/* * File: linux/drivers/serial/bfin_sport_uart.c * * Based on: drivers/serial/bfin_5xx.c by Aubrey Li. * Author: Roy Huang <roy.huang@analog.com> * * Created: Nov 22, 2006 * Copyright: (c) 2006-2007 Analog Devices Inc. * Description: this driver enable SPORTs on Blackfin emulate UART. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * This driver and the hardware supported are in term of EE-191 of ADI. * http://www.analog.com/UploadedFiles/Application_Notes/399447663EE191.pdf * This application note describe how to implement a UART on a Sharc DSP, * but this driver is implemented on Blackfin Processor. */ /* After reset, there is a prelude of low level pulse when transmit data first * time. No addtional pulse in following transmit. * According to document: * The SPORTs are ready to start transmitting or receiving data no later than * three serial clock cycles after they are enabled in the SPORTx_TCR1 or * SPORTx_RCR1 register. No serial clock cycles are lost from this point on. * The first internal frame sync will occur one frame sync delay after the * SPORTs are ready. External frame syncs can occur as soon as the SPORT is * ready. */ /* Thanks to Axel Alatalo <axel@rubico.se> for fixing sport rx bug. Sometimes * sport receives data incorrectly. The following is Axel's words. * As EE-191, sport rx samples 3 times of the UART baudrate and takes the * middle smaple of every 3 samples as the data bit. For a 8-N-1 UART setting, * 30 samples will be required for a byte. If transmitter sends a 1/3 bit short * byte due to buadrate drift, then the 30th sample of a byte, this sample is * also the third sample of the stop bit, will happens on the immediately * following start bit which will be thrown away and missed. Thus since parts * of the startbit will be missed and the receiver will begin to drift, the * effect accumulates over time until synchronization is lost. * If only require 2 samples of the stopbit (by sampling in total 29 samples), * then a to short byte as in the case above will be tolerated. Then the 1/3 * early startbit will trigger a framesync since the last read is complete * after only 2/3 stopbit and framesync is active during the last 1/3 looking * for a possible early startbit. */ //#define DEBUG #include <linux/module.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/console.h> #include <linux/sysrq.h> #include <linux/platform_device.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial_core.h> #include <asm/delay.h> #include <asm/portmux.h> #include "bfin_sport_uart.h" unsigned short bfin_uart_pin_req_sport0[] = {P_SPORT0_TFS, P_SPORT0_DTPRI, P_SPORT0_TSCLK, P_SPORT0_RFS, \ P_SPORT0_DRPRI, P_SPORT0_RSCLK, P_SPORT0_DRSEC, P_SPORT0_DTSEC, 0}; unsigned short bfin_uart_pin_req_sport1[] = {P_SPORT1_TFS, P_SPORT1_DTPRI, P_SPORT1_TSCLK, P_SPORT1_RFS, \ P_SPORT1_DRPRI, P_SPORT1_RSCLK, P_SPORT1_DRSEC, P_SPORT1_DTSEC, 0}; #define DRV_NAME "bfin-sport-uart" struct sport_uart_port { struct uart_port port; char *name; int tx_irq; int rx_irq; int err_irq; }; static void sport_uart_tx_chars(struct sport_uart_port *up); static void sport_stop_tx(struct uart_port *port); static inline void tx_one_byte(struct sport_uart_port *up, unsigned int value) { pr_debug("%s value:%x\n", __FUNCTION__, value); /* Place a Start and Stop bit */ __asm__ volatile ( "R2 = b#01111111100;\n\t" "R3 = b#10000000001;\n\t" "%0 <<= 2;\n\t" "%0 = %0 & R2;\n\t" "%0 = %0 | R3;\n\t" :"=r"(value) :"0"(value) :"R2", "R3"); pr_debug("%s value:%x\n", __FUNCTION__, value); SPORT_PUT_TX(up, value); } static inline unsigned int rx_one_byte(struct sport_uart_port *up) { unsigned int value, extract; value = SPORT_GET_RX32(up); pr_debug("%s value:%x\n", __FUNCTION__, value); /* Extract 8 bits data */ __asm__ volatile ( "R5 = 0;\n\t" "P0 = 8;\n\t" "R1 = 0x1801(Z);\n\t" "R3 = 0x0300(Z);\n\t" "R4 = 0;\n\t" "LSETUP(loop_s, loop_e) LC0 = P0;\nloop_s:\t" "R2 = extract(%1, R1.L)(Z);\n\t" "R2 <<= R4;\n\t" "R5 = R5 | R2;\n\t" "R1 = R1 - R3;\nloop_e:\t" "R4 += 1;\n\t" "%0 = R5;\n\t" :"=r"(extract) :"r"(value) :"P0", "R1", "R2","R3","R4", "R5"); pr_debug(" extract:%x\n", extract); return extract; } static int sport_uart_setup(struct sport_uart_port *up, int sclk, int baud_rate) { int tclkdiv, tfsdiv, rclkdiv; /* Set TCR1 and TCR2 */ SPORT_PUT_TCR1(up, (LTFS | ITFS | TFSR | TLSBIT | ITCLK)); SPORT_PUT_TCR2(up, 10); pr_debug("%s TCR1:%x, TCR2:%x\n", __FUNCTION__, SPORT_GET_TCR1(up), SPORT_GET_TCR2(up)); /* Set RCR1 and RCR2 */ SPORT_PUT_RCR1(up, (RCKFE | LARFS | LRFS | RFSR | IRCLK)); SPORT_PUT_RCR2(up, 28); pr_debug("%s RCR1:%x, RCR2:%x\n", __FUNCTION__, SPORT_GET_RCR1(up), SPORT_GET_RCR2(up)); tclkdiv = sclk/(2 * baud_rate) - 1; tfsdiv = 12; rclkdiv = sclk/(2 * baud_rate * 3) - 1; SPORT_PUT_TCLKDIV(up, tclkdiv); SPORT_PUT_TFSDIV(up, tfsdiv); SPORT_PUT_RCLKDIV(up, rclkdiv); SSYNC(); pr_debug("%s sclk:%d, baud_rate:%d, tclkdiv:%d, tfsdiv:%d, rclkdiv:%d\n", __FUNCTION__, sclk, baud_rate, tclkdiv, tfsdiv, rclkdiv); return 0; } static irqreturn_t sport_uart_rx_irq(int irq, void *dev_id) { struct sport_uart_port *up = dev_id; struct tty_struct *tty = up->port.info->port.tty; unsigned int ch; do { ch = rx_one_byte(up); up->port.icount.rx++; if (uart_handle_sysrq_char(&up->port, ch)) ; else tty_insert_flip_char(tty, ch, TTY_NORMAL); } while (SPORT_GET_STAT(up) & RXNE); tty_flip_buffer_push(tty); return IRQ_HANDLED; } static irqreturn_t sport_uart_tx_irq(int irq, void *dev_id) { sport_uart_tx_chars(dev_id); return IRQ_HANDLED; } static irqreturn_t sport_uart_err_irq(int irq, void *dev_id) { struct sport_uart_port *up = dev_id; struct tty_struct *tty = up->port.info->port.tty; unsigned int stat = SPORT_GET_STAT(up); /* Overflow in RX FIFO */ if (stat & ROVF) { up->port.icount.overrun++; tty_insert_flip_char(tty, 0, TTY_OVERRUN); SPORT_PUT_STAT(up, ROVF); /* Clear ROVF bit */ } /* These should not happen */ if (stat & (TOVF | TUVF | RUVF)) { printk(KERN_ERR "SPORT Error:%s %s %s\n", (stat & TOVF)?"TX overflow":"", (stat & TUVF)?"TX underflow":"", (stat & RUVF)?"RX underflow":""); SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN); SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) & ~RSPEN); } SSYNC(); return IRQ_HANDLED; } /* Reqeust IRQ, Setup clock */ static int sport_startup(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; char buffer[20]; int retval; pr_debug("%s enter\n", __FUNCTION__); memset(buffer, 20, '\0'); snprintf(buffer, 20, "%s rx", up->name); retval = request_irq(up->rx_irq, sport_uart_rx_irq, IRQF_SAMPLE_RANDOM, buffer, up); if (retval) { printk(KERN_ERR "Unable to request interrupt %s\n", buffer); return retval; } snprintf(buffer, 20, "%s tx", up->name); retval = request_irq(up->tx_irq, sport_uart_tx_irq, IRQF_SAMPLE_RANDOM, buffer, up); if (retval) { printk(KERN_ERR "Unable to request interrupt %s\n", buffer); goto fail1; } snprintf(buffer, 20, "%s err", up->name); retval = request_irq(up->err_irq, sport_uart_err_irq, IRQF_SAMPLE_RANDOM, buffer, up); if (retval) { printk(KERN_ERR "Unable to request interrupt %s\n", buffer); goto fail2; } if (port->line) { if (peripheral_request_list(bfin_uart_pin_req_sport1, DRV_NAME)) goto fail3; } else { if (peripheral_request_list(bfin_uart_pin_req_sport0, DRV_NAME)) goto fail3; } sport_uart_setup(up, get_sclk(), port->uartclk); /* Enable receive interrupt */ SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) | RSPEN)); SSYNC(); return 0; fail3: printk(KERN_ERR DRV_NAME ": Requesting Peripherals failed\n"); free_irq(up->err_irq, up); fail2: free_irq(up->tx_irq, up); fail1: free_irq(up->rx_irq, up); return retval; } static void sport_uart_tx_chars(struct sport_uart_port *up) { struct circ_buf *xmit = &up->port.info->xmit; if (SPORT_GET_STAT(up) & TXF) return; if (up->port.x_char) { tx_one_byte(up, up->port.x_char); up->port.icount.tx++; up->port.x_char = 0; return; } if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) { sport_stop_tx(&up->port); return; } while(!(SPORT_GET_STAT(up) & TXF) && !uart_circ_empty(xmit)) { tx_one_byte(up, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE -1); up->port.icount.tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&up->port); } static unsigned int sport_tx_empty(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; unsigned int stat; stat = SPORT_GET_STAT(up); pr_debug("%s stat:%04x\n", __FUNCTION__, stat); if (stat & TXHRE) { return TIOCSER_TEMT; } else return 0; } static unsigned int sport_get_mctrl(struct uart_port *port) { pr_debug("%s enter\n", __FUNCTION__); return (TIOCM_CTS | TIOCM_CD | TIOCM_DSR); } static void sport_set_mctrl(struct uart_port *port, unsigned int mctrl) { pr_debug("%s enter\n", __FUNCTION__); } static void sport_stop_tx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; unsigned int stat; pr_debug("%s enter\n", __FUNCTION__); stat = SPORT_GET_STAT(up); while(!(stat & TXHRE)) { udelay(1); stat = SPORT_GET_STAT(up); } /* Although the hold register is empty, last byte is still in shift * register and not sent out yet. If baud rate is lower than default, * delay should be longer. For example, if the baud rate is 9600, * the delay must be at least 2ms by experience */ udelay(500); SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN)); SSYNC(); return; } static void sport_start_tx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __FUNCTION__); /* Write data into SPORT FIFO before enable SPROT to transmit */ sport_uart_tx_chars(up); /* Enable transmit, then an interrupt will generated */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN)); SSYNC(); pr_debug("%s exit\n", __FUNCTION__); } static void sport_stop_rx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __FUNCTION__); /* Disable sport to stop rx */ SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN)); SSYNC(); } static void sport_enable_ms(struct uart_port *port) { pr_debug("%s enter\n", __FUNCTION__); } static void sport_break_ctl(struct uart_port *port, int break_state) { pr_debug("%s enter\n", __FUNCTION__); } static void sport_shutdown(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __FUNCTION__); /* Disable sport */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN)); SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN)); SSYNC(); if (port->line) { peripheral_free_list(bfin_uart_pin_req_sport1); } else { peripheral_free_list(bfin_uart_pin_req_sport0); } free_irq(up->rx_irq, up); free_irq(up->tx_irq, up); free_irq(up->err_irq, up); } static void sport_set_termios(struct uart_port *port, struct termios *termios, struct termios *old) { pr_debug("%s enter, c_cflag:%08x\n", __FUNCTION__, termios->c_cflag); uart_update_timeout(port, CS8 ,port->uartclk); } static const char *sport_type(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __FUNCTION__); return up->name; } static void sport_release_port(struct uart_port *port) { pr_debug("%s enter\n", __FUNCTION__); } static int sport_request_port(struct uart_port *port) { pr_debug("%s enter\n", __FUNCTION__); return 0; } static void sport_config_port(struct uart_port *port, int flags) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __FUNCTION__); up->port.type = PORT_BFIN_SPORT; } static int sport_verify_port(struct uart_port *port, struct serial_struct *ser) { pr_debug("%s enter\n", __FUNCTION__); return 0; } struct uart_ops sport_uart_ops = { .tx_empty = sport_tx_empty, .set_mctrl = sport_set_mctrl, .get_mctrl = sport_get_mctrl, .stop_tx = sport_stop_tx, .start_tx = sport_start_tx, .stop_rx = sport_stop_rx, .enable_ms = sport_enable_ms, .break_ctl = sport_break_ctl, .startup = sport_startup, .shutdown = sport_shutdown, .set_termios = sport_set_termios, .type = sport_type, .release_port = sport_release_port, .request_port = sport_request_port, .config_port = sport_config_port, .verify_port = sport_verify_port, }; static struct sport_uart_port sport_uart_ports[] = { { /* SPORT 0 */ .name = "SPORT0", .tx_irq = IRQ_SPORT0_TX, .rx_irq = IRQ_SPORT0_RX, .err_irq= IRQ_SPORT0_ERROR, .port = { .type = PORT_BFIN_SPORT, .iotype = UPIO_MEM, .membase = (void __iomem *)SPORT0_TCR1, .mapbase = SPORT0_TCR1, .irq = IRQ_SPORT0_RX, .uartclk = CONFIG_SPORT_BAUD_RATE, .fifosize = 8, .ops = &sport_uart_ops, .line = 0, }, }, { /* SPORT 1 */ .name = "SPORT1", .tx_irq = IRQ_SPORT1_TX, .rx_irq = IRQ_SPORT1_RX, .err_irq= IRQ_SPORT1_ERROR, .port = { .type = PORT_BFIN_SPORT, .iotype = UPIO_MEM, .membase = (void __iomem *)SPORT1_TCR1, .mapbase = SPORT1_TCR1, .irq = IRQ_SPORT1_RX, .uartclk = CONFIG_SPORT_BAUD_RATE, .fifosize = 8, .ops = &sport_uart_ops, .line = 1, }, } }; static struct uart_driver sport_uart_reg = { .owner = THIS_MODULE, .driver_name = "SPORT-UART", .dev_name = "ttySS", .major = 204, .minor = 84, .nr = ARRAY_SIZE(sport_uart_ports), .cons = NULL, }; static int sport_uart_suspend(struct platform_device *dev, pm_message_t state) { struct sport_uart_port *sport = platform_get_drvdata(dev); pr_debug("%s enter\n", __FUNCTION__); if (sport) uart_suspend_port(&sport_uart_reg, &sport->port); return 0; } static int sport_uart_resume(struct platform_device *dev) { struct sport_uart_port *sport = platform_get_drvdata(dev); pr_debug("%s enter\n", __FUNCTION__); if (sport) uart_resume_port(&sport_uart_reg, &sport->port); return 0; } static int sport_uart_probe(struct platform_device *dev) { pr_debug("%s enter\n", __FUNCTION__); sport_uart_ports[dev->id].port.dev = &dev->dev; uart_add_one_port(&sport_uart_reg, &sport_uart_ports[dev->id].port); platform_set_drvdata(dev, &sport_uart_ports[dev->id]); return 0; } static int sport_uart_remove(struct platform_device *dev) { struct sport_uart_port *sport = platform_get_drvdata(dev); pr_debug("%s enter\n", __FUNCTION__); platform_set_drvdata(dev, NULL); if (sport) uart_remove_one_port(&sport_uart_reg, &sport->port); return 0; } static struct platform_driver sport_uart_driver = { .probe = sport_uart_probe, .remove = sport_uart_remove, .suspend = sport_uart_suspend, .resume = sport_uart_resume, .driver = { .name = DRV_NAME, }, }; static int __init sport_uart_init(void) { int ret; pr_debug("%s enter\n", __FUNCTION__); ret = uart_register_driver(&sport_uart_reg); if (ret != 0) { printk(KERN_ERR "Failed to register %s:%d\n", sport_uart_reg.driver_name, ret); return ret; } ret = platform_driver_register(&sport_uart_driver); if (ret != 0) { printk(KERN_ERR "Failed to register sport uart driver:%d\n", ret); uart_unregister_driver(&sport_uart_reg); } pr_debug("%s exit\n", __FUNCTION__); return ret; } static void __exit sport_uart_exit(void) { pr_debug("%s enter\n", __FUNCTION__); platform_driver_unregister(&sport_uart_driver); uart_unregister_driver(&sport_uart_reg); } module_init(sport_uart_init); module_exit(sport_uart_exit); MODULE_LICENSE("GPL");