /* pin 9 */ #define vcc_bits ((1 << 6) | (1 << 5)) /* pins 7, 8 */ /* STATUS input bits */ #define spi_miso_bit PARPORT_STATUS_BUSY /* pin 11 */ /* CONTROL output bits */ #define spi_cs_bit PARPORT_CONTROL_SELECT /* pin 17 */ static inline struct butterfly *spidev_to_pp(struct spi_device *spi) { return spi->controller_data; } struct butterfly { /* REVISIT ... for now, this must be first */ struct spi_bitbang bitbang; struct parport *port; struct pardevice *pd; u8 lastbyte; struct spi_device *dataflash; struct spi_device *butterfly; struct spi_board_info info[2]; }; /*----------------------------------------------------------------------*/ static inline void setsck(struct spi_device *spi, int is_on) { struct butterfly *pp = spidev_to_pp(spi); u8 bit, byte = pp->lastbyte; bit = spi_sck_bit; if (is_on) byte |= bit; else byte &= ~bit; parport_write_data(pp->port, byte); pp->lastbyte = byte; } static inline void setmosi(struct spi_device *spi, int is_on) { struct butterfly *pp = spidev_to_pp(spi); u8 bit, byte = pp->lastbyte; bit = spi_mosi_bit; if (is_on) byte |= bit; else byte &= ~bit; parport_write_data(pp->port, byte); pp->lastbyte = byte; } static inline int getmiso(struct spi_device *spi) { struct butterfly *pp = spidev_to_pp(spi); int value; u8 bit; bit = spi_miso_bit; /* only STATUS_BUSY is NOT negated */ value = !(parport_read_status(pp->port) & bit); return (bit == PARPORT_STATUS_BUSY) ? value : !value; } static void butterfly_chipselect(struct spi_device *spi, int value) { struct butterfly *pp = spidev_to_pp(spi); /* set default clock polarity */ if (value != BITBANG_CS_INACTIVE) setsck(spi, spi->mode & SPI_CPOL); /* here, value == "activate or not"; * most PARPORT_CONTROL_* bits are negated, so we must * morph it to value == "bit value to write in control register" */ if (spi_cs_bit == PARPORT_CONTROL_INIT) value = !value; parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0); } /* we only needed to implement one mode here, and choose SPI_MODE_0 */ #define spidelay(X) do { } while (0) /* #define spidelay ndelay */ #include "spi-bitbang-txrx.h" static u32 butterfly_txrx_word_mode0(struct spi_device *spi, unsigned nsecs, u32 word, u8 bits, unsigned flags) { return bitbang_txrx_be_cpha0(spi, nsecs, 0, flags, word, bits); } /*----------------------------------------------------------------------*/ /* override default partitioning with cmdlinepart */ static struct mtd_partition partitions[] = { { /* JFFS2 wants partitions of 4*N blocks for this device, * so sectors 0 and 1 can't be partitions by themselves. */ /* sector 0 = 8 pages * 264 bytes/page (1 block) * sector 1 = 248 pages * 264 bytes/page */ .name = "bookkeeping", /* 66 KB */ .offset = 0, .size = (8 + 248) * 264, /* .mask_flags = MTD_WRITEABLE, */ }, { /* sector 2 = 256 pages * 264 bytes/page * sectors 3-5 = 512 pages * 264 bytes/page */ .name = "filesystem", /* 462 KB */ .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL, } }; static struct flash_platform_data flash = { .name = "butterflash", .parts = partitions, .nr_parts = ARRAY_SIZE(partitions), }; /* REVISIT remove this ugly global and its "only one" limitation */ static struct butterfly *butterfly; static void butterfly_attach(struct parport *p) { struct pardevice *pd; int status; struct butterfly *pp; struct spi_master *master; struct device *dev = p->physport->dev; struct pardev_cb butterfly_cb; if (butterfly || !dev) return; /* REVISIT: this just _assumes_ a butterfly is there ... no probe, * and no way to be selective about what it binds to. */ master = spi_alloc_master(dev, sizeof(*pp)); if (!master) { status = -ENOMEM; goto done; } pp = spi_master_get_devdata(master); /* * SPI and bitbang hookup * * use default setup(), cleanup(), and transfer() methods; and * only bother implementing mode 0. Start it later. */ master->bus_num = 42; master->num_chipselect = 2; pp->bitbang.master = master; pp->bitbang.chipselect = butterfly_chipselect; pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0; /* * parport hookup */ pp->port = p; memset(&butterfly_cb, 0, sizeof(butterfly_cb)); butterfly_cb.private = pp; pd = parport_register_dev_model(p, "spi_butterfly", &butterfly_cb, 0); if (!pd) { status = -ENOMEM; goto clean0; } pp->pd = pd; status = parport_claim(pd); if (status < 0) goto clean1; /* * Butterfly reset, powerup, run firmware */ pr_debug("%s: powerup/reset Butterfly\n", p->name); /* nCS for dataflash (this bit is inverted on output) */ parport_frob_control(pp->port, spi_cs_bit, 0); /* stabilize power with chip in reset (nRESET), and * spi_sck_bit clear (CPOL=0) */ pp->lastbyte |= vcc_bits; parport_write_data(pp->port, pp->lastbyte); msleep(5); /* take it out of reset; assume long reset delay */ pp->lastbyte |= butterfly_nreset; parport_write_data(pp->port, pp->lastbyte); msleep(100); /* * Start SPI ... for now, hide that we're two physical busses. */ status = spi_bitbang_start(&pp->bitbang); if (status < 0) goto clean2; /* Bus 1 lets us talk to at45db041b (firmware disables AVR SPI), AVR * (firmware resets at45, acts as spi slave) or neither (we ignore * both, AVR uses AT45). Here we expect firmware for the first option. */ pp->info[0].max_speed_hz = 15 * 1000 * 1000; strcpy(pp->info[0].modalias, "mtd_dataflash"); pp->info[0].platform_data = &flash; pp->info[0].chip_select = 1; pp->info[0].controller_data = pp; pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]); if (pp->dataflash) pr_debug("%s: dataflash at %s\n", p->name, dev_name(&pp->dataflash->dev)); pr_info("%s: AVR Butterfly\n", p->name); butterfly = pp; return; clean2: /* turn off VCC */ parport_write_data(pp->port, 0); parport_release(pp->pd); clean1: parport_unregister_device(pd); clean0: spi_master_put(pp->bitbang.master); done: pr_debug("%s: butterfly probe, fail %d\n", p->name, status); } static void butterfly_detach(struct parport *p) { struct butterfly *pp; /* FIXME this global is ugly ... but, how to quickly get from * the parport to the "struct butterfly" associated with it? * "old school" driver-internal device lists? */ if (!butterfly || butterfly->port != p) return; pp = butterfly; butterfly = NULL; /* stop() unregisters child devices too */ spi_bitbang_stop(&pp->bitbang); /* turn off VCC */ parport_write_data(pp->port, 0); msleep(10); parport_release(pp->pd); parport_unregister_device(pp->pd); spi_master_put(pp->bitbang.master); } static struct parport_driver butterfly_driver = { .name = "spi_butterfly", .match_port = butterfly_attach, .detach = butterfly_detach, .devmodel = true, }; module_parport_driver(butterfly_driver); MODULE_DESCRIPTION("Parport Adapter driver for AVR Butterfly"); MODULE_LICENSE("GPL");