/* * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family * of PCI-SCSI IO processors. * * Copyright (C) 1999-2001 Gerard Roudier * Copyright (c) 2003-2005 Matthew Wilcox * * This driver is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-2000 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier * Stefan Esser * Copyright (C) 1994 Wolfgang Stanglmeier * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham * *----------------------------------------------------------------------------- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include /* for timeouts in units of HZ */ #include "sym_glue.h" #include "sym_nvram.h" #if 0 #define SYM_DEBUG_GENERIC_SUPPORT #endif /* * Needed function prototypes. */ static void sym_int_ma (struct sym_hcb *np); static void sym_int_sir (struct sym_hcb *np); static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); /* * Print a buffer in hexadecimal format with a ".\n" at end. */ static void sym_printl_hex(u_char *p, int n) { while (n-- > 0) printf (" %x", *p++); printf (".\n"); } static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) { sym_print_addr(cp->cmd, "%s: ", label); spi_print_msg(msg); printf("\n"); } static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) { struct sym_tcb *tp = &np->target[target]; dev_info(&tp->starget->dev, "%s: ", label); spi_print_msg(msg); printf("\n"); } /* * Print something that tells about extended errors. */ void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) { if (x_status & XE_PARITY_ERR) { sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); } if (x_status & XE_EXTRA_DATA) { sym_print_addr(cmd, "extraneous data discarded.\n"); } if (x_status & XE_BAD_PHASE) { sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); } if (x_status & XE_SODL_UNRUN) { sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); } if (x_status & XE_SWIDE_OVRUN) { sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); } } /* * Return a string for SCSI BUS mode. */ static char *sym_scsi_bus_mode(int mode) { switch(mode) { case SMODE_HVD: return "HVD"; case SMODE_SE: return "SE"; case SMODE_LVD: return "LVD"; } return "??"; } /* * Soft reset the chip. * * Raising SRST when the chip is running may cause * problems on dual function chips (see below). * On the other hand, LVD devices need some delay * to settle and report actual BUS mode in STEST4. */ static void sym_chip_reset (struct sym_hcb *np) { OUTB(np, nc_istat, SRST); INB(np, nc_mbox1); udelay(10); OUTB(np, nc_istat, 0); INB(np, nc_mbox1); udelay(2000); /* For BUS MODE to settle */ } /* * Really soft reset the chip.:) * * Some 896 and 876 chip revisions may hang-up if we set * the SRST (soft reset) bit at the wrong time when SCRIPTS * are running. * So, we need to abort the current operation prior to * soft resetting the chip. */ static void sym_soft_reset (struct sym_hcb *np) { u_char istat = 0; int i; if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) goto do_chip_reset; OUTB(np, nc_istat, CABRT); for (i = 100000 ; i ; --i) { istat = INB(np, nc_istat); if (istat & SIP) { INW(np, nc_sist); } else if (istat & DIP) { if (INB(np, nc_dstat) & ABRT) break; } udelay(5); } OUTB(np, nc_istat, 0); if (!i) printf("%s: unable to abort current chip operation, " "ISTAT=0x%02x.\n", sym_name(np), istat); do_chip_reset: sym_chip_reset(np); } /* * Start reset process. * * The interrupt handler will reinitialize the chip. */ static void sym_start_reset(struct sym_hcb *np) { sym_reset_scsi_bus(np, 1); } int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) { u32 term; int retv = 0; sym_soft_reset(np); /* Soft reset the chip */ if (enab_int) OUTW(np, nc_sien, RST); /* * Enable Tolerant, reset IRQD if present and * properly set IRQ mode, prior to resetting the bus. */ OUTB(np, nc_stest3, TE); OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); OUTB(np, nc_scntl1, CRST); INB(np, nc_mbox1); udelay(200); if (!SYM_SETUP_SCSI_BUS_CHECK) goto out; /* * Check for no terminators or SCSI bus shorts to ground. * Read SCSI data bus, data parity bits and control signals. * We are expecting RESET to be TRUE and other signals to be * FALSE. */ term = INB(np, nc_sstat0); term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ if (!np->maxwide) term &= 0x3ffff; if (term != (2<<7)) { printf("%s: suspicious SCSI data while resetting the BUS.\n", sym_name(np)); printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", sym_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (SYM_SETUP_SCSI_BUS_CHECK == 1) retv = 1; } out: OUTB(np, nc_scntl1, 0); return retv; } /* * Select SCSI clock frequency */ static void sym_selectclock(struct sym_hcb *np, u_char scntl3) { /* * If multiplier not present or not selected, leave here. */ if (np->multiplier <= 1) { OUTB(np, nc_scntl3, scntl3); return; } if (sym_verbose >= 2) printf ("%s: enabling clock multiplier\n", sym_name(np)); OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ /* * Wait for the LCKFRQ bit to be set if supported by the chip. * Otherwise wait 50 micro-seconds (at least). */ if (np->features & FE_LCKFRQ) { int i = 20; while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) udelay(20); if (!i) printf("%s: the chip cannot lock the frequency\n", sym_name(np)); } else { INB(np, nc_mbox1); udelay(50+10); } OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ OUTB(np, nc_scntl3, scntl3); OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ } /* * Determine the chip's clock frequency. * * This is essential for the negotiation of the synchronous * transfer rate. * * Note: we have to return the correct value. * THERE IS NO SAFE DEFAULT VALUE. * * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. * 53C860 and 53C875 rev. 1 support fast20 transfers but * do not have a clock doubler and so are provided with a * 80 MHz clock. All other fast20 boards incorporate a doubler * and so should be delivered with a 40 MHz clock. * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base * clock and provide a clock quadrupler (160 Mhz). */ /* * calculate SCSI clock frequency (in KHz) */ static unsigned getfreq (struct sym_hcb *np, int gen) { unsigned int ms = 0; unsigned int f; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ INW(np, nc_sist); /* clear pending scsi interrupt */ OUTB(np, nc_dien, 0); /* mask all dma interrupts */ INW(np, nc_sist); /* another one, just to be sure :) */ /* * The C1010-33 core does not report GEN in SIST, * if this interrupt is masked in SIEN. * I don't know yet if the C1010-66 behaves the same way. */ if (np->features & FE_C10) { OUTW(np, nc_sien, GEN); OUTB(np, nc_istat1, SIRQD); } OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB(np, nc_stime1, 0); /* disable general purpose timer */ OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<features & FE_C10) { OUTW(np, nc_sien, 0); OUTB(np, nc_istat1, 0); } /* * set prescaler to divide by whatever 0 means * 0 ought to choose divide by 2, but appears * to set divide by 3.5 mode in my 53c810 ... */ OUTB(np, nc_scntl3, 0); /* * adjust for prescaler, and convert into KHz */ f = ms ? ((1 << gen) * (4340*4)) / ms : 0; /* * The C1010-33 result is biased by a factor * of 2/3 compared to earlier chips. */ if (np->features & FE_C10) f = (f * 2) / 3; if (sym_verbose >= 2) printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", sym_name(np), gen, ms/4, f); return f; } static unsigned sym_getfreq (struct sym_hcb *np) { u_int f1, f2; int gen = 8; getfreq (np, gen); /* throw away first result */ f1 = getfreq (np, gen); f2 = getfreq (np, gen); if (f1 > f2) f1 = f2; /* trust lower result */ return f1; } /* * Get/probe chip SCSI clock frequency */ static void sym_getclock (struct sym_hcb *np, int mult) { unsigned char scntl3 = np->sv_scntl3; unsigned char stest1 = np->sv_stest1; unsigned f1; np->multiplier = 1; f1 = 40000; /* * True with 875/895/896/895A with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (sym_verbose >= 2) printf ("%s: clock multiplier found\n", sym_name(np)); np->multiplier = mult; } /* * If multiplier not found or scntl3 not 7,5,3, * reset chip and get frequency from general purpose timer. * Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ f1 = sym_getfreq (np); if (sym_verbose) printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (sym_verbose >= 2) printf ("%s: clock multiplier assumed\n", sym_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* * Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /* * Get/probe PCI clock frequency */ static int sym_getpciclock (struct sym_hcb *np) { int f = 0; /* * For now, we only need to know about the actual * PCI BUS clock frequency for C1010-66 chips. */ #if 1 if (np->features & FE_66MHZ) { #else if (1) { #endif OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ f = sym_getfreq(np); OUTB(np, nc_stest1, 0); } np->pciclk_khz = f; return f; } /* * SYMBIOS chip clock divisor table. * * Divisors are multiplied by 10,000,000 in order to make * calculations more simple. */ #define _5M 5000000 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /* * Get clock factor and sync divisor for a given * synchronous factor period. */ static int sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) { u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u32 fak; /* Sync factor in sxfer */ u32 per; /* Period in tenths of ns */ u32 kpc; /* (per * clk) */ int ret; /* * Compute the synchronous period in tenths of nano-seconds */ if (dt && sfac <= 9) per = 125; else if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; ret = per; kpc = per * clk; if (dt) kpc <<= 1; /* * For earliest C10 revision 0, we cannot use extra * clocks for the setting of the SCSI clocking. * Note that this limits the lowest sync data transfer * to 5 Mega-transfers per second and may result in * using higher clock divisors. */ #if 1 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { /* * Look for the lowest clock divisor that allows an * output speed not faster than the period. */ while (div > 0) { --div; if (kpc > (div_10M[div] << 2)) { ++div; break; } } fak = 0; /* No extra clocks */ if (div == np->clock_divn) { /* Are we too fast ? */ ret = -1; } *divp = div; *fakp = fak; return ret; } #endif /* * Look for the greatest clock divisor that allows an * input speed faster than the period. */ while (div-- > 0) if (kpc >= (div_10M[div] << 2)) break; /* * Calculate the lowest clock factor that allows an output * speed not faster than the period, and the max output speed. * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. */ if (dt) { fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ } else { fak = (kpc - 1) / div_10M[div] + 1 - 4; /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ } /* * Check against our hardware limits, or bugs :). */ if (fak > 2) { fak = 2; ret = -1; } /* * Compute and return sync parameters. */ *divp = div; *fakp = fak; return ret; } /* * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, * 128 transfers. All chips support at least 16 transfers * bursts. The 825A, 875 and 895 chips support bursts of up * to 128 transfers and the 895A and 896 support bursts of up * to 64 transfers. All other chips support up to 16 * transfers bursts. * * For PCI 32 bit data transfers each transfer is a DWORD. * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. * * We use log base 2 (burst length) as internal code, with * value 0 meaning "burst disabled". */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static __inline void sym_init_burst(struct sym_hcb *np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } /* * Save initial settings of some IO registers. * Assumed to have been set by BIOS. * We cannot reset the chip prior to reading the * IO registers, since informations will be lost. * Since the SCRIPTS processor may be running, this * is not safe on paper, but it seems to work quite * well. :) */ static void sym_save_initial_setting (struct sym_hcb *np) { np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; np->sv_dmode = INB(np, nc_dmode) & 0xce; np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; np->sv_gpcntl = INB(np, nc_gpcntl); np->sv_stest1 = INB(np, nc_stest1); np->sv_stest2 = INB(np, nc_stest2) & 0x20; np->sv_stest4 = INB(np, nc_stest4); if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ np->sv_scntl4 = INB(np, nc_scntl4); np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; } else np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; } /* * Prepare io register values used by sym_start_up() * according to selected and supported features. */ static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) { u_char burst_max; u32 period; int i; /* * Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* * Guess the frequency of the chip's clock. */ if (np->features & (FE_ULTRA3 | FE_ULTRA2)) np->clock_khz = 160000; else if (np->features & FE_ULTRA) np->clock_khz = 80000; else np->clock_khz = 40000; /* * Get the clock multiplier factor. