/* * au1550 psc spi controller driver * may work also with au1200, au1210, au1250 * will not work on au1000, au1100 and au1500 (no full spi controller there) * * Copyright (c) 2006 ATRON electronic GmbH * Author: Jan Nikitenko <jan.nikitenko@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/resource.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/dma-mapping.h> #include <linux/completion.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_psc.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> #include <asm/mach-au1x00/au1550_spi.h> static unsigned usedma = 1; module_param(usedma, uint, 0644); /* #define AU1550_SPI_DEBUG_LOOPBACK */ #define AU1550_SPI_DBDMA_DESCRIPTORS 1 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U struct au1550_spi { struct spi_bitbang bitbang; volatile psc_spi_t __iomem *regs; int irq; unsigned len; unsigned tx_count; unsigned rx_count; const u8 *tx; u8 *rx; void (*rx_word)(struct au1550_spi *hw); void (*tx_word)(struct au1550_spi *hw); int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t); irqreturn_t (*irq_callback)(struct au1550_spi *hw); struct completion master_done; unsigned usedma; u32 dma_tx_id; u32 dma_rx_id; u32 dma_tx_ch; u32 dma_rx_ch; u8 *dma_rx_tmpbuf; unsigned dma_rx_tmpbuf_size; u32 dma_rx_tmpbuf_addr; struct spi_master *master; struct device *dev; struct au1550_spi_info *pdata; struct resource *ioarea; }; /* we use an 8-bit memory device for dma transfers to/from spi fifo */ static dbdev_tab_t au1550_spi_mem_dbdev = { .dev_id = DBDMA_MEM_CHAN, .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, .dev_tsize = 0, .dev_devwidth = 8, .dev_physaddr = 0x00000000, .dev_intlevel = 0, .dev_intpolarity = 0 }; static int ddma_memid; /* id to above mem dma device */ static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw); /* * compute BRG and DIV bits to setup spi clock based on main input clock rate * that was specified in platform data structure * according to au1550 datasheet: * psc_tempclk = psc_mainclk / (2 << DIV) * spiclk = psc_tempclk / (2 * (BRG + 1)) * BRG valid range is 4..63 * DIV valid range is 0..3 */ static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) { u32 mainclk_hz = hw->pdata->mainclk_hz; u32 div, brg; for (div = 0; div < 4; div++) { brg = mainclk_hz / speed_hz / (4 << div); /* now we have BRG+1 in brg, so count with that */ if (brg < (4 + 1)) { brg = (4 + 1); /* speed_hz too big */ break; /* set lowest brg (div is == 0) */ } if (brg <= (63 + 1)) break; /* we have valid brg and div */ } if (div == 4) { div = 3; /* speed_hz too small */ brg = (63 + 1); /* set highest brg and div */ } brg--; return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div); } static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw) { hw->regs->psc_spimsk = PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD; wmb(); /* drain writebuffer */ hw->regs->psc_spievent = PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD; wmb(); /* drain writebuffer */ } static void au1550_spi_reset_fifos(struct au1550_spi *hw) { u32 pcr; hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC; wmb(); /* drain writebuffer */ do { pcr = hw->regs->psc_spipcr; wmb(); /* drain writebuffer */ } while (pcr != 0); } /* * dma transfers are used for the most common spi word size of 8-bits * we cannot easily change already set up dma channels' width, so if we wanted * dma support for more than 8-bit words (up to 24 bits), we would need to * setup dma channels from scratch on each spi transfer, based on bits_per_word * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set() */ static void au1550_spi_chipsel(struct spi_device *spi, int value) { struct au1550_spi *hw = spi_master_get_devdata(spi->master); unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; u32 cfg, stat; switch (value) { case BITBANG_CS_INACTIVE: if (hw->pdata->deactivate_cs) hw->pdata->deactivate_cs(hw->pdata, spi->chip_select, cspol); break; case BITBANG_CS_ACTIVE: au1550_spi_bits_handlers_set(hw, spi->bits_per_word); cfg = hw->regs->psc_spicfg; wmb(); /* drain writebuffer */ hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; wmb(); /* drain writebuffer */ if (spi->mode & SPI_CPOL) cfg |= PSC_SPICFG_BI; else cfg &= ~PSC_SPICFG_BI; if (spi->mode & SPI_CPHA) cfg &= ~PSC_SPICFG_CDE; else cfg |= PSC_SPICFG_CDE; if (spi->mode & SPI_LSB_FIRST) cfg |= PSC_SPICFG_MLF; else cfg &= ~PSC_SPICFG_MLF; if (hw->usedma && spi->bits_per_word <= 8) cfg &= ~PSC_SPICFG_DD_DISABLE; else cfg |= PSC_SPICFG_DD_DISABLE; cfg = PSC_SPICFG_CLR_LEN(cfg); cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word); cfg = PSC_SPICFG_CLR_BAUD(cfg); cfg &= ~PSC_SPICFG_SET_DIV(3); cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz); hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE; wmb(); /* drain writebuffer */ do { stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ } while ((stat & PSC_SPISTAT_DR) == 0); if (hw->pdata->activate_cs) hw->pdata->activate_cs(hw->pdata, spi->chip_select, cspol); break; } } static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) { struct au1550_spi *hw = spi_master_get_devdata(spi->master); unsigned bpw, hz; u32 cfg, stat; bpw = spi->bits_per_word; hz = spi->max_speed_hz; if (t) { if (t->bits_per_word) bpw = t->bits_per_word; if (t->speed_hz) hz = t->speed_hz; } if (!hz) return -EINVAL; au1550_spi_bits_handlers_set(hw, spi->bits_per_word); cfg = hw->regs->psc_spicfg; wmb(); /* drain writebuffer */ hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; wmb(); /* drain writebuffer */ if (hw->usedma && bpw <= 8) cfg &= ~PSC_SPICFG_DD_DISABLE; else cfg |= PSC_SPICFG_DD_DISABLE; cfg = PSC_SPICFG_CLR_LEN(cfg); cfg |= PSC_SPICFG_SET_LEN(bpw); cfg = PSC_SPICFG_CLR_BAUD(cfg); cfg &= ~PSC_SPICFG_SET_DIV(3); cfg |= au1550_spi_baudcfg(hw, hz); hw->regs->psc_spicfg = cfg; wmb(); /* drain writebuffer */ if (cfg & PSC_SPICFG_DE_ENABLE) { do { stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ } while ((stat & PSC_SPISTAT_DR) == 0); } au1550_spi_reset_fifos(hw); au1550_spi_mask_ack_all(hw); return 0; } /* * for dma spi transfers, we have to setup rx channel, otherwise there is * no reliable way how to recognize that spi transfer is done * dma complete callbacks are called before real spi transfer is finished * and if only tx dma channel is set up (and rx fifo overflow event masked) * spi master done event irq is not generated unless rx fifo is empty (emptied) * so we need rx tmp buffer to use for rx dma if user does not provide one */ static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) { hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); if (!hw->dma_rx_tmpbuf) return -ENOMEM; hw->dma_rx_tmpbuf_size = size; hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf, size, DMA_FROM_DEVICE); if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) { kfree(hw->dma_rx_tmpbuf); hw->dma_rx_tmpbuf = 0; hw->dma_rx_tmpbuf_size = 0; return -EFAULT; } return 0; } static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw) { dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr, hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE); kfree(hw->dma_rx_tmpbuf); hw->dma_rx_tmpbuf = 0; hw->dma_rx_tmpbuf_size = 0; } static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t) { struct au1550_spi *hw = spi_master_get_devdata(spi->master); dma_addr_t dma_tx_addr; dma_addr_t dma_rx_addr; u32 res; hw->len = t->len; hw->tx_count = 0; hw->rx_count = 0; hw->tx = t->tx_buf; hw->rx = t->rx_buf; dma_tx_addr = t->tx_dma; dma_rx_addr = t->rx_dma; /* * check if buffers are already dma mapped, map them otherwise: * - first map the TX buffer, so cache data gets written to memory * - then map the RX buffer, so that cache entries (with * soon-to-be-stale data) get removed * use rx buffer in place of tx if tx buffer was not provided * use temp rx buffer (preallocated or realloc to fit) for rx dma */ if (t->tx_buf) { if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ dma_tx_addr = dma_map_single(hw->dev, (void *)t->tx_buf, t->len, DMA_TO_DEVICE); if (dma_mapping_error(hw->dev, dma_tx_addr)) dev_err(hw->dev, "tx dma map error\n"); } } if (t->rx_buf) { if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ dma_rx_addr = dma_map_single(hw->dev, (void *)t->rx_buf, t->len, DMA_FROM_DEVICE); if (dma_mapping_error(hw->dev, dma_rx_addr)) dev_err(hw->dev, "rx dma map error\n"); } } else { if (t->len > hw->dma_rx_tmpbuf_size) { int ret; au1550_spi_dma_rxtmp_free(hw); ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len, AU1550_SPI_DMA_RXTMP_MINSIZE)); if (ret < 0) return ret; } hw->rx = hw->dma_rx_tmpbuf; dma_rx_addr = hw->dma_rx_tmpbuf_addr; dma_sync_single_for_device(hw->dev, dma_rx_addr, t->len, DMA_FROM_DEVICE); } if (!t->tx_buf) { dma_sync_single_for_device(hw->dev, dma_rx_addr, t->len, DMA_BIDIRECTIONAL); hw->tx = hw->rx; } /* put buffers on the ring */ res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx), t->len, DDMA_FLAGS_IE); if (!res) dev_err(hw->dev, "rx dma put dest error\n"); res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx), t->len, DDMA_FLAGS_IE); if (!res) dev_err(hw->dev, "tx dma put source error\n"); au1xxx_dbdma_start(hw->dma_rx_ch); au1xxx_dbdma_start(hw->dma_tx_ch); /* by default enable nearly all events interrupt */ hw->regs->psc_spimsk = PSC_SPIMSK_SD; wmb(); /* drain writebuffer */ /* start the transfer */ hw->regs->psc_spipcr = PSC_SPIPCR_MS; wmb(); /* drain writebuffer */ wait_for_completion(&hw->master_done); au1xxx_dbdma_stop(hw->dma_tx_ch); au1xxx_dbdma_stop(hw->dma_rx_ch); if (!t->rx_buf) { /* using the temporal preallocated and premapped buffer */ dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len, DMA_FROM_DEVICE); } /* unmap buffers if mapped above */ if (t->rx_buf && t->rx_dma == 0 ) dma_unmap_single(hw->dev, dma_rx_addr, t->len, DMA_FROM_DEVICE); if (t->tx_buf && t->tx_dma == 0 ) dma_unmap_single(hw->dev, dma_tx_addr, t->len, DMA_TO_DEVICE); return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; } static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw) { u32 stat, evnt; stat = hw->regs->psc_spistat; evnt = hw->regs->psc_spievent; wmb(); /* drain writebuffer */ if ((stat & PSC_SPISTAT_DI) == 0) { dev_err(hw->dev, "Unexpected IRQ!\n"); return IRQ_NONE; } if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD)) != 0) { /* * due to an spi error we consider transfer as done, * so mask all events until before next transfer start * and stop the possibly running dma immediately */ au1550_spi_mask_ack_all(hw); au1xxx_dbdma_stop(hw->dma_rx_ch); au1xxx_dbdma_stop(hw->dma_tx_ch); /* get number of transferred bytes */ hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch); hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch); au1xxx_dbdma_reset(hw->dma_rx_ch); au1xxx_dbdma_reset(hw->dma_tx_ch); au1550_spi_reset_fifos(hw); if (evnt == PSC_SPIEVNT_RO) dev_err(hw->dev, "dma transfer: receive FIFO overflow!\n"); else dev_err(hw->dev, "dma transfer: unexpected SPI error " "(event=0x%x stat=0x%x)!\n", evnt, stat); complete(&hw->master_done); return IRQ_HANDLED; } if ((evnt & PSC_SPIEVNT_MD) != 0) { /* transfer completed successfully */ au1550_spi_mask_ack_all(hw); hw->rx_count = hw->len; hw->tx_count = hw->len; complete(&hw->master_done); } return IRQ_HANDLED; } /* routines to handle different word sizes in pio mode */ #define AU1550_SPI_RX_WORD(size, mask) \ static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \ { \ u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \ wmb(); /* drain writebuffer */ \ if (hw->rx) { \ *(u##size *)hw->rx = (u##size)fifoword; \ hw->rx += (size) / 8; \ } \ hw->rx_count += (size) / 8; \ } #define AU1550_SPI_TX_WORD(size, mask) \ static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \ { \ u32 fifoword = 0; \ if (hw->tx) { \ fifoword = *(u##size *)hw->tx & (u32)(mask); \ hw->tx += (size) / 8; \ } \ hw->tx_count += (size) / 8; \ if (hw->tx_count >= hw->len) \ fifoword |= PSC_SPITXRX_LC; \ hw->regs->psc_spitxrx = fifoword; \ wmb(); /* drain writebuffer */ \ } AU1550_SPI_RX_WORD(8,0xff) AU1550_SPI_RX_WORD(16,0xffff) AU1550_SPI_RX_WORD(32,0xffffff) AU1550_SPI_TX_WORD(8,0xff) AU1550_SPI_TX_WORD(16,0xffff) AU1550_SPI_TX_WORD(32,0xffffff) static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) { u32 stat, mask; struct au1550_spi *hw = spi_master_get_devdata(spi->master); hw->tx = t->tx_buf; hw->rx = t->rx_buf; hw->len = t->len; hw->tx_count = 0; hw->rx_count = 0; /* by default enable nearly all events after filling tx fifo */ mask = PSC_SPIMSK_SD; /* fill the transmit FIFO */ while (hw->tx_count < hw->len) { hw->tx_word(hw); if (hw->tx_count >= hw->len) { /* mask tx fifo request interrupt as we are done */ mask |= PSC_SPIMSK_TR; } stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ if (stat & PSC_SPISTAT_TF) break; } /* enable event interrupts */ hw->regs->psc_spimsk = mask; wmb(); /* drain writebuffer */ /* start the transfer */ hw->regs->psc_spipcr = PSC_SPIPCR_MS; wmb(); /* drain writebuffer */ wait_for_completion(&hw->master_done); return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; } static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) { int busy; u32 stat, evnt; stat = hw->regs->psc_spistat; evnt = hw->regs->psc_spievent; wmb(); /* drain writebuffer */ if ((stat & PSC_SPISTAT_DI) == 0) { dev_err(hw->dev, "Unexpected IRQ!\n"); return IRQ_NONE; } if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO | PSC_SPIEVNT_SD)) != 0) { /* * due to an error we consider transfer as done, * so mask all events until before next transfer start */ au1550_spi_mask_ack_all(hw); au1550_spi_reset_fifos(hw); dev_err(hw->dev, "pio transfer: unexpected SPI error " "(event=0x%x stat=0x%x)!\n", evnt, stat); complete(&hw->master_done); return IRQ_HANDLED; } /* * while there is something to read from rx fifo * or there is a space to write to tx fifo: */ do { busy = 0; stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ /* * Take care to not let the Rx FIFO overflow. * * We only write a byte if we have read one at least. Initially, * the write fifo is full, so we should read from the read fifo * first. * In case we miss a word from the read fifo, we should get a * RO event and should back out. */ if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) { hw->rx_word(hw); busy = 1; if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len) hw->tx_word(hw); } } while (busy); hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR; wmb(); /* drain writebuffer */ /* * Restart the SPI transmission in case of a transmit underflow. * This seems to work despite the notes in the Au1550 data book * of Figure 8-4 with flowchart for SPI master operation: * * """Note 1: An XFR Error Interrupt occurs, unless masked, * for any of the following events: Tx FIFO Underflow, * Rx FIFO Overflow, or Multiple-master Error * Note 2: In case of a Tx Underflow Error, all zeroes are * transmitted.""" * * By simply restarting the spi transfer on Tx Underflow Error, * we assume that spi transfer was paused instead of zeroes * transmittion mentioned in the Note 2 of Au1550 data book. */ if (evnt & PSC_SPIEVNT_TU) { hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD; wmb(); /* drain writebuffer */ hw->regs->psc_spipcr = PSC_SPIPCR_MS; wmb(); /* drain writebuffer */ } if (hw->rx_count >= hw->len) { /* transfer completed successfully */ au1550_spi_mask_ack_all(hw); complete(&hw->master_done); } return IRQ_HANDLED; } static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) { struct au1550_spi *hw = spi_master_get_devdata(spi->master); return hw->txrx_bufs(spi, t); } static irqreturn_t au1550_spi_irq(int irq, void *dev) { struct au1550_spi *hw = dev; return hw->irq_callback(hw); } static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw) { if (bpw <= 8) { if (hw->usedma) { hw->txrx_bufs = &au1550_spi_dma_txrxb; hw->irq_callback = &au1550_spi_dma_irq_callback; } else { hw->rx_word = &au1550_spi_rx_word_8; hw->tx_word = &au1550_spi_tx_word_8; hw->txrx_bufs = &au1550_spi_pio_txrxb; hw->irq_callback = &au1550_spi_pio_irq_callback; } } else if (bpw <= 16) { hw->rx_word = &au1550_spi_rx_word_16; hw->tx_word = &au1550_spi_tx_word_16; hw->txrx_bufs = &au1550_spi_pio_txrxb; hw->irq_callback = &au1550_spi_pio_irq_callback; } else { hw->rx_word = &au1550_spi_rx_word_32; hw->tx_word = &au1550_spi_tx_word_32; hw->txrx_bufs = &au1550_spi_pio_txrxb; hw->irq_callback = &au1550_spi_pio_irq_callback; } } static void au1550_spi_setup_psc_as_spi(struct au1550_spi *hw) { u32 stat, cfg; /* set up the PSC for SPI mode */ hw->regs->psc_ctrl = PSC_CTRL_DISABLE; wmb(); /* drain writebuffer */ hw->regs->psc_sel = PSC_SEL_PS_SPIMODE; wmb(); /* drain writebuffer */ hw->regs->psc_spicfg = 0; wmb(); /* drain writebuffer */ hw->regs->psc_ctrl = PSC_CTRL_ENABLE; wmb(); /* drain writebuffer */ do { stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ } while ((stat & PSC_SPISTAT_SR) == 0); cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE; cfg |= PSC_SPICFG_SET_LEN(8); cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8; /* use minimal allowed brg and div values as initial setting: */ cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0); #ifdef AU1550_SPI_DEBUG_LOOPBACK cfg |= PSC_SPICFG_LB; #endif hw->regs->psc_spicfg = cfg; wmb(); /* drain writebuffer */ au1550_spi_mask_ack_all(hw); hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE; wmb(); /* drain writebuffer */ do { stat = hw->regs->psc_spistat; wmb(); /* drain writebuffer */ } while ((stat & PSC_SPISTAT_DR) == 0); au1550_spi_reset_fifos(hw); } static int au1550_spi_probe(struct platform_device *pdev) { struct au1550_spi *hw; struct spi_master *master; struct resource *r; int err = 0; master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi)); if (master == NULL) { dev_err(&pdev->dev, "No memory for spi_master\n"); err = -ENOMEM; goto err_nomem; } /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 24); hw = spi_master_get_devdata(master); hw->master = master; hw->pdata = dev_get_platdata(&pdev->dev); hw->dev = &pdev->dev; if (hw->pdata == NULL) { dev_err(&pdev->dev, "No platform data supplied\n"); err = -ENOENT; goto err_no_pdata; } r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!r) { dev_err(&pdev->dev, "no IRQ\n"); err = -ENODEV; goto err_no_iores; } hw->irq = r->start; hw->usedma = 0; r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (r) { hw->dma_tx_id = r->start; r = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (r) { hw->dma_rx_id = r->start; if (usedma && ddma_memid) { if (pdev->dev.dma_mask == NULL) dev_warn(&pdev->dev, "no dma mask\n"); else hw->usedma = 1; } } } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no mmio resource\n"); err = -ENODEV; goto err_no_iores; } hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t), pdev->name); if (!hw->ioarea) { dev_err(&pdev->dev, "Cannot reserve iomem region\n"); err = -ENXIO; goto err_no_iores; } hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t)); if (!hw->regs) { dev_err(&pdev->dev, "cannot ioremap\n"); err = -ENXIO; goto err_ioremap; } platform_set_drvdata(pdev, hw); init_completion(&hw->master_done); hw->bitbang.master = hw->master; hw->bitbang.setup_transfer = au1550_spi_setupxfer; hw->bitbang.chipselect = au1550_spi_chipsel; hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs; if (hw->usedma) { hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid, hw->dma_tx_id, NULL, (void *)hw); if (hw->dma_tx_ch == 0) { dev_err(&pdev->dev, "Cannot allocate tx dma channel\n"); err = -ENXIO; goto err_no_txdma; } au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8); if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch, AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { dev_err(&pdev->dev, "Cannot allocate tx dma descriptors\n"); err = -ENXIO; goto err_no_txdma_descr; } hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id, ddma_memid, NULL, (void *)hw); if (hw->dma_rx_ch == 0) { dev_err(&pdev->dev, "Cannot allocate rx dma channel\n"); err = -ENXIO; goto err_no_rxdma; } au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8); if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch, AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { dev_err(&pdev->dev, "Cannot allocate rx dma descriptors\n"); err = -ENXIO; goto err_no_rxdma_descr; } err = au1550_spi_dma_rxtmp_alloc(hw, AU1550_SPI_DMA_RXTMP_MINSIZE); if (err < 0) { dev_err(&pdev->dev, "Cannot allocate initial rx dma tmp buffer\n"); goto err_dma_rxtmp_alloc; } } au1550_spi_bits_handlers_set(hw, 8); err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw); if (err) { dev_err(&pdev->dev, "Cannot claim IRQ\n"); goto err_no_irq; } master->bus_num = pdev->id; master->num_chipselect = hw->pdata->num_chipselect; /* * precompute valid range for spi freq - from au1550 datasheet: * psc_tempclk = psc_mainclk / (2 << DIV) * spiclk = psc_tempclk / (2 * (BRG + 1)) * BRG valid range is 4..63 * DIV valid range is 0..3 * round the min and max frequencies to values that would still * produce valid brg and div */ { int min_div = (2 << 0) * (2 * (4 + 1)); int max_div = (2 << 3) * (2 * (63 + 1)); master->max_speed_hz = hw->pdata->mainclk_hz / min_div; master->min_speed_hz = hw->pdata->mainclk_hz / (max_div + 1) + 1; } au1550_spi_setup_psc_as_spi(hw); err = spi_bitbang_start(&hw->bitbang); if (err) { dev_err(&pdev->dev, "Failed to register SPI master\n"); goto err_register; } dev_info(&pdev->dev, "spi master registered: bus_num=%d num_chipselect=%d\n", master->bus_num, master->num_chipselect); return 0; err_register: free_irq(hw->irq, hw); err_no_irq: au1550_spi_dma_rxtmp_free(hw); err_dma_rxtmp_alloc: err_no_rxdma_descr: if (hw->usedma) au1xxx_dbdma_chan_free(hw->dma_rx_ch); err_no_rxdma: err_no_txdma_descr: if (hw->usedma) au1xxx_dbdma_chan_free(hw->dma_tx_ch); err_no_txdma: iounmap((void __iomem *)hw->regs); err_ioremap: release_mem_region(r->start, sizeof(psc_spi_t)); err_no_iores: err_no_pdata: spi_master_put(hw->master); err_nomem: return err; } static int au1550_spi_remove(struct platform_device *pdev) { struct au1550_spi *hw = platform_get_drvdata(pdev); dev_info(&pdev->dev, "spi master remove: bus_num=%d\n", hw->master->bus_num); spi_bitbang_stop(&hw->bitbang); free_irq(hw->irq, hw); iounmap((void __iomem *)hw->regs); release_mem_region(hw->ioarea->start, sizeof(psc_spi_t)); if (hw->usedma) { au1550_spi_dma_rxtmp_free(hw); au1xxx_dbdma_chan_free(hw->dma_rx_ch); au1xxx_dbdma_chan_free(hw->dma_tx_ch); } spi_master_put(hw->master); return 0; } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:au1550-spi"); static struct platform_driver au1550_spi_drv = { .probe = au1550_spi_probe, .remove = au1550_spi_remove, .driver = { .name = "au1550-spi", }, }; static int __init au1550_spi_init(void) { /* * create memory device with 8 bits dev_devwidth * needed for proper byte ordering to spi fifo */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1550: case ALCHEMY_CPU_AU1200: case ALCHEMY_CPU_AU1300: break; default: return -ENODEV; } if (usedma) { ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); if (!ddma_memid) printk(KERN_ERR "au1550-spi: cannot add memory" "dbdma device\n"); } return platform_driver_register(&au1550_spi_drv); } module_init(au1550_spi_init); static void __exit au1550_spi_exit(void) { if (usedma && ddma_memid) au1xxx_ddma_del_device(ddma_memid); platform_driver_unregister(&au1550_spi_drv); } module_exit(au1550_spi_exit); MODULE_DESCRIPTION("Au1550 PSC SPI Driver"); MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>"); MODULE_LICENSE("GPL");