// SPDX-License-Identifier: GPL-2.0 // // Driver for AT91 USART Controllers as SPI // // Copyright (C) 2018 Microchip Technology Inc. // // Author: Radu Pirea <radu.pirea@microchip.com> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-direction.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/of_gpio.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #define US_CR 0x00 #define US_MR 0x04 #define US_IER 0x08 #define US_IDR 0x0C #define US_CSR 0x14 #define US_RHR 0x18 #define US_THR 0x1C #define US_BRGR 0x20 #define US_VERSION 0xFC #define US_CR_RSTRX BIT(2) #define US_CR_RSTTX BIT(3) #define US_CR_RXEN BIT(4) #define US_CR_RXDIS BIT(5) #define US_CR_TXEN BIT(6) #define US_CR_TXDIS BIT(7) #define US_MR_SPI_MASTER 0x0E #define US_MR_CHRL GENMASK(7, 6) #define US_MR_CPHA BIT(8) #define US_MR_CPOL BIT(16) #define US_MR_CLKO BIT(18) #define US_MR_WRDBT BIT(20) #define US_MR_LOOP BIT(15) #define US_IR_RXRDY BIT(0) #define US_IR_TXRDY BIT(1) #define US_IR_OVRE BIT(5) #define US_BRGR_SIZE BIT(16) #define US_MIN_CLK_DIV 0x06 #define US_MAX_CLK_DIV BIT(16) #define US_RESET (US_CR_RSTRX | US_CR_RSTTX) #define US_DISABLE (US_CR_RXDIS | US_CR_TXDIS) #define US_ENABLE (US_CR_RXEN | US_CR_TXEN) #define US_OVRE_RXRDY_IRQS (US_IR_OVRE | US_IR_RXRDY) #define US_INIT \ (US_MR_SPI_MASTER | US_MR_CHRL | US_MR_CLKO | US_MR_WRDBT) #define US_DMA_MIN_BYTES 16 #define US_DMA_TIMEOUT (msecs_to_jiffies(1000)) /* Register access macros */ #define at91_usart_spi_readl(port, reg) \ readl_relaxed((port)->regs + US_##reg) #define at91_usart_spi_writel(port, reg, value) \ writel_relaxed((value), (port)->regs + US_##reg) #define at91_usart_spi_readb(port, reg) \ readb_relaxed((port)->regs + US_##reg) #define at91_usart_spi_writeb(port, reg, value) \ writeb_relaxed((value), (port)->regs + US_##reg) struct at91_usart_spi { struct platform_device *mpdev; struct spi_transfer *current_transfer; void __iomem *regs; struct device *dev; struct clk *clk; struct completion xfer_completion; /*used in interrupt to protect data reading*/ spinlock_t lock; phys_addr_t phybase; int irq; unsigned int current_tx_remaining_bytes; unsigned int current_rx_remaining_bytes; u32 spi_clk; u32 status; bool xfer_failed; bool use_dma; }; static void dma_callback(void *data) { struct spi_controller *ctlr = data; struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); at91_usart_spi_writel(aus, IER, US_IR_RXRDY); aus->current_rx_remaining_bytes = 0; complete(&aus->xfer_completion); } static bool at91_usart_spi_can_dma(struct spi_controller *ctrl, struct spi_device *spi, struct spi_transfer *xfer) { struct at91_usart_spi *aus = spi_master_get_devdata(ctrl); return aus->use_dma && xfer->len >= US_DMA_MIN_BYTES; } static int at91_usart_spi_configure_dma(struct spi_controller *ctlr, struct at91_usart_spi *aus) { struct dma_slave_config slave_config; struct device *dev = &aus->mpdev->dev; phys_addr_t phybase = aus->phybase; dma_cap_mask_t mask; int err = 0; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); ctlr->dma_tx = dma_request_chan(dev, "tx"); if (IS_ERR_OR_NULL(ctlr->dma_tx)) { if (IS_ERR(ctlr->dma_tx)) { err = PTR_ERR(ctlr->dma_tx); goto at91_usart_spi_error_clear; } dev_dbg(dev, "DMA TX channel not available, SPI unable to use DMA\n"); err = -EBUSY; goto at91_usart_spi_error_clear; } ctlr->dma_rx = dma_request_chan(dev, "rx"); if (IS_ERR_OR_NULL(ctlr->dma_rx)) { if (IS_ERR(ctlr->dma_rx)) { err = PTR_ERR(ctlr->dma_rx); goto at91_usart_spi_error; } dev_dbg(dev, "DMA RX channel not available, SPI unable to use DMA\n"); err = -EBUSY; goto at91_usart_spi_error; } slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; slave_config.dst_addr = (dma_addr_t)phybase + US_THR; slave_config.src_addr = (dma_addr_t)phybase + US_RHR; slave_config.src_maxburst = 1; slave_config.dst_maxburst = 1; slave_config.device_fc = false; slave_config.direction = DMA_DEV_TO_MEM; if (dmaengine_slave_config(ctlr->dma_rx, &slave_config)) { dev_err(&ctlr->dev, "failed to configure rx dma channel\n"); err = -EINVAL; goto at91_usart_spi_error; } slave_config.direction = DMA_MEM_TO_DEV; if (dmaengine_slave_config(ctlr->dma_tx, &slave_config)) { dev_err(&ctlr->dev, "failed to configure tx dma channel\n"); err = -EINVAL; goto at91_usart_spi_error; } aus->use_dma = true; return 0; at91_usart_spi_error: if (!IS_ERR_OR_NULL(ctlr->dma_tx)) dma_release_channel(ctlr->dma_tx); if (!IS_ERR_OR_NULL(ctlr->dma_rx)) dma_release_channel(ctlr->dma_rx); ctlr->dma_tx = NULL; ctlr->dma_rx = NULL; at91_usart_spi_error_clear: return err; } static void at91_usart_spi_release_dma(struct spi_controller *ctlr) { if (ctlr->dma_rx) dma_release_channel(ctlr->dma_rx); if (ctlr->dma_tx) dma_release_channel(ctlr->dma_tx); } static void at91_usart_spi_stop_dma(struct spi_controller *ctlr) { if (ctlr->dma_rx) dmaengine_terminate_all(ctlr->dma_rx); if (ctlr->dma_tx) dmaengine_terminate_all(ctlr->dma_tx); } static int at91_usart_spi_dma_transfer(struct spi_controller *ctlr, struct spi_transfer *xfer) { struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); struct dma_chan *rxchan = ctlr->dma_rx; struct dma_chan *txchan = ctlr->dma_tx; struct dma_async_tx_descriptor *rxdesc; struct dma_async_tx_descriptor *txdesc; dma_cookie_t cookie; /* Disable RX interrupt */ at91_usart_spi_writel(aus, IDR, US_IR_RXRDY); rxdesc = dmaengine_prep_slave_sg(rxchan, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) goto at91_usart_spi_err_dma; txdesc = dmaengine_prep_slave_sg(txchan, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) goto at91_usart_spi_err_dma; rxdesc->callback = dma_callback; rxdesc->callback_param = ctlr; cookie = rxdesc->tx_submit(rxdesc); if (dma_submit_error(cookie)) goto at91_usart_spi_err_dma; cookie = txdesc->tx_submit(txdesc); if (dma_submit_error(cookie)) goto at91_usart_spi_err_dma; rxchan->device->device_issue_pending(rxchan); txchan->device->device_issue_pending(txchan); return 0; at91_usart_spi_err_dma: /* Enable RX interrupt if something fails and fallback to PIO */ at91_usart_spi_writel(aus, IER, US_IR_RXRDY); at91_usart_spi_stop_dma(ctlr); return -ENOMEM; } static unsigned long at91_usart_spi_dma_timeout(struct at91_usart_spi *aus) { return wait_for_completion_timeout(&aus->xfer_completion, US_DMA_TIMEOUT); } static inline u32 at91_usart_spi_tx_ready(struct at91_usart_spi *aus) { return aus->status & US_IR_TXRDY; } static inline u32 at91_usart_spi_rx_ready(struct at91_usart_spi *aus) { return aus->status & US_IR_RXRDY; } static inline u32 at91_usart_spi_check_overrun(struct at91_usart_spi *aus) { return aus->status & US_IR_OVRE; } static inline u32 at91_usart_spi_read_status(struct at91_usart_spi *aus) { aus->status = at91_usart_spi_readl(aus, CSR); return aus->status; } static inline void at91_usart_spi_tx(struct at91_usart_spi *aus) { unsigned int len = aus->current_transfer->len; unsigned int remaining = aus->current_tx_remaining_bytes; const u8 *tx_buf = aus->current_transfer->tx_buf; if (!remaining) return; if (at91_usart_spi_tx_ready(aus)) { at91_usart_spi_writeb(aus, THR, tx_buf[len - remaining]); aus->current_tx_remaining_bytes--; } } static inline void at91_usart_spi_rx(struct at91_usart_spi *aus) { int len = aus->current_transfer->len; int remaining = aus->current_rx_remaining_bytes; u8 *rx_buf = aus->current_transfer->rx_buf; if (!remaining) return; rx_buf[len - remaining] = at91_usart_spi_readb(aus, RHR); aus->current_rx_remaining_bytes--; } static inline void at91_usart_spi_set_xfer_speed(struct at91_usart_spi *aus, struct spi_transfer *xfer) { at91_usart_spi_writel(aus, BRGR, DIV_ROUND_UP(aus->spi_clk, xfer->speed_hz)); } static irqreturn_t at91_usart_spi_interrupt(int irq, void *dev_id) { struct spi_controller *controller = dev_id; struct at91_usart_spi *aus = spi_master_get_devdata(controller); spin_lock(&aus->lock); at91_usart_spi_read_status(aus); if (at91_usart_spi_check_overrun(aus)) { aus->xfer_failed = true; at91_usart_spi_writel(aus, IDR, US_IR_OVRE | US_IR_RXRDY); spin_unlock(&aus->lock); return IRQ_HANDLED; } if (at91_usart_spi_rx_ready(aus)) { at91_usart_spi_rx(aus); spin_unlock(&aus->lock); return IRQ_HANDLED; } spin_unlock(&aus->lock); return IRQ_NONE; } static int at91_usart_spi_setup(struct spi_device *spi) { struct at91_usart_spi *aus = spi_master_get_devdata(spi->controller); u32 *ausd = spi->controller_state; unsigned int mr = at91_usart_spi_readl(aus, MR); if (spi->mode & SPI_CPOL) mr |= US_MR_CPOL; else mr &= ~US_MR_CPOL; if (spi->mode & SPI_CPHA) mr |= US_MR_CPHA; else mr &= ~US_MR_CPHA; if (spi->mode & SPI_LOOP) mr |= US_MR_LOOP; else mr &= ~US_MR_LOOP; if (!ausd) { ausd = kzalloc(sizeof(*ausd), GFP_KERNEL); if (!ausd) return -ENOMEM; spi->controller_state = ausd; } *ausd = mr; dev_dbg(&spi->dev, "setup: bpw %u mode 0x%x -> mr %d %08x\n", spi->bits_per_word, spi->mode, spi->chip_select, mr); return 0; } static int at91_usart_spi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); unsigned long dma_timeout = 0; int ret = 0; at91_usart_spi_set_xfer_speed(aus, xfer); aus->xfer_failed = false; aus->current_transfer = xfer; aus->current_tx_remaining_bytes = xfer->len; aus->current_rx_remaining_bytes = xfer->len; while ((aus->current_tx_remaining_bytes || aus->current_rx_remaining_bytes) && !aus->xfer_failed) { reinit_completion(&aus->xfer_completion); if (at91_usart_spi_can_dma(ctlr, spi, xfer) && !ret) { ret = at91_usart_spi_dma_transfer(ctlr, xfer); if (ret) continue; dma_timeout = at91_usart_spi_dma_timeout(aus); if (WARN_ON(dma_timeout == 0)) { dev_err(&spi->dev, "DMA transfer timeout\n"); return -EIO; } aus->current_tx_remaining_bytes = 0; } else { at91_usart_spi_read_status(aus); at91_usart_spi_tx(aus); } cpu_relax(); } if (aus->xfer_failed) { dev_err(aus->dev, "Overrun!\n"); return -EIO; } return 0; } static int at91_usart_spi_prepare_message(struct spi_controller *ctlr, struct spi_message *message) { struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); struct spi_device *spi = message->spi; u32 *ausd = spi->controller_state; at91_usart_spi_writel(aus, CR, US_ENABLE); at91_usart_spi_writel(aus, IER, US_OVRE_RXRDY_IRQS); at91_usart_spi_writel(aus, MR, *ausd); return 0; } static int at91_usart_spi_unprepare_message(struct spi_controller *ctlr, struct spi_message *message) { struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE); at91_usart_spi_writel(aus, IDR, US_OVRE_RXRDY_IRQS); return 0; } static void at91_usart_spi_cleanup(struct spi_device *spi) { struct at91_usart_spi_device *ausd = spi->controller_state; spi->controller_state = NULL; kfree(ausd); } static void at91_usart_spi_init(struct at91_usart_spi *aus) { at91_usart_spi_writel(aus, MR, US_INIT); at91_usart_spi_writel(aus, CR, US_RESET | US_DISABLE); } static int at91_usart_gpio_setup(struct platform_device *pdev) { struct device_node *np = pdev->dev.parent->of_node; int i; int ret; int nb; if (!np) return -EINVAL; nb = of_gpio_named_count(np, "cs-gpios"); for (i = 0; i < nb; i++) { int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); if (cs_gpio < 0) return cs_gpio; if (gpio_is_valid(cs_gpio)) { ret = devm_gpio_request_one(&pdev->dev, cs_gpio, GPIOF_DIR_OUT, dev_name(&pdev->dev)); if (ret) return ret; } } return 0; } static int at91_usart_spi_probe(struct platform_device *pdev) { struct resource *regs; struct spi_controller *controller; struct at91_usart_spi *aus; struct clk *clk; int irq; int ret; regs = platform_get_resource(to_platform_device(pdev->dev.parent), IORESOURCE_MEM, 0); if (!regs) return -EINVAL; irq = platform_get_irq(to_platform_device(pdev->dev.parent), 0); if (irq < 0) return irq; clk = devm_clk_get(pdev->dev.parent, "usart"); if (IS_ERR(clk)) return PTR_ERR(clk); ret = -ENOMEM; controller = spi_alloc_master(&pdev->dev, sizeof(*aus)); if (!controller) goto at91_usart_spi_probe_fail; ret = at91_usart_gpio_setup(pdev); if (ret) goto at91_usart_spi_probe_fail; controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; controller->dev.of_node = pdev->dev.parent->of_node; controller->bits_per_word_mask = SPI_BPW_MASK(8); controller->setup = at91_usart_spi_setup; controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX; controller->transfer_one = at91_usart_spi_transfer_one; controller->prepare_message = at91_usart_spi_prepare_message; controller->unprepare_message = at91_usart_spi_unprepare_message; controller->can_dma = at91_usart_spi_can_dma; controller->cleanup = at91_usart_spi_cleanup; controller->max_speed_hz = DIV_ROUND_UP(clk_get_rate(clk), US_MIN_CLK_DIV); controller->min_speed_hz = DIV_ROUND_UP(clk_get_rate(clk), US_MAX_CLK_DIV); platform_set_drvdata(pdev, controller); aus = spi_master_get_devdata(controller); aus->dev = &pdev->dev; aus->regs = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(aus->regs)) { ret = PTR_ERR(aus->regs); goto at91_usart_spi_probe_fail; } aus->irq = irq; aus->clk = clk; ret = devm_request_irq(&pdev->dev, irq, at91_usart_spi_interrupt, 0, dev_name(&pdev->dev), controller); if (ret) goto at91_usart_spi_probe_fail; ret = clk_prepare_enable(clk); if (ret) goto at91_usart_spi_probe_fail; aus->spi_clk = clk_get_rate(clk); at91_usart_spi_init(aus); aus->phybase = regs->start; aus->mpdev = to_platform_device(pdev->dev.parent); ret = at91_usart_spi_configure_dma(controller, aus); if (ret) goto at91_usart_fail_dma; spin_lock_init(&aus->lock); init_completion(&aus->xfer_completion); ret = devm_spi_register_master(&pdev->dev, controller); if (ret) goto at91_usart_fail_register_master; dev_info(&pdev->dev, "AT91 USART SPI Controller version 0x%x at %pa (irq %d)\n", at91_usart_spi_readl(aus, VERSION), ®s->start, irq); return 0; at91_usart_fail_register_master: at91_usart_spi_release_dma(controller); at91_usart_fail_dma: clk_disable_unprepare(clk); at91_usart_spi_probe_fail: spi_master_put(controller); return ret; } __maybe_unused static int at91_usart_spi_runtime_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); clk_disable_unprepare(aus->clk); pinctrl_pm_select_sleep_state(dev); return 0; } __maybe_unused static int at91_usart_spi_runtime_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct at91_usart_spi *aus = spi_master_get_devdata(ctrl); pinctrl_pm_select_default_state(dev); return clk_prepare_enable(aus->clk); } __maybe_unused static int at91_usart_spi_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); int ret; ret = spi_controller_suspend(ctrl); if (ret) return ret; if (!pm_runtime_suspended(dev)) at91_usart_spi_runtime_suspend(dev); return 0; } __maybe_unused static int at91_usart_spi_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct at91_usart_spi *aus = spi_master_get_devdata(ctrl); int ret; if (!pm_runtime_suspended(dev)) { ret = at91_usart_spi_runtime_resume(dev); if (ret) return ret; } at91_usart_spi_init(aus); return spi_controller_resume(ctrl); } static int at91_usart_spi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct at91_usart_spi *aus = spi_master_get_devdata(ctlr); at91_usart_spi_release_dma(ctlr); clk_disable_unprepare(aus->clk); return 0; } static const struct dev_pm_ops at91_usart_spi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(at91_usart_spi_suspend, at91_usart_spi_resume) SET_RUNTIME_PM_OPS(at91_usart_spi_runtime_suspend, at91_usart_spi_runtime_resume, NULL) }; static struct platform_driver at91_usart_spi_driver = { .driver = { .name = "at91_usart_spi", .pm = &at91_usart_spi_pm_ops, }, .probe = at91_usart_spi_probe, .remove = at91_usart_spi_remove, }; module_platform_driver(at91_usart_spi_driver); MODULE_DESCRIPTION("Microchip AT91 USART SPI Controller driver"); MODULE_AUTHOR("Radu Pirea <radu.pirea@microchip.com>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:at91_usart_spi");