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; /* * Measure SCSI clock frequency for chips * it may vary from assumed one. */ if (np->features & FE_VARCLK) sym_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * The C1010 uses hardwired divisors for async. * So, we just throw away, the async. divisor.:-) */ if (np->features & FE_C10) np->rv_scntl3 = 0; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & (FE_ULTRA2|FE_ULTRA3))) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* * If chip is a C1010, guess the sync limits in DT mode. */ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { if (np->clock_khz == 160000) { np->minsync_dt = 9; np->maxsync_dt = 50; np->maxoffs_dt = nvram->type ? 62 : 31; } } /* * 64 bit addressing (895A/896/1010) ? */ if (np->features & FE_DAC) { #if SYM_CONF_DMA_ADDRESSING_MODE == 0 np->rv_ccntl1 |= (DDAC); #elif SYM_CONF_DMA_ADDRESSING_MODE == 1 if (!np->use_dac) np->rv_ccntl1 |= (DDAC); else np->rv_ccntl1 |= (XTIMOD | EXTIBMV); #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 if (!np->use_dac) np->rv_ccntl1 |= (DDAC); else np->rv_ccntl1 |= (0 | EXTIBMV); #endif } /* * Phase mismatch handled by SCRIPTS (895A/896/1010) ? */ if (np->features & FE_NOPM) np->rv_ccntl0 |= (ENPMJ); /* * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. * In dual channel mode, contention occurs if internal cycles * are used. Disable internal cycles. */ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 && np->revision_id < 0x1) np->rv_ccntl0 |= DILS; /* * Select burst length (dwords) */ burst_max = SYM_SETUP_BURST_ORDER; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. * This chip and the 860 Rev 1 may wrongly use PCI cache line * based transactions on LOAD/STORE instructions. So we have * to prevent these chips from using such PCI transactions in * this driver. The generic ncr driver that does not use * LOAD/STORE instructions does not need this work-around. */ if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 && np->revision_id >= 0x10 && np->revision_id <= 0x11) || (np->device_id == PCI_DEVICE_ID_NCR_53C860 && np->revision_id <= 0x1)) np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); /* * Select all supported special features. * If we are using on-board RAM for scripts, prefetch (PFEN) * does not help, but burst op fetch (BOF) does. * Disabling PFEN makes sure BOF will be used. */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ #if 1 if ((np->features & FE_PFEN) && !np->ram_ba) #else if (np->features & FE_PFEN) #endif np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ /* * Select some other */ np->rv_ctest4 |= MPEE; /* Master parity checking */ np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ /* * Get parity checking, host ID and verbose mode from NVRAM */ np->myaddr = 255; sym_nvram_setup_host(shost, np, nvram); /* * Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(np, nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SYM_SETUP_HOST_ID; } /* * Prepare initial io register bits for burst length */ sym_init_burst(np, burst_max); /* * Set SCSI BUS mode. * - LVD capable chips (895/895A/896/1010) report the * current BUS mode through the STEST4 IO register. * - For previous generation chips (825/825A/875), * user has to tell us how to check against HVD, * since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & (FE_ULTRA2|FE_ULTRA3)) np->scsi_mode = (np->sv_stest4 & SMODE); else if (np->features & FE_DIFF) { if (SYM_SETUP_SCSI_DIFF == 1) { if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; } else if (nvram->type == SYM_SYMBIOS_NVRAM) { if (!(INB(np, nc_gpreg) & 0x08)) np->scsi_mode = SMODE_HVD; } } else if (SYM_SETUP_SCSI_DIFF == 2) np->scsi_mode = SMODE_HVD; } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* * Set LED support from SCRIPTS. * Ignore this feature for boards known to use a * specific GPIO wiring and for the 895A, 896 * and 1010 that drive the LED directly. */ if ((SYM_SETUP_SCSI_LED || (nvram->type == SYM_SYMBIOS_NVRAM || (nvram->type == SYM_TEKRAM_NVRAM && np->device_id == PCI_DEVICE_ID_NCR_53C895))) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* * Set irq mode. */ switch(SYM_SETUP_IRQ_MODE & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* * Configure targets according to driver setup. * If NVRAM present get targets setup from NVRAM. */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { struct sym_tcb *tp = &np->target[i]; tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); tp->usrtags = SYM_SETUP_MAX_TAG; tp->usr_width = np->maxwide; tp->usr_period = 9; sym_nvram_setup_target(tp, i, nvram); if (!tp->usrtags) tp->usrflags &= ~SYM_TAGS_ENABLED; } /* * Let user know about the settings. */ printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), sym_nvram_type(nvram), np->myaddr, (np->features & FE_ULTRA3) ? 80 : (np->features & FE_ULTRA2) ? 40 : (np->features & FE_ULTRA) ? 20 : 10, sym_scsi_bus_mode(np->scsi_mode), (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); /* * Tell him more on demand. */ if (sym_verbose) { printf("%s: %s IRQ line driver%s\n", sym_name(np), np->rv_dcntl & IRQM ? "totem pole" : "open drain", np->ram_ba ? ", using on-chip SRAM" : ""); printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); if (np->features & FE_NOPM) printf("%s: handling phase mismatch from SCRIPTS.\n", sym_name(np)); } /* * And still more. */ if (sym_verbose >= 2) { printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } return 0; } /* * Test the pci bus snoop logic :-( * * Has to be called with interrupts disabled. */ #ifdef CONFIG_SCSI_SYM53C8XX_MMIO static int sym_regtest(struct sym_hcb *np) { register volatile u32 data; /* * chip registers may NOT be cached. * write 0xffffffff to a read only register area, * and try to read it back. */ data = 0xffffffff; OUTL(np, nc_dstat, data); data = INL(np, nc_dstat); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return 0x10; } return 0; } #else static inline int sym_regtest(struct sym_hcb *np) { return 0; } #endif static int sym_snooptest(struct sym_hcb *np) { u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; int i, err; err = sym_regtest(np); if (err) return err; restart_test: /* * Enable Master Parity Checking as we intend * to enable it for normal operations. */ OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); /* * init */ pc = SCRIPTZ_BA(np, snooptest); host_wr = 1; sym_wr = 2; /* * Set memory and register. */ np->scratch = cpu_to_scr(host_wr); OUTL(np, nc_temp, sym_wr); /* * Start script (exchange values) */ OUTL(np, nc_dsa, np->hcb_ba); OUTL_DSP(np, pc); /* * Wait 'til done (with timeout) */ for (i=0; i=SYM_SNOOP_TIMEOUT) { printf ("CACHE TEST FAILED: timeout.\n"); return (0x20); } /* * Check for fatal DMA errors. */ dstat = INB(np, nc_dstat); #if 1 /* Band aiding for broken hardwares that fail PCI parity */ if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { printf ("%s: PCI DATA PARITY ERROR DETECTED - " "DISABLING MASTER DATA PARITY CHECKING.\n", sym_name(np)); np->rv_ctest4 &= ~MPEE; goto restart_test; } #endif if (dstat & (MDPE|BF|IID)) { printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); return (0x80); } /* * Save termination position. */ pc = INL(np, nc_dsp); /* * Read memory and register. */ host_rd = scr_to_cpu(np->scratch); sym_rd = INL(np, nc_scratcha); sym_bk = INL(np, nc_temp); /* * Check termination position. */ if (pc != SCRIPTZ_BA(np, snoopend)+8) { printf ("CACHE TEST FAILED: script execution failed.\n"); printf ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, (u_long) SCRIPTZ_BA(np, snoopend) +8); return (0x40); } /* * Show results. */ if (host_wr != sym_rd) { printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", (int) host_wr, (int) sym_rd); err |= 1; } if (host_rd != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", (int) sym_wr, (int) host_rd); err |= 2; } if (sym_bk != sym_wr) { printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", (int) sym_wr, (int) sym_bk); err |= 4; } return err; } /* * log message for real hard errors * * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. * * exception register: * ds: dstat * si: sist * * SCSI bus lines: * so: control lines as driven by chip. * si: control lines as seen by chip. * sd: scsi data lines as seen by chip. * * wide/fastmode: * sx: sxfer (see the manual) * s3: scntl3 (see the manual) * s4: scntl4 (see the manual) * * current script command: * dsp: script address (relative to start of script). * dbc: first word of script command. * * First 24 register of the chip: * r0..rf */ static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat) { u32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL(np, nc_dsp); if (dsp > np->scripta_ba && dsp <= np->scripta_ba + np->scripta_sz) { script_ofs = dsp - np->scripta_ba; script_size = np->scripta_sz; script_base = (u_char *) np->scripta0; script_name = "scripta"; } else if (np->scriptb_ba < dsp && dsp <= np->scriptb_ba + np->scriptb_sz) { script_ofs = dsp - np->scriptb_ba; script_size = np->scriptb_sz; script_base = (u_char *) np->scriptb0; script_name = "scriptb"; } else { script_ofs = dsp; script_size = 0; script_base = NULL; script_name = "mem"; } printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), (unsigned)INB(np, nc_scntl3), (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, script_name, script_ofs, (unsigned)INL(np, nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printf ("%s: script cmd = %08x\n", sym_name(np), scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); } printf ("%s: regdump:", sym_name(np)); for (i=0; i<24;i++) printf (" %02x", (unsigned)INB_OFF(np, i)); printf (".\n"); /* * PCI BUS error. */ if (dstat & (MDPE|BF)) sym_log_bus_error(np); } static struct sym_chip sym_dev_table[] = { {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, FE_ERL} , #ifdef SYM_DEBUG_GENERIC_SUPPORT {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, FE_BOF} , #else {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} , #endif {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, FE_BOF|FE_ERL} , {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} , {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} , {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} , {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF|FE_VARCLK} , {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF|FE_VARCLK} , {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF|FE_VARCLK} , {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DIFF|FE_VARCLK} , #ifdef SYM_DEBUG_GENERIC_SUPPORT {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| FE_RAM|FE_LCKFRQ} , #else {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_LCKFRQ} , #endif {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} , {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| FE_C10} , {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| FE_C10|FE_U3EN} , {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| FE_C10|FE_U3EN} , {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| FE_RAM|FE_IO256|FE_LEDC} }; #define sym_num_devs \ (sizeof(sym_dev_table) / sizeof(sym_dev_table[0])) /* * Look up the chip table. * * Return a pointer to the chip entry if found, * zero otherwise. */ struct sym_chip * sym_lookup_chip_table (u_short device_id, u_char revision) { struct sym_chip *chip; int i; for (i = 0; i < sym_num_devs; i++) { chip = &sym_dev_table[i]; if (device_id != chip->device_id) continue; if (revision > chip->revision_id) continue; return chip; } return NULL; } #if SYM_CONF_DMA_ADDRESSING_MODE == 2 /* * Lookup the 64 bit DMA segments map. * This is only used if the direct mapping * has been unsuccessful. */ int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) { int i; if (!np->use_dac) goto weird; /* Look up existing mappings */ for (i = SYM_DMAP_SIZE-1; i > 0; i--) { if (h == np->dmap_bah[i]) return i; } /* If direct mapping is free, get it */ if (!np->dmap_bah[s]) goto new; /* Collision -> lookup free mappings */ for (s = SYM_DMAP_SIZE-1; s > 0; s--) { if (!np->dmap_bah[s]) goto new; } weird: panic("sym: ran out of 64 bit DMA segment registers"); return -1; new: np->dmap_bah[s] = h; np->dmap_dirty = 1; return s; } /* * Update IO registers scratch C..R so they will be * in sync. with queued CCB expectations. */ static void sym_update_dmap_regs(struct sym_hcb *np) { int o, i; if (!np->dmap_dirty) return; o = offsetof(struct sym_reg, nc_scrx[0]); for (i = 0; i < SYM_DMAP_SIZE; i++) { OUTL_OFF(np, o, np->dmap_bah[i]); o += 4; } np->dmap_dirty = 0; } #endif /* Enforce all the fiddly SPI rules and the chip limitations */ static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, struct sym_trans *goal) { if (!spi_support_wide(starget)) goal->width = 0; if (!spi_support_sync(starget)) { goal->iu = 0; goal->dt = 0; goal->qas = 0; goal->offset = 0; return; } if (spi_support_dt(starget)) { if (spi_support_dt_only(starget)) goal->dt = 1; if (goal->offset == 0) goal->dt = 0; } else { goal->dt = 0; } /* Some targets fail to properly negotiate DT in SE mode */ if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) goal->dt = 0; if (goal->dt) { /* all DT transfers must be wide */ goal->width = 1; if (goal->offset > np->maxoffs_dt) goal->offset = np->maxoffs_dt; if (goal->period < np->minsync_dt) goal->period = np->minsync_dt; if (goal->period > np->maxsync_dt) goal->period = np->maxsync_dt; } else { goal->iu = goal->qas = 0; if (goal->offset > np->maxoffs) goal->offset = np->maxoffs; if (goal->period < np->minsync) goal->period = np->minsync; if (goal->period > np->maxsync) goal->period = np->maxsync; } } /* * Prepare the next negotiation message if needed. * * Fill in the part of message buffer that contains the * negotiation and the nego_status field of the CCB. * Returns the size of the message in bytes. */ static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) { struct sym_tcb *tp = &np->target[cp->target]; struct scsi_target *starget = tp->starget; struct sym_trans *goal = &tp->tgoal; int msglen = 0; int nego; sym_check_goals(np, starget, goal); /* * Many devices implement PPR in a buggy way, so only use it if we * really want to. */ if (goal->offset && (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) { nego = NS_PPR; } else if (spi_width(starget) != goal->width) { nego = NS_WIDE; } else if (spi_period(starget) != goal->period || spi_offset(starget) != goal->offset) { nego = NS_SYNC; } else { goal->check_nego = 0; nego = 0; } switch (nego) { case NS_SYNC: msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, goal->offset); break; case NS_WIDE: msglen += spi_populate_width_msg(msgptr + msglen, goal->width); break; case NS_PPR: msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, goal->offset, goal->width, (goal->iu ? PPR_OPT_IU : 0) | (goal->dt ? PPR_OPT_DT : 0) | (goal->qas ? PPR_OPT_QAS : 0)); break; } cp->nego_status = nego; if (nego) { tp->nego_cp = cp; /* Keep track a nego will be performed */ if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, cp->target, nego == NS_SYNC ? "sync msgout" : nego == NS_WIDE ? "wide msgout" : "ppr msgout", msgptr); } } return msglen; } /* * Insert a job into the start queue. */ void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) { u_short qidx; #ifdef SYM_CONF_IARB_SUPPORT /* * If the previously queued CCB is not yet done, * set the IARB hint. The SCRIPTS will go with IARB * for this job when starting the previous one. * We leave devices a chance to win arbitration by * not using more than 'iarb_max' consecutive * immediate arbitrations. */ if (np->last_cp && np->iarb_count < np->iarb_max) { np->last_cp->host_flags |= HF_HINT_IARB; ++np->iarb_count; } else np->iarb_count = 0; np->last_cp = cp; #endif #if SYM_CONF_DMA_ADDRESSING_MODE == 2 /* * Make SCRIPTS aware of the 64 bit DMA * segment registers not being up-to-date. */ if (np->dmap_dirty) cp->host_xflags |= HX_DMAP_DIRTY; #endif /* * Insert first the idle task and then our job. * The MBs should ensure proper ordering. */ qidx = np->squeueput + 2; if (qidx >= MAX_QUEUE*2) qidx = 0; np->squeue [qidx] = cpu_to_scr(np->idletask_ba); MEMORY_WRITE_BARRIER(); np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); np->squeueput = qidx; if (DEBUG_FLAGS & DEBUG_QUEUE) printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); /* * Script processor may be waiting for reselect. * Wake it up. */ MEMORY_WRITE_BARRIER(); OUTB(np, nc_istat, SIGP|np->istat_sem); } #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * Start next ready-to-start CCBs. */ void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) { SYM_QUEHEAD *qp; struct sym_ccb *cp; /* * Paranoia, as usual. :-) */ assert(!lp->started_tags || !lp->started_no_tag); /* * Try to start as many commands as asked by caller. * Prevent from having both tagged and untagged * commands queued to the device at the same time. */ while (maxn--) { qp = sym_remque_head(&lp->waiting_ccbq); if (!qp) break; cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); if (cp->tag != NO_TAG) { if (lp->started_no_tag || lp->started_tags >= lp->started_max) { sym_insque_head(qp, &lp->waiting_ccbq); break; } lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA(np, resel_tag)); ++lp->started_tags; } else { if (lp->started_no_tag || lp->started_tags) { sym_insque_head(qp, &lp->waiting_ccbq); break; } lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); ++lp->started_no_tag; } cp->started = 1; sym_insque_tail(qp, &lp->started_ccbq); sym_put_start_queue(np, cp); } } #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ /* * The chip may have completed jobs. Look at the DONE QUEUE. * * On paper, memory read barriers may be needed here to * prevent out of order LOADs by the CPU from having * prefetched stale data prior to DMA having occurred. */ static int sym_wakeup_done (struct sym_hcb *np) { struct sym_ccb *cp; int i, n; u32 dsa; n = 0; i = np->dqueueget; /* MEMORY_READ_BARRIER(); */ while (1) { dsa = scr_to_cpu(np->dqueue[i]); if (!dsa) break; np->dqueue[i] = 0; if ((i = i+2) >= MAX_QUEUE*2) i = 0; cp = sym_ccb_from_dsa(np, dsa); if (cp) { MEMORY_READ_BARRIER(); sym_complete_ok (np, cp); ++n; } else printf ("%s: bad DSA (%x) in done queue.\n", sym_name(np), (u_int) dsa); } np->dqueueget = i; return n; } /* * Complete all CCBs queued to the COMP queue. * * These CCBs are assumed: * - Not to be referenced either by devices or * SCRIPTS-related queues and datas. * - To have to be completed with an error condition * or requeued. * * The device queue freeze count is incremented * for each CCB that does not prevent this. * This function is called when all CCBs involved * in error handling/recovery have been reaped. */ static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) { SYM_QUEHEAD *qp; struct sym_ccb *cp; while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { struct scsi_cmnd *cmd; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); /* Leave quiet CCBs waiting for resources */ if (cp->host_status == HS_WAIT) continue; cmd = cp->cmd; if (cam_status) sym_set_cam_status(cmd, cam_status); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { struct sym_tcb *tp = &np->target[cp->target]; struct sym_lcb *lp = sym_lp(tp, cp->lun); if (lp) { sym_remque(&cp->link2_ccbq); sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); if (cp->started) { if (cp->tag != NO_TAG) --lp->started_tags; else --lp->started_no_tag; } } cp->started = 0; continue; } #endif sym_free_ccb(np, cp); sym_xpt_done(np, cmd); } } /* * Complete all active CCBs with error. * Used on CHIP/SCSI RESET. */ static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) { /* * Move all active CCBs to the COMP queue * and flush this queue. */ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); sym_que_init(&np->busy_ccbq); sym_flush_comp_queue(np, cam_status); } /* * Start chip. * * 'reason' means: * 0: initialisation. * 1: SCSI BUS RESET delivered or received. * 2: SCSI BUS MODE changed. */ void sym_start_up (struct sym_hcb *np, int reason) { int i; u32 phys; /* * Reset chip if asked, otherwise just clear fifos. */ if (reason == 1) sym_soft_reset(np); else { OUTB(np, nc_stest3, TE|CSF); OUTONB(np, nc_ctest3, CLF); } /* * Clear Start Queue */ phys = np->squeue_ba; for (i = 0; i < MAX_QUEUE*2; i += 2) { np->squeue[i] = cpu_to_scr(np->idletask_ba); np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->squeueput = 0; /* * Clear Done Queue */ phys = np->dqueue_ba; for (i = 0; i < MAX_QUEUE*2; i += 2) { np->dqueue[i] = 0; np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); /* * Start at first entry. */ np->dqueueget = 0; /* * Install patches in scripts. * This also let point to first position the start * and done queue pointers used from SCRIPTS. */ np->fw_patch(np); /* * Wakeup all pending jobs. */ sym_flush_busy_queue(np, DID_RESET); /* * Init chip. */ OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ INB(np, nc_mbox1); udelay(2000); /* The 895 needs time for the bus mode to settle */ OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW(np, nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB(np, nc_istat , SIGP ); /* Signal Process */ OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ /* Extended Sreq/Sack filtering not supported on the C10 */ if (np->features & FE_C10) OUTB(np, nc_stest2, np->rv_stest2); else OUTB(np, nc_stest2, EXT|np->rv_stest2); OUTB(np, nc_stest3, TE); /* TolerANT enable */ OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ /* * For now, disable AIP generation on C1010-66. */ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66) OUTB(np, nc_aipcntl1, DISAIP); /* * C10101 rev. 0 errata. * Errant SGE's when in narrow. Write bits 4 & 5 of * STEST1 register to disable SGE. We probably should do * that from SCRIPTS for each selection/reselection, but * I just don't want. :) */ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 && np->revision_id < 1) OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); /* * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. * Disable overlapped arbitration for some dual function devices, * regardless revision id (kind of post-chip-design feature. ;-)) */ if (np->device_id == PCI_DEVICE_ID_NCR_53C875) OUTB(np, nc_ctest0, (1<<5)); else if (np->device_id == PCI_DEVICE_ID_NCR_53C896) np->rv_ccntl0 |= DPR; /* * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing * and/or hardware phase mismatch, since only such chips * seem to support those IO registers. */ if (np->features & (FE_DAC|FE_NOPM)) { OUTB(np, nc_ccntl0, np->rv_ccntl0); OUTB(np, nc_ccntl1, np->rv_ccntl1); } #if SYM_CONF_DMA_ADDRESSING_MODE == 2 /* * Set up scratch C and DRS IO registers to map the 32 bit * DMA address range our data structures are located in. */ if (np->use_dac) { np->dmap_bah[0] = 0; /* ??? */ OUTL(np, nc_scrx[0], np->dmap_bah[0]); OUTL(np, nc_drs, np->dmap_bah[0]); } #endif /* * If phase mismatch handled by scripts (895A/896/1010), * set PM jump addresses. */ if (np->features & FE_NOPM) { OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); } /* * Enable GPIO0 pin for writing if LED support from SCRIPTS. * Also set GPIO5 and clear GPIO6 if hardware LED control. */ if (np->features & FE_LED0) OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); else if (np->features & FE_LEDC) OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); /* * enable ints */ OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); /* * For 895/6 enable SBMC interrupt and save current SCSI bus mode. * Try to eat the spurious SBMC interrupt that may occur when * we reset the chip but not the SCSI BUS (at initialization). */ if (np->features & (FE_ULTRA2|FE_ULTRA3)) { OUTONW(np, nc_sien, SBMC); if (reason == 0) { INB(np, nc_mbox1); mdelay(100); INW(np, nc_sist); } np->scsi_mode = INB(np, nc_stest4) & SMODE; } /* * Fill in target structure. * Reinitialize usrsync. * Reinitialize usrwide. * Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->to_reset = 0; tp->head.sval = 0; tp->head.wval = np->rv_scntl3; tp->head.uval = 0; } /* * Download SCSI SCRIPTS to on-chip RAM if present, * and start script processor. * We do the download preferently from the CPU. * For platforms that may not support PCI memory mapping, * we use simple SCRIPTS that performs MEMORY MOVEs. */ phys = SCRIPTA_BA(np, init); if (np->ram_ba) { if (sym_verbose >= 2) printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); if (np->ram_ws == 8192) { memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); phys = scr_to_cpu(np->scr_ram_seg); OUTL(np, nc_mmws, phys); OUTL(np, nc_mmrs, phys); OUTL(np, nc_sfs, phys); phys = SCRIPTB_BA(np, start64); } } np->istat_sem = 0; OUTL(np, nc_dsa, np->hcb_ba); OUTL_DSP(np, phys); /* * Notify the XPT about the RESET condition. */ if (reason != 0) sym_xpt_async_bus_reset(np); } /* * Switch trans mode for current job and its target. */ static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { SYM_QUEHEAD *qp; u_char sval, wval, uval; struct sym_tcb *tp = &np->target[target]; assert(target == (INB(np, nc_sdid) & 0x0f)); sval = tp->head.sval; wval = tp->head.wval; uval = tp->head.uval; #if 0 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", sval, wval, uval, np->rv_scntl3); #endif /* * Set the offset. */ if (!(np->features & FE_C10)) sval = (sval & ~0x1f) | ofs; else sval = (sval & ~0x3f) | ofs; /* * Set the sync divisor and extra clock factor. */ if (ofs != 0) { wval = (wval & ~0x70) | ((div+1) << 4); if (!(np->features & FE_C10)) sval = (sval & ~0xe0) | (fak << 5); else { uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); } } /* * Set the bus width. */ wval = wval & ~EWS; if (wide != 0) wval |= EWS; /* * Set misc. ultra enable bits. */ if (np->features & FE_C10) { uval = uval & ~(U3EN|AIPCKEN); if (opts) { assert(np->features & FE_U3EN); uval |= U3EN; } } else { wval = wval & ~ULTRA; if (per <= 12) wval |= ULTRA; } /* * Stop there if sync parameters are unchanged. */ if (tp->head.sval == sval && tp->head.wval == wval && tp->head.uval == uval) return; tp->head.sval = sval; tp->head.wval = wval; tp->head.uval = uval; /* * Disable extended Sreq/Sack filtering if per < 50. * Not supported on the C1010. */ if (per < 50 && !(np->features & FE_C10)) OUTOFFB(np, nc_stest2, EXT); /* * set actual value and sync_status */ OUTB(np, nc_sxfer, tp->head.sval); OUTB(np, nc_scntl3, tp->head.wval); if (np->features & FE_C10) { OUTB(np, nc_scntl4, tp->head.uval); } /* * patch ALL busy ccbs of this target. */ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { struct sym_ccb *cp; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->target != target) continue; cp->phys.select.sel_scntl3 = tp->head.wval; cp->phys.select.sel_sxfer = tp->head.sval; if (np->features & FE_C10) { cp->phys.select.sel_scntl4 = tp->head.uval; } } } /* * We received a WDTR. * Let everything be aware of the changes. */ static void sym_setwide(struct sym_hcb *np, int target, u_char wide) { struct sym_tcb *tp = &np->target[target]; struct scsi_target *starget = tp->starget; if (spi_width(starget) == wide) return; sym_settrans(np, target, 0, 0, 0, wide, 0, 0); tp->tgoal.width = wide; spi_offset(starget) = 0; spi_period(starget) = 0; spi_width(starget) = wide; spi_iu(starget) = 0; spi_dt(starget) = 0; spi_qas(starget) = 0; if (sym_verbose >= 3) spi_display_xfer_agreement(starget); } /* * We received a SDTR. * Let everything be aware of the changes. */ static void sym_setsync(struct sym_hcb *np, int target, u_char ofs, u_char per, u_char div, u_char fak) { struct sym_tcb *tp = &np->target[target]; struct scsi_target *starget = tp->starget; u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; sym_settrans(np, target, 0, ofs, per, wide, div, fak); spi_period(starget) = per; spi_offset(starget) = ofs; spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { tp->tgoal.period = per; tp->tgoal.offset = ofs; tp->tgoal.check_nego = 0; } spi_display_xfer_agreement(starget); } /* * We received a PPR. * Let everything be aware of the changes. */ static void sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, u_char per, u_char wide, u_char div, u_char fak) { struct sym_tcb *tp = &np->target[target]; struct scsi_target *starget = tp->starget; sym_settrans(np, target, opts, ofs, per, wide, div, fak); spi_width(starget) = tp->tgoal.width = wide; spi_period(starget) = tp->tgoal.period = per; spi_offset(starget) = tp->tgoal.offset = ofs; spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); tp->tgoal.check_nego = 0; spi_display_xfer_agreement(starget); } /* * generic recovery from scsi interrupt * * The doc says that when the chip gets an SCSI interrupt, * it tries to stop in an orderly fashion, by completing * an instruction fetch that had started or by flushing * the DMA fifo for a write to memory that was executing. * Such a fashion is not enough to know if the instruction * that was just before the current DSP value has been * executed or not. * * There are some small SCRIPTS sections that deal with * the start queue and the done queue that may break any * assomption from the C code if we are interrupted * inside, so we reset if this happens. Btw, since these * SCRIPTS sections are executed while the SCRIPTS hasn't * started SCSI operations, it is very unlikely to happen. * * All the driver data structures are supposed to be * allocated from the same 4 GB memory window, so there * is a 1 to 1 relationship between DSA and driver data * structures. Since we are careful :) to invalidate the * DSA when we complete a command or when the SCRIPTS * pushes a DSA into a queue, we can trust it when it * points to a CCB. */ static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) { u32 dsp = INL(np, nc_dsp); u32 dsa = INL(np, nc_dsa); struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); /* * If we haven't been interrupted inside the SCRIPTS * critical pathes, we can safely restart the SCRIPTS * and trust the DSA value if it matches a CCB. */ if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && dsp < SCRIPTA_BA(np, getjob_end) + 1)) && (!(dsp > SCRIPTA_BA(np, ungetjob) && dsp < SCRIPTA_BA(np, reselect) + 1)) && (!(dsp > SCRIPTB_BA(np, sel_for_abort) && dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && (!(dsp > SCRIPTA_BA(np, done) && dsp < SCRIPTA_BA(np, done_end) + 1))) { OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ /* * If we have a CCB, let the SCRIPTS call us back for * the handling of the error with SCRATCHA filled with * STARTPOS. This way, we will be able to freeze the * device queue and requeue awaiting IOs. */ if (cp) { cp->host_status = hsts; OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); } /* * Otherwise just restart the SCRIPTS. */ else { OUTL(np, nc_dsa, 0xffffff); OUTL_DSP(np, SCRIPTA_BA(np, start)); } } else goto reset_all; return; reset_all: sym_start_reset(np); } /* * chip exception handler for selection timeout */ static void sym_int_sto (struct sym_hcb *np) { u32 dsp = INL(np, nc_dsp); if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) sym_recover_scsi_int(np, HS_SEL_TIMEOUT); else sym_start_reset(np); } /* * chip exception handler for unexpected disconnect */ static void sym_int_udc (struct sym_hcb *np) { printf ("%s: unexpected disconnect\n", sym_name(np)); sym_recover_scsi_int(np, HS_UNEXPECTED); } /* * chip exception handler for SCSI bus mode change * * spi2-r12 11.2.3 says a transceiver mode change must * generate a reset event and a device that detects a reset * event shall initiate a hard reset. It says also that a * device that detects a mode change shall set data transfer * mode to eight bit asynchronous, etc... * So, just reinitializing all except chip should be enough. */ static void sym_int_sbmc (struct sym_hcb *np) { u_char scsi_mode = INB(np, nc_stest4) & SMODE; /* * Notify user. */ printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); /* * Should suspend command processing for a few seconds and * reinitialize all except the chip. */ sym_start_up (np, 2); } /* * chip exception handler for SCSI parity error. * * When the chip detects a SCSI parity error and is * currently executing a (CH)MOV instruction, it does * not interrupt immediately, but tries to finish the * transfer of the current scatter entry before * interrupting. The following situations may occur: * * - The complete scatter entry has been transferred * without the device having changed phase. * The chip will then interrupt with the DSP pointing * to the instruction that follows the MOV. * * - A phase mismatch occurs before the MOV finished * and phase errors are to be handled by the C code. * The chip will then interrupt with both PAR and MA * conditions set. * * - A phase mismatch occurs before the MOV finished and * phase errors are to be handled by SCRIPTS. * The chip will load the DSP with the phase mismatch * JUMP address and interrupt the host processor. */ static void sym_int_par (struct sym_hcb *np, u_short sist) { u_char hsts = INB(np, HS_PRT); u32 dsp = INL(np, nc_dsp); u32 dbc = INL(np, nc_dbc); u32 dsa = INL(np, nc_dsa); u_char sbcl = INB(np, nc_sbcl); u_char cmd = dbc >> 24; int phase = cmd & 7; struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", sym_name(np), hsts, dbc, sbcl); /* * Check that the chip is connected to the SCSI BUS. */ if (!(INB(np, nc_scntl1) & ISCON)) { sym_recover_scsi_int(np, HS_UNEXPECTED); return; } /* * If the nexus is not clearly identified, reset the bus. * We will try to do better later. */ if (!cp) goto reset_all; /* * Check instruction was a MOV, direction was INPUT and * ATN is asserted. */ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) goto reset_all; /* * Keep track of the parity error. */ OUTONB(np, HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_PARITY_ERR; /* * Prepare the message to send to the device. */ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; /* * If the old phase was DATA IN phase, we have to deal with * the 3 situations described above. * For other input phases (MSG IN and STATUS), the device * must resend the whole thing that failed parity checking * or signal error. So, jumping to dispatcher should be OK. */ if (phase == 1 || phase == 5) { /* Phase mismatch handled by SCRIPTS */ if (dsp == SCRIPTB_BA(np, pm_handle)) OUTL_DSP(np, dsp); /* Phase mismatch handled by the C code */ else if (sist & MA) sym_int_ma (np); /* No phase mismatch occurred */ else { sym_set_script_dp (np, cp, dsp); OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); } } else if (phase == 7) /* We definitely cannot handle parity errors */ #if 1 /* in message-in phase due to the relection */ goto reset_all; /* path and various message anticipations. */ #else OUTL_DSP(np, SCRIPTA_BA(np, clrack)); #endif else OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); return; reset_all: sym_start_reset(np); return; } /* * chip exception handler for phase errors. * * We have to construct a new transfer descriptor, * to transfer the rest of the current block. */ static void sym_int_ma (struct sym_hcb *np) { u32 dbc; u32 rest; u32 dsp; u32 dsa; u32 nxtdsp; u32 *vdsp; u32 oadr, olen; u32 *tblp; u32 newcmd; u_int delta; u_char cmd; u_char hflags, hflags0; struct sym_pmc *pm; struct sym_ccb *cp; dsp = INL(np, nc_dsp); dbc = INL(np, nc_dbc); dsa = INL(np, nc_dsa); cmd = dbc >> 24; rest = dbc & 0xffffff; delta = 0; /* * locate matching cp if any. */ cp = sym_ccb_from_dsa(np, dsa); /* * Donnot take into account dma fifo and various buffers in * INPUT phase since the chip flushes everything before * raising the MA interrupt for interrupted INPUT phases. * For DATA IN phase, we will check for the SWIDE later. */ if ((cmd & 7) != 1 && (cmd & 7) != 5) { u_char ss0, ss2; if (np->features & FE_DFBC) delta = INW(np, nc_dfbc); else { u32 dfifo; /* * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. */ dfifo = INL(np, nc_dfifo); /* * Calculate remaining bytes in DMA fifo. * (CTEST5 = dfifo >> 16) */ if (dfifo & (DFS << 16)) delta = ((((dfifo >> 8) & 0x300) | (dfifo & 0xff)) - rest) & 0x3ff; else delta = ((dfifo & 0xff) - rest) & 0x7f; } /* * The data in the dma fifo has not been transfered to * the target -> add the amount to the rest * and clear the data. * Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB(np, nc_sstat0); if (ss0 & OLF) rest++; if (!(np->features & FE_C10)) if (ss0 & ORF) rest++; if (cp && (cp->phys.select.sel_scntl3 & EWS)) { ss2 = INB(np, nc_sstat2); if (ss2 & OLF1) rest++; if (!(np->features & FE_C10)) if (ss2 & ORF1) rest++; } /* * Clear fifos. */ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ } /* * log the information */ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, (unsigned) rest, (unsigned) delta); /* * try to find the interrupted script command, * and the address at which to continue. */ vdsp = NULL; nxtdsp = 0; if (dsp > np->scripta_ba && dsp <= np->scripta_ba + np->scripta_sz) { vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); nxtdsp = dsp; } else if (dsp > np->scriptb_ba && dsp <= np->scriptb_ba + np->scriptb_sz) { vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); nxtdsp = dsp; } /* * log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); } if (!vdsp) { printf ("%s: interrupted SCRIPT address not found.\n", sym_name (np)); goto reset_all; } if (!cp) { printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", sym_name (np)); goto reset_all; } /* * get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; } if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); } /* * check cmd against assumed interrupted script command. * If dt data phase, the MOVE instruction hasn't bit 4 of * the phase. */ if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { sym_print_addr(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24); goto reset_all; } /* * if old phase not dataphase, leave here. */ if (cmd & 2) { sym_print_addr(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n", cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; } /* * Choose the correct PM save area. * * Look at the PM_SAVE SCRIPT if you want to understand * this stuff. The equivalent code is implemented in * SCRIPTS for the 895A, 896 and 1010 that are able to * handle PM from the SCRIPTS processor. */ hflags0 = INB(np, HF_PRT); hflags = hflags0; if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { if (hflags & HF_IN_PM0) nxtdsp = scr_to_cpu(cp->phys.pm0.ret); else if (hflags & HF_IN_PM1) nxtdsp = scr_to_cpu(cp->phys.pm1.ret); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; } if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; newcmd = SCRIPTA_BA(np, pm0_data); } else { pm = &cp->phys.pm1; newcmd = SCRIPTA_BA(np, pm1_data); } hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); if (hflags != hflags0) OUTB(np, HF_PRT, hflags); /* * fillin the phase mismatch context */ pm->sg.addr = cpu_to_scr(oadr + olen - rest); pm->sg.size = cpu_to_scr(rest); pm->ret = cpu_to_scr(nxtdsp); /* * If we have a SWIDE, * - prepare the address to write the SWIDE from SCRIPTS, * - compute the SCRIPTS address to restart from, * - move current data pointer context by one byte. */ nxtdsp = SCRIPTA_BA(np, dispatch); if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && (INB(np, nc_scntl2) & WSR)) { u32 tmp; /* * Set up the table indirect for the MOVE * of the residual byte and adjust the data * pointer context. */ tmp = scr_to_cpu(pm->sg.addr); cp->phys.wresid.addr = cpu_to_scr(tmp); pm->sg.addr = cpu_to_scr(tmp + 1); tmp = scr_to_cpu(pm->sg.size); cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); pm->sg.size = cpu_to_scr(tmp - 1); /* * If only the residual byte is to be moved, * no PM context is needed. */ if ((tmp&0xffffff) == 1) newcmd = pm->ret; /* * Prepare the address of SCRIPTS that will * move the residual byte to memory. */ nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); } if (DEBUG_FLAGS & DEBUG_PHASE) { sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", hflags0, hflags, newcmd, (unsigned)scr_to_cpu(pm->sg.addr), (unsigned)scr_to_cpu(pm->sg.size), (unsigned)scr_to_cpu(pm->ret)); } /* * Restart the SCRIPTS processor. */ sym_set_script_dp (np, cp, newcmd); OUTL_DSP(np, nxtdsp); return; /* * Unexpected phase changes that occurs when the current phase * is not a DATA IN or DATA OUT phase are due to error conditions. * Such event may only happen when the SCRIPTS is using a * multibyte SCSI MOVE. * * Phase change Some possible cause * * COMMAND --> MSG IN SCSI parity error detected by target. * COMMAND --> STATUS Bad command or refused by target. * MSG OUT --> MSG IN Message rejected by target. * MSG OUT --> COMMAND Bogus target that discards extended * negotiation messages. * * The code below does not care of the new phase and so * trusts the target. Why to annoy it ? * If the interrupted phase is COMMAND phase, we restart at * dispatcher. * If a target does not get all the messages after selection, * the code assumes blindly that the target discards extended * messages and clears the negotiation status. * If the target does not want all our response to negotiation, * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids * bloat for such a should_not_happen situation). * In all other situation, we reset the BUS. * Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = SCRIPTA_BA(np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = SCRIPTA_BA(np, dispatch); break; #endif case 6: /* MSG OUT phase */ /* * If the device may want to use untagged when we want * tagged, we prepare an IDENTIFY without disc. granted, * since we will not be able to handle reselect. * Otherwise, we just don't care. */ if (dsp == SCRIPTA_BA(np, send_ident)) { if (cp->tag != NO_TAG && olen - rest <= 3) { cp->host_status = HS_BUSY; np->msgout[0] = IDENTIFY(0, cp->lun); nxtdsp = SCRIPTB_BA(np, ident_break_atn); } else nxtdsp = SCRIPTB_BA(np, ident_break); } else if (dsp == SCRIPTB_BA(np, send_wdtr) || dsp == SCRIPTB_BA(np, send_sdtr) || dsp == SCRIPTB_BA(np, send_ppr)) { nxtdsp = SCRIPTB_BA(np, nego_bad_phase); if (dsp == SCRIPTB_BA(np, send_ppr)) { struct scsi_device *dev = cp->cmd->device; dev->ppr = 0; } } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = SCRIPTA_BA(np, clrack); break; #endif } if (nxtdsp) { OUTL_DSP(np, nxtdsp); return; } reset_all: sym_start_reset(np); } /* * chip interrupt handler * * In normal situations, interrupt conditions occur one at * a time. But when something bad happens on the SCSI BUS, * the chip may raise several interrupt flags before * stopping and interrupting the CPU. The additionnal * interrupt flags are stacked in some extra registers * after the SIP and/or DIP flag has been raised in the * ISTAT. After the CPU has read the interrupt condition * flag from SIST or DSTAT, the chip unstacks the other * interrupt flags and sets the corresponding bits in * SIST or DSTAT. Since the chip starts stacking once the * SIP or DIP flag is set, there is a small window of time * where the stacking does not occur. * * Typically, multiple interrupt conditions may happen in * the following situations: * * - SCSI parity error + Phase mismatch (PAR|MA) * When an parity error is detected in input phase * and the device switches to msg-in phase inside a * block MOV. * - SCSI parity error + Unexpected disconnect (PAR|UDC) * When a stupid device does not want to handle the * recovery of an SCSI parity error. * - Some combinations of STO, PAR, UDC, ... * When using non compliant SCSI stuff, when user is * doing non compliant hot tampering on the BUS, when * something really bad happens to a device, etc ... * * The heuristic suggested by SYMBIOS to handle * multiple interrupts is to try unstacking all * interrupts conditions and to handle them on some * priority based on error severity. * This will work when the unstacking has been * successful, but we cannot be 100 % sure of that, * since the CPU may have been faster to unstack than * the chip is able to stack. Hmmm ... But it seems that * such a situation is very unlikely to happen. * * If this happen, for example STO caught by the CPU * then UDC happenning before the CPU have restarted * the SCRIPTS, the driver may wrongly complete the * same command on UDC, since the SCRIPTS didn't restart * and the DSA still points to the same command. * We avoid this situation by setting the DSA to an * invalid value when the CCB is completed and before * restarting the SCRIPTS. * * Another issue is that we need some section of our * recovery procedures to be somehow uninterruptible but * the SCRIPTS processor does not provides such a * feature. For this reason, we handle recovery preferently * from the C code and check against some SCRIPTS critical * sections from the C code. * * Hopefully, the interrupt handling of the driver is now * able to resist to weird BUS error conditions, but donnot * ask me for any guarantee that it will never fail. :-) * Use at your own decision and risk. */ void sym_interrupt (struct sym_hcb *np) { u_char istat, istatc; u_char dstat; u_short sist; /* * interrupt on the fly ? * (SCRIPTS may still be running) * * A `dummy read' is needed to ensure that the * clear of the INTF flag reaches the device * and that posted writes are flushed to memory * before the scanning of the DONE queue. * Note that SCRIPTS also (dummy) read to memory * prior to deliver the INTF interrupt condition. */ istat = INB(np, nc_istat); if (istat & INTF) { OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); istat = INB(np, nc_istat); /* DUMMY READ */ if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); sym_wakeup_done(np); } if (!(istat & (SIP|DIP))) return; #if 0 /* We should never get this one */ if (istat & CABRT) OUTB(np, nc_istat, CABRT); #endif /* * PAR and MA interrupts may occur at the same time, * and we need to know of both in order to handle * this situation properly. We try to unstack SCSI * interrupts for that reason. BTW, I dislike a LOT * such a loop inside the interrupt routine. * Even if DMA interrupt stacking is very unlikely to * happen, we also try unstacking these ones, since * this has no performance impact. */ sist = 0; dstat = 0; istatc = istat; do { if (istatc & SIP) sist |= INW(np, nc_sist); if (istatc & DIP) dstat |= INB(np, nc_dstat); istatc = INB(np, nc_istat); istat |= istatc; } while (istatc & (SIP|DIP)); if (DEBUG_FLAGS & DEBUG_TINY) printf ("<%d|%x:%x|%x:%x>", (int)INB(np, nc_scr0), dstat,sist, (unsigned)INL(np, nc_dsp), (unsigned)INL(np, nc_dbc)); /* * On paper, a memory read barrier may be needed here to * prevent out of order LOADs by the CPU from having * prefetched stale data prior to DMA having occurred. * And since we are paranoid ... :) */ MEMORY_READ_BARRIER(); /* * First, interrupts we want to service cleanly. * * Phase mismatch (MA) is the most frequent interrupt * for chip earlier than the 896 and so we have to service * it as quickly as possible. * A SCSI parity error (PAR) may be combined with a phase * mismatch condition (MA). * Programmed interrupts (SIR) are used to call the C code * from SCRIPTS. * The single step interrupt (SSI) is not used in this * driver. */ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & PAR) sym_int_par (np, sist); else if (sist & MA) sym_int_ma (np); else if (dstat & SIR) sym_int_sir (np); else if (dstat & SSI) OUTONB_STD(); else goto unknown_int; return; } /* * Now, interrupts that donnot happen in normal * situations and that we may need to recover from. * * On SCSI RESET (RST), we reset everything. * On SCSI BUS MODE CHANGE (SBMC), we complete all * active CCBs with RESET status, prepare all devices * for negotiating again and restart the SCRIPTS. * On STO and UDC, we complete the CCB with the corres- * ponding status and restart the SCRIPTS. */ if (sist & RST) { printf("%s: SCSI BUS reset detected.\n", sym_name(np)); sym_start_up (np, 1); return; } OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ if (!(sist & (GEN|HTH|SGE)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & SBMC) sym_int_sbmc (np); else if (sist & STO) sym_int_sto (np); else if (sist & UDC) sym_int_udc (np); else goto unknown_int; return; } /* * Now, interrupts we are not able to recover cleanly. * * Log message for hard errors. * Reset everything. */ sym_log_hard_error(np, sist, dstat); if ((sist & (GEN|HTH|SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { sym_start_reset(np); return; } unknown_int: /* * We just miss the cause of the interrupt. :( * Print a message. The timeout will do the real work. */ printf( "%s: unknown interrupt(s) ignored, " "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", sym_name(np), istat, dstat, sist); } /* * Dequeue from the START queue all CCBs that match * a given target/lun/task condition (-1 means all), * and move them from the BUSY queue to the COMP queue * with DID_SOFT_ERROR status condition. * This function is used during error handling/recovery. * It is called with SCRIPTS not running. */ static int sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) { int j; struct sym_ccb *cp; /* * Make sure the starting index is within range. */ assert((i >= 0) && (i < 2*MAX_QUEUE)); /* * Walk until end of START queue and dequeue every job * that matches the target/lun/task condition. */ j = i; while (i != np->squeueput) { cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); assert(cp); #ifdef SYM_CONF_IARB_SUPPORT /* Forget hints for IARB, they may be no longer relevant */ cp->host_flags &= ~HF_HINT_IARB; #endif if ((target == -1 || cp->target == target) && (lun == -1 || cp->lun == lun) && (task == -1 || cp->tag == task)) { sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); sym_remque(&cp->link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); } else { if (i != j) np->squeue[j] = np->squeue[i]; if ((j += 2) >= MAX_QUEUE*2) j = 0; } if ((i += 2) >= MAX_QUEUE*2) i = 0; } if (i != j) /* Copy back the idle task if needed */ np->squeue[j] = np->squeue[i]; np->squeueput = j; /* Update our current start queue pointer */ return (i - j) / 2; } /* * chip handler for bad SCSI status condition * * In case of bad SCSI status, we unqueue all the tasks * currently queued to the controller but not yet started * and then restart the SCRIPTS processor immediately. * * QUEUE FULL and BUSY conditions are handled the same way. * Basically all the not yet started tasks are requeued in * device queue and the queue is frozen until a completion. * * For CHECK CONDITION and COMMAND TERMINATED status, we use * the CCB of the failed command to prepare a REQUEST SENSE * SCSI command and queue it to the controller queue. * * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) { u32 startp; u_char s_status = cp->ssss_status; u_char h_flags = cp->host_flags; int msglen; int i; /* * Compute the index of the next job to start from SCRIPTS. */ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; /* * The last CCB queued used for IARB hint may be * no longer relevant. Forget it. */ #ifdef SYM_CONF_IARB_SUPPORT if (np->last_cp) np->last_cp = 0; #endif /* * Now deal with the SCSI status. */ switch(s_status) { case S_BUSY: case S_QUEUE_FULL: if (sym_verbose >= 2) { sym_print_addr(cp->cmd, "%s\n", s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); } default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ sym_complete_error (np, cp); break; case S_TERMINATED: case S_CHECK_COND: /* * If we get an SCSI error when requesting sense, give up. */ if (h_flags & HF_SENSE) { sym_complete_error (np, cp); break; } /* * Dequeue all queued CCBs for that device not yet started, * and restart the SCRIPTS processor immediately. */ sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); OUTL_DSP(np, SCRIPTA_BA(np, start)); /* * Save some info of the actual IO. * Compute the data residual. */ cp->sv_scsi_status = cp->ssss_status; cp->sv_xerr_status = cp->xerr_status; cp->sv_resid = sym_compute_residual(np, cp); /* * Prepare all needed data structures for * requesting sense data. */ cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); msglen = 1; /* * If we are currently using anything different from * async. 8 bit data transfers with that target, * start a negotiation, since the device may want * to report us a UNIT ATTENTION condition due to * a cause we currently ignore, and we donnot want * to be stuck with WIDE and/or SYNC data transfer. * * cp->nego_status is filled by sym_prepare_nego(). */ cp->nego_status = 0; msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); /* * Message table indirect structure. */ cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); cp->phys.smsg.size = cpu_to_scr(msglen); /* * sense command */ cp->phys.cmd.addr = CCB_BA(cp, sensecmd); cp->phys.cmd.size = cpu_to_scr(6); /* * patch requested size into sense command */ cp->sensecmd[0] = REQUEST_SENSE; cp->sensecmd[1] = 0; if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) cp->sensecmd[1] = cp->lun << 5; cp->sensecmd[4] = SYM_SNS_BBUF_LEN; cp->data_len = SYM_SNS_BBUF_LEN; /* * sense data */ memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); /* * requeue the command. */ startp = SCRIPTB_BA(np, sdata_in); cp->phys.head.savep = cpu_to_scr(startp); cp->phys.head.lastp = cpu_to_scr(startp); cp->startp = cpu_to_scr(startp); cp->goalp = cpu_to_scr(startp + 16); cp->host_xflags = 0; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->host_flags = (HF_SENSE|HF_DATA_IN); cp->xerr_status = 0; cp->extra_bytes = 0; cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); /* * Requeue the command. */ sym_put_start_queue(np, cp); /* * Give back to upper layer everything we have dequeued. */ sym_flush_comp_queue(np, 0); break; } } /* * After a device has accepted some management message * as BUS DEVICE RESET, ABORT TASK, etc ..., or when * a device signals a UNIT ATTENTION condition, some * tasks are thrown away by the device. We are required * to reflect that on our tasks list since the device * will never complete these tasks. * * This function move from the BUSY queue to the COMP * queue all disconnected CCBs for a given target that * match the following criteria: * - lun=-1 means any logical UNIT otherwise a given one. * - task=-1 means any task, otherwise a given one. */ int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) { SYM_QUEHEAD qtmp, *qp; int i = 0; struct sym_ccb *cp; /* * Move the entire BUSY queue to our temporary queue. */ sym_que_init(&qtmp); sym_que_splice(&np->busy_ccbq, &qtmp); sym_que_init(&np->busy_ccbq); /* * Put all CCBs that matches our criteria into * the COMP queue and put back other ones into * the BUSY queue. */ while ((qp = sym_remque_head(&qtmp)) != 0) { struct scsi_cmnd *cmd; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); cmd = cp->cmd; if (cp->host_status != HS_DISCONNECT || cp->target != target || (lun != -1 && cp->lun != lun) || (task != -1 && (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); continue; } sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); /* Preserve the software timeout condition */ if (sym_get_cam_status(cmd) != DID_TIME_OUT) sym_set_cam_status(cmd, cam_status); ++i; #if 0 printf("XXXX TASK @%p CLEARED\n", cp); #endif } return i; } /* * chip handler for TASKS recovery * * We cannot safely abort a command, while the SCRIPTS * processor is running, since we just would be in race * with it. * * As long as we have tasks to abort, we keep the SEM * bit set in the ISTAT. When this bit is set, the * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) * each time it enters the scheduler. * * If we have to reset a target, clear tasks of a unit, * or to perform the abort of a disconnected job, we * restart the SCRIPTS for selecting the target. Once * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). * If it loses arbitration, the SCRIPTS will interrupt again * the next time it will enter its scheduler, and so on ... * * On SIR_TARGET_SELECTED, we scan for the more * appropriate thing to do: * * - If nothing, we just sent a M_ABORT message to the * target to get rid of the useless SCSI bus ownership. * According to the specs, no tasks shall be affected. * - If the target is to be reset, we send it a M_RESET * message. * - If a logical UNIT is to be cleared , we send the * IDENTIFY(lun) + M_ABORT. * - If an untagged task is to be aborted, we send the * IDENTIFY(lun) + M_ABORT. * - If a tagged task is to be aborted, we send the * IDENTIFY(lun) + task attributes + M_ABORT_TAG. * * Once our 'kiss of death' :) message has been accepted * by the target, the SCRIPTS interrupts again * (SIR_ABORT_SENT). On this interrupt, we complete * all the CCBs that should have been aborted by the * target according to our message. */ static void sym_sir_task_recovery(struct sym_hcb *np, int num) { SYM_QUEHEAD *qp; struct sym_ccb *cp; struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ struct scsi_target *starget; int target=-1, lun=-1, task; int i, k; switch(num) { /* * The SCRIPTS processor stopped before starting * the next command in order to allow us to perform * some task recovery. */ case SIR_SCRIPT_STOPPED: /* * Do we have any target to reset or unit to clear ? */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { tp = &np->target[i]; if (tp->to_reset || (tp->lun0p && tp->lun0p->to_clear)) { target = i; break; } if (!tp->lunmp) continue; for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { target = i; break; } } if (target != -1) break; } /* * If not, walk the busy queue for any * disconnected CCB to be aborted. */ if (target == -1) { FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->to_abort) { target = cp->target; break; } } } /* * If some target is to be selected, * prepare and start the selection. */ if (target != -1) { tp = &np->target[target]; np->abrt_sel.sel_id = target; np->abrt_sel.sel_scntl3 = tp->head.wval; np->abrt_sel.sel_sxfer = tp->head.sval; OUTL(np, nc_dsa, np->hcb_ba); OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); return; } /* * Now look for a CCB to abort that haven't started yet. * Btw, the SCRIPTS processor is still stopped, so * we are not in race. */ i = 0; cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_BUSY && cp->host_status != HS_NEGOTIATE) continue; if (!cp->to_abort) continue; #ifdef SYM_CONF_IARB_SUPPORT /* * If we are using IMMEDIATE ARBITRATION, we donnot * want to cancel the last queued CCB, since the * SCRIPTS may have anticipated the selection. */ if (cp == np->last_cp) { cp->to_abort = 0; continue; } #endif i = 1; /* Means we have found some */ break; } if (!i) { /* * We are done, so we donnot need * to synchronize with the SCRIPTS anylonger. * Remove the SEM flag from the ISTAT. */ np->istat_sem = 0; OUTB(np, nc_istat, SIGP); break; } /* * Compute index of next position in the start * queue the SCRIPTS intends to start and dequeue * all CCBs for that device that haven't been started. */ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); /* * Make sure at least our IO to abort has been dequeued. */ #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); #else sym_remque(&cp->link_ccbq); sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); #endif /* * Keep track in cam status of the reason of the abort. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cmd, DID_TIME_OUT); else sym_set_cam_status(cp->cmd, DID_ABORT); /* * Complete with error everything that we have dequeued. */ sym_flush_comp_queue(np, 0); break; /* * The SCRIPTS processor has selected a target * we may have some manual recovery to perform for. */ case SIR_TARGET_SELECTED: target = INB(np, nc_sdid) & 0xf; tp = &np->target[target]; np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); /* * If the target is to be reset, prepare a * M_RESET message and clear the to_reset flag * since we donnot expect this operation to fail. */ if (tp->to_reset) { np->abrt_msg[0] = M_RESET; np->abrt_tbl.size = 1; tp->to_reset = 0; break; } /* * Otherwise, look for some logical unit to be cleared. */ if (tp->lun0p && tp->lun0p->to_clear) lun = 0; else if (tp->lunmp) { for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { lun = k; break; } } } /* * If a logical unit is to be cleared, prepare * an IDENTIFY(lun) + ABORT MESSAGE. */ if (lun != -1) { struct sym_lcb *lp = sym_lp(tp, lun); lp->to_clear = 0; /* We don't expect to fail here */ np->abrt_msg[0] = IDENTIFY(0, lun); np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; break; } /* * Otherwise, look for some disconnected job to * abort for this target. */ i = 0; cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->host_status != HS_DISCONNECT) continue; if (cp->target != target) continue; if (!cp->to_abort) continue; i = 1; /* Means we have some */ break; } /* * If we have none, probably since the device has * completed the command before we won abitration, * send a M_ABORT message without IDENTIFY. * According to the specs, the device must just * disconnect the BUS and not abort any task. */ if (!i) { np->abrt_msg[0] = M_ABORT; np->abrt_tbl.size = 1; break; } /* * We have some task to abort. * Set the IDENTIFY(lun) */ np->abrt_msg[0] = IDENTIFY(0, cp->lun); /* * If we want to abort an untagged command, we * will send a IDENTIFY + M_ABORT. * Otherwise (tagged command), we will send * a IDENTITFY + task attributes + ABORT TAG. */ if (cp->tag == NO_TAG) { np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; } else { np->abrt_msg[1] = cp->scsi_smsg[1]; np->abrt_msg[2] = cp->scsi_smsg[2]; np->abrt_msg[3] = M_ABORT_TAG; np->abrt_tbl.size = 4; } /* * Keep track of software timeout condition, since the * peripheral driver may not count retries on abort * conditions not due to timeout. */ if (cp->to_abort == 2) sym_set_cam_status(cp->cmd, DID_TIME_OUT); cp->to_abort = 0; /* We donnot expect to fail here */ break; /* * The target has accepted our message and switched * to BUS FREE phase as we expected. */ case SIR_ABORT_SENT: target = INB(np, nc_sdid) & 0xf; tp = &np->target[target]; starget = tp->starget; /* ** If we didn't abort anything, leave here. */ if (np->abrt_msg[0] == M_ABORT) break; /* * If we sent a M_RESET, then a hardware reset has * been performed by the target. * - Reset everything to async 8 bit * - Tell ourself to negotiate next time :-) * - Prepare to clear all disconnected CCBs for * this target from our task list (lun=task=-1) */ lun = -1; task = -1; if (np->abrt_msg[0] == M_RESET) { tp->head.sval = 0; tp->head.wval = np->rv_scntl3; tp->head.uval = 0; spi_period(starget) = 0; spi_offset(starget) = 0; spi_width(starget) = 0; spi_iu(starget) = 0; spi_dt(starget) = 0; spi_qas(starget) = 0; tp->tgoal.check_nego = 1; } /* * Otherwise, check for the LUN and TASK(s) * concerned by the cancelation. * If it is not ABORT_TAG then it is CLEAR_QUEUE * or an ABORT message :-) */ else { lun = np->abrt_msg[0] & 0x3f; if (np->abrt_msg[1] == M_ABORT_TAG) task = np->abrt_msg[2]; } /* * Complete all the CCBs the device should have * aborted due to our 'kiss of death' message. */ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; sym_dequeue_from_squeue(np, i, target, lun, -1); sym_clear_tasks(np, DID_ABORT, target, lun, task); sym_flush_comp_queue(np, 0); /* * If we sent a BDR, make upper layer aware of that. */ if (np->abrt_msg[0] == M_RESET) sym_xpt_async_sent_bdr(np, target); break; } /* * Print to the log the message we intend to send. */ if (num == SIR_TARGET_SELECTED) { dev_info(&tp->starget->dev, "control msgout:"); sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); } /* * Let the SCRIPTS processor continue. */ OUTONB_STD(); } /* * Gerard's alchemy:) that deals with with the data * pointer for both MDP and the residual calculation. * * I didn't want to bloat the code by more than 200 * lines for the handling of both MDP and the residual. * This has been achieved by using a data pointer * representation consisting in an index in the data * array (dp_sg) and a negative offset (dp_ofs) that * have the following meaning: * * - dp_sg = SYM_CONF_MAX_SG * we are at the end of the data script. * - dp_sg < SYM_CONF_MAX_SG * dp_sg points to the next entry of the scatter array * we want to transfer. * - dp_ofs < 0 * dp_ofs represents the residual of bytes of the * previous entry scatter entry we will send first. * - dp_ofs = 0 * no residual to send first. * * The function sym_evaluate_dp() accepts an arbitray * offset (basically from the MDP message) and returns * the corresponding values of dp_sg and dp_ofs. */ static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) { u32 dp_scr; int dp_ofs, dp_sg, dp_sgmin; int tmp; struct sym_pmc *pm; /* * Compute the resulted data pointer in term of a script * address within some DATA script and a signed byte offset. */ dp_scr = scr; dp_ofs = *ofs; if (dp_scr == SCRIPTA_BA(np, pm0_data)) pm = &cp->phys.pm0; else if (dp_scr == SCRIPTA_BA(np, pm1_data)) pm = &cp->phys.pm1; else pm = NULL; if (pm) { dp_scr = scr_to_cpu(pm->ret); dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; } /* * If we are auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { *ofs = dp_ofs; return 0; } /* * Deduce the index of the sg entry. * Keep track of the index of the first valid entry. * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the * end of the data. */ tmp = scr_to_cpu(cp->goalp); dp_sg = SYM_CONF_MAX_SG; if (dp_scr != tmp) dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); dp_sgmin = SYM_CONF_MAX_SG - cp->segments; /* * Move to the sg entry the data pointer belongs to. * * If we are inside the data area, we expect result to be: * * Either, * dp_ofs = 0 and dp_sg is the index of the sg entry * the data pointer belongs to (or the end of the data) * Or, * dp_ofs < 0 and dp_sg is the index of the sg entry * the data pointer belongs to + 1. */ if (dp_ofs < 0) { int n; while (dp_sg > dp_sgmin) { --dp_sg; tmp = scr_to_cpu(cp->phys.data[dp_sg].size); n = dp_ofs + (tmp & 0xffffff); if (n > 0) { ++dp_sg; break; } dp_ofs = n; } } else if (dp_ofs > 0) { while (dp_sg < SYM_CONF_MAX_SG) { tmp = scr_to_cpu(cp->phys.data[dp_sg].size); dp_ofs -= (tmp & 0xffffff); ++dp_sg; if (dp_ofs <= 0) break; } } /* * Make sure the data pointer is inside the data area. * If not, return some error. */ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) goto out_err; else if (dp_sg > SYM_CONF_MAX_SG || (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) goto out_err; /* * Save the extreme pointer if needed. */ if (dp_sg > cp->ext_sg || (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { cp->ext_sg = dp_sg; cp->ext_ofs = dp_ofs; } /* * Return data. */ *ofs = dp_ofs; return dp_sg; out_err: return -1; } /* * chip handler for MODIFY DATA POINTER MESSAGE * * We also call this function on IGNORE WIDE RESIDUE * messages that do not match a SWIDE full condition. * Btw, we assume in that situation that such a message * is equivalent to a MODIFY DATA POINTER (offset=-1). */ static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) { int dp_ofs = ofs; u32 dp_scr = sym_get_script_dp (np, cp); u32 dp_ret; u32 tmp; u_char hflags; int dp_sg; struct sym_pmc *pm; /* * Not supported for auto-sense. */ if (cp->host_flags & HF_SENSE) goto out_reject; /* * Apply our alchemy:) (see comments in sym_evaluate_dp()), * to the resulted data pointer. */ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); if (dp_sg < 0) goto out_reject; /* * And our alchemy:) allows to easily calculate the data * script address we want to return for the next data phase. */ dp_ret = cpu_to_scr(cp->goalp); dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); /* * If offset / scatter entry is zero we donnot need * a context for the new current data pointer. */ if (dp_ofs == 0) { dp_scr = dp_ret; goto out_ok; } /* * Get a context for the new current data pointer. */ hflags = INB(np, HF_PRT); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; dp_scr = SCRIPTA_BA(np, pm0_data); } else { pm = &cp->phys.pm1; dp_scr = SCRIPTA_BA(np, pm1_data); } hflags &= ~(HF_DP_SAVED); OUTB(np, HF_PRT, hflags); /* * Set up the new current data pointer. * ofs < 0 there, and for the next data phase, we * want to transfer part of the data of the sg entry * corresponding to index dp_sg-1 prior to returning * to the main data script. */ pm->ret = cpu_to_scr(dp_ret); tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; pm->sg.addr = cpu_to_scr(tmp); pm->sg.size = cpu_to_scr(-dp_ofs); out_ok: sym_set_script_dp (np, cp, dp_scr); OUTL_DSP(np, SCRIPTA_BA(np, clrack)); return; out_reject: OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); } /* * chip calculation of the data residual. * * As I used to say, the requirement of data residual * in SCSI is broken, useless and cannot be achieved * without huge complexity. * But most OSes and even the official CAM require it. * When stupidity happens to be so widely spread inside * a community, it gets hard to convince. * * Anyway, I don't care, since I am not going to use * any software that considers this data residual as * a relevant information. :) */ int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) { int dp_sg, dp_sgmin, resid = 0; int dp_ofs = 0; /* * Check for some data lost or just thrown away. * We are not required to be quite accurate in this * situation. Btw, if we are odd for output and the * device claims some more data, it may well happen * than our residual be zero. :-) */ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { if (cp->xerr_status & XE_EXTRA_DATA) resid -= cp->extra_bytes; if (cp->xerr_status & XE_SODL_UNRUN) ++resid; if (cp->xerr_status & XE_SWIDE_OVRUN) --resid; } /* * If all data has been transferred, * there is no residual. */ if (cp->phys.head.lastp == cp->goalp) return resid; /* * If no data transfer occurs, or if the data * pointer is weird, return full residual. */ if (cp->startp == cp->phys.head.lastp || sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), &dp_ofs) < 0) { return cp->data_len; } /* * If we were auto-sensing, then we are done. */ if (cp->host_flags & HF_SENSE) { return -dp_ofs; } /* * We are now full comfortable in the computation * of the data residual (2's complement). */ dp_sgmin = SYM_CONF_MAX_SG - cp->segments; resid = -cp->ext_ofs; for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); resid += (tmp & 0xffffff); } resid -= cp->odd_byte_adjustment; /* * Hopefully, the result is not too wrong. */ return resid; } /* * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. * * When we try to negotiate, we append the negotiation message * to the identify and (maybe) simple tag message. * The host status field is set to HS_NEGOTIATE to mark this * situation. * * If the target doesn't answer this message immediately * (as required by the standard), the SIR_NEGO_FAILED interrupt * will be raised eventually. * The handler removes the HS_NEGOTIATE status, and sets the * negotiated value to the default (async / nowide). * * If we receive a matching answer immediately, we check it * for validity, and set the values. * * If we receive a Reject message immediately, we assume the * negotiation has failed, and fall back to standard values. * * If we receive a negotiation message while not in HS_NEGOTIATE * state, it's a target initiated negotiation. We prepare a * (hopefully) valid answer, set our parameters, and send back * this answer to the target. * * If the target doesn't fetch the answer (no message out phase), * we assume the negotiation has failed, and fall back to default * settings (SIR_NEGO_PROTO interrupt). * * When we set the values, we adjust them in all ccbs belonging * to this target, in the controller's register, and in the "phys" * field of the controller's struct sym_hcb. */ /* * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. */ static int sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) { int target = cp->target; u_char chg, ofs, per, fak, div; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "sync msgin", np->msgin); } /* * Get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; /* * Check values against our limits. */ if (ofs) { if (ofs > np->maxoffs) {chg = 1; ofs = np->maxoffs;} } if (ofs) { if (per < np->minsync) {chg = 1; per = np->minsync;} } /* * Get new chip synchronous parameters value. */ div = fak = 0; if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) goto reject_it; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_addr(cp->cmd, "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", ofs, per, div, fak, chg); } /* * If it was an answer we want to change, * then it isn't acceptable. Reject it. */ if (!req && chg) goto reject_it; /* * Apply new values. */ sym_setsync (np, target, ofs, per, div, fak); /* * It was an answer. We are done. */ if (!req) return 0; /* * It was a request. Prepare an answer message. */ spi_populate_sync_msg(np->msgout, per, ofs); if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "sync msgout", np->msgout); } np->msgin [0] = M_NOOP; return 0; reject_it: sym_setsync (np, target, 0, 0, 0, 0); return -1; } static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) { int req = 1; int result; /* * Request or answer ? */ if (INB(np, HS_PRT) == HS_NEGOTIATE) { OUTB(np, HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_SYNC) goto reject_it; req = 0; } /* * Check and apply new values. */ result = sym_sync_nego_check(np, req, cp); if (result) /* Not acceptable, reject it */ goto reject_it; if (req) { /* Was a request, send response. */ cp->nego_status = NS_SYNC; OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); } else /* Was a response, we are done. */ OUTL_DSP(np, SCRIPTA_BA(np, clrack)); return; reject_it: OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); } /* * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. */ static int sym_ppr_nego_check(struct sym_hcb *np, int req, int target) { struct sym_tcb *tp = &np->target[target]; unsigned char fak, div; int dt, chg = 0; unsigned char per = np->msgin[3]; unsigned char ofs = np->msgin[5]; unsigned char wide = np->msgin[6]; unsigned char opts = np->msgin[7] & PPR_OPT_MASK; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "ppr msgin", np->msgin); } /* * Check values against our limits. */ if (wide > np->maxwide) { chg = 1; wide = np->maxwide; } if (!wide || !(np->features & FE_U3EN)) opts = 0; if (opts != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; dt = opts & PPR_OPT_DT; if (ofs) { unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; if (ofs > maxoffs) { chg = 1; ofs = maxoffs; } } if (ofs) { unsigned char minsync = dt ? np->minsync_dt : np->minsync; if (per < minsync) { chg = 1; per = minsync; } } /* * Get new chip synchronous parameters value. */ div = fak = 0; if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) goto reject_it; /* * If it was an answer we want to change, * then it isn't acceptable. Reject it. */ if (!req && chg) goto reject_it; /* * Apply new values. */ sym_setpprot(np, target, opts, ofs, per, wide, div, fak); /* * It was an answer. We are done. */ if (!req) return 0; /* * It was a request. Prepare an answer message. */ spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "ppr msgout", np->msgout); } np->msgin [0] = M_NOOP; return 0; reject_it: sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); /* * If it is a device response that should result in * ST, we may want to try a legacy negotiation later. */ if (!req && !opts) { tp->tgoal.period = per; tp->tgoal.offset = ofs; tp->tgoal.width = wide; tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; tp->tgoal.check_nego = 1; } return -1; } static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) { int req = 1; int result; /* * Request or answer ? */ if (INB(np, HS_PRT) == HS_NEGOTIATE) { OUTB(np, HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_PPR) goto reject_it; req = 0; } /* * Check and apply new values. */ result = sym_ppr_nego_check(np, req, cp->target); if (result) /* Not acceptable, reject it */ goto reject_it; if (req) { /* Was a request, send response. */ cp->nego_status = NS_PPR; OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); } else /* Was a response, we are done. */ OUTL_DSP(np, SCRIPTA_BA(np, clrack)); return; reject_it: OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); } /* * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. */ static int sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) { int target = cp->target; u_char chg, wide; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "wide msgin", np->msgin); } /* * Get requested values. */ chg = 0; wide = np->msgin[3]; /* * Check values against our limits. */ if (wide > np->maxwide) { chg = 1; wide = np->maxwide; } if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", wide, chg); } /* * If it was an answer we want to change, * then it isn't acceptable. Reject it. */ if (!req && chg) goto reject_it; /* * Apply new values. */ sym_setwide (np, target, wide); /* * It was an answer. We are done. */ if (!req) return 0; /* * It was a request. Prepare an answer message. */ spi_populate_width_msg(np->msgout, wide); np->msgin [0] = M_NOOP; if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, target, "wide msgout", np->msgout); } return 0; reject_it: return -1; } static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) { int req = 1; int result; /* * Request or answer ? */ if (INB(np, HS_PRT) == HS_NEGOTIATE) { OUTB(np, HS_PRT, HS_BUSY); if (cp->nego_status && cp->nego_status != NS_WIDE) goto reject_it; req = 0; } /* * Check and apply new values. */ result = sym_wide_nego_check(np, req, cp); if (result) /* Not acceptable, reject it */ goto reject_it; if (req) { /* Was a request, send response. */ cp->nego_status = NS_WIDE; OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); } else { /* Was a response. */ /* * Negotiate for SYNC immediately after WIDE response. * This allows to negotiate for both WIDE and SYNC on * a single SCSI command (Suggested by Justin Gibbs). */ if (tp->tgoal.offset) { spi_populate_sync_msg(np->msgout, tp->tgoal.period, tp->tgoal.offset); if (DEBUG_FLAGS & DEBUG_NEGO) { sym_print_nego_msg(np, cp->target, "sync msgout", np->msgout); } cp->nego_status = NS_SYNC; OUTB(np, HS_PRT, HS_NEGOTIATE); OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); return; } else OUTL_DSP(np, SCRIPTA_BA(np, clrack)); } return; reject_it: OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); } /* * Reset DT, SYNC or WIDE to default settings. * * Called when a negotiation does not succeed either * on rejection or on protocol error. * * A target that understands a PPR message should never * reject it, and messing with it is very unlikely. * So, if a PPR makes problems, we may just want to * try a legacy negotiation later. */ static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) { switch (cp->nego_status) { case NS_PPR: #if 0 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); #else if (tp->tgoal.period < np->minsync) tp->tgoal.period = np->minsync; if (tp->tgoal.offset > np->maxoffs) tp->tgoal.offset = np->maxoffs; tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; tp->tgoal.check_nego = 1; #endif break; case NS_SYNC: sym_setsync (np, cp->target, 0, 0, 0, 0); break; case NS_WIDE: sym_setwide (np, cp->target, 0); break; } np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; } /* * chip handler for MESSAGE REJECT received in response to * PPR, WIDE or SYNCHRONOUS negotiation. */ static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) { sym_nego_default(np, tp, cp); OUTB(np, HS_PRT, HS_BUSY); } /* * chip exception handler for programmed interrupts. */ static void sym_int_sir (struct sym_hcb *np) { u_char num = INB(np, nc_dsps); u32 dsa = INL(np, nc_dsa); struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); u_char target = INB(np, nc_sdid) & 0x0f; struct sym_tcb *tp = &np->target[target]; int tmp; if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); switch (num) { #if SYM_CONF_DMA_ADDRESSING_MODE == 2 /* * SCRIPTS tell us that we may have to update * 64 bit DMA segment registers. */ case SIR_DMAP_DIRTY: sym_update_dmap_regs(np); goto out; #endif /* * Command has been completed with error condition * or has been auto-sensed. */ case SIR_COMPLETE_ERROR: sym_complete_error(np, cp); return; /* * The C code is currently trying to recover from something. * Typically, user want to abort some command. */ case SIR_SCRIPT_STOPPED: case SIR_TARGET_SELECTED: case SIR_ABORT_SENT: sym_sir_task_recovery(np, num); return; /* * The device didn't go to MSG OUT phase after having * been selected with ATN. We donnot want to handle * that. */ case SIR_SEL_ATN_NO_MSG_OUT: printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", sym_name (np), target); goto out_stuck; /* * The device didn't switch to MSG IN phase after * having reseleted the initiator. */ case SIR_RESEL_NO_MSG_IN: printf ("%s:%d: No MSG IN phase after reselection.\n", sym_name (np), target); goto out_stuck; /* * After reselection, the device sent a message that wasn't * an IDENTIFY. */ case SIR_RESEL_NO_IDENTIFY: printf ("%s:%d: No IDENTIFY after reselection.\n", sym_name (np), target); goto out_stuck; /* * The device reselected a LUN we donnot know about. */ case SIR_RESEL_BAD_LUN: np->msgout[0] = M_RESET; goto out; /* * The device reselected for an untagged nexus and we * haven't any. */ case SIR_RESEL_BAD_I_T_L: np->msgout[0] = M_ABORT; goto out; /* * The device reselected for a tagged nexus that we donnot * have. */ case SIR_RESEL_BAD_I_T_L_Q: np->msgout[0] = M_ABORT_TAG; goto out; /* * The SCRIPTS let us know that the device has grabbed * our message and will abort the job. */ case SIR_RESEL_ABORTED: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; printf ("%s:%d: message %x sent on bad reselection.\n", sym_name (np), target, np->lastmsg); goto out; /* * The SCRIPTS let us know that a message has been * successfully sent to the device. */ case SIR_MSG_OUT_DONE: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; /* Should we really care of that */ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { if (cp) { cp->xerr_status &= ~XE_PARITY_ERR; if (!cp->xerr_status) OUTOFFB(np, HF_PRT, HF_EXT_ERR); } } goto out; /* * The device didn't send a GOOD SCSI status. * We may have some work to do prior to allow * the SCRIPTS processor to continue. */ case SIR_BAD_SCSI_STATUS: if (!cp) goto out; sym_sir_bad_scsi_status(np, num, cp); return; /* * We are asked by the SCRIPTS to prepare a * REJECT message. */ case SIR_REJECT_TO_SEND: sym_print_msg(cp, "M_REJECT to send for ", np->msgin); np->msgout[0] = M_REJECT; goto out; /* * We have been ODD at the end of a DATA IN * transfer and the device didn't send a * IGNORE WIDE RESIDUE message. * It is a data overrun condition. */ case SIR_SWIDE_OVERRUN: if (cp) { OUTONB(np, HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SWIDE_OVRUN; } goto out; /* * We have been ODD at the end of a DATA OUT * transfer. * It is a data underrun condition. */ case SIR_SODL_UNDERRUN: if (cp) { OUTONB(np, HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_SODL_UNRUN; } goto out; /* * The device wants us to tranfer more data than * expected or in the wrong direction. * The number of extra bytes is in scratcha. * It is a data overrun condition. */ case SIR_DATA_OVERRUN: if (cp) { OUTONB(np, HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_EXTRA_DATA; cp->extra_bytes += INL(np, nc_scratcha); } goto out; /* * The device switched to an illegal phase (4/5). */ case SIR_BAD_PHASE: if (cp) { OUTONB(np, HF_PRT, HF_EXT_ERR); cp->xerr_status |= XE_BAD_PHASE; } goto out; /* * We received a message. */ case SIR_MSG_RECEIVED: if (!cp) goto out_stuck; switch (np->msgin [0]) { /* * We received an extended message. * We handle MODIFY DATA POINTER, SDTR, WDTR * and reject all other extended messages. */ case M_EXTENDED: switch (np->msgin [2]) { case M_X_MODIFY_DP: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"modify DP",np->msgin); tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + (np->msgin[5]<<8) + (np->msgin[6]); sym_modify_dp(np, tp, cp, tmp); return; case M_X_SYNC_REQ: sym_sync_nego(np, tp, cp); return; case M_X_PPR_REQ: sym_ppr_nego(np, tp, cp); return; case M_X_WIDE_REQ: sym_wide_nego(np, tp, cp); return; default: goto out_reject; } break; /* * We received a 1/2 byte message not handled from SCRIPTS. * We are only expecting MESSAGE REJECT and IGNORE WIDE * RESIDUE messages that haven't been anticipated by * SCRIPTS on SWIDE full condition. Unanticipated IGNORE * WIDE RESIDUE messages are aliased as MODIFY DP (-1). */ case M_IGN_RESIDUE: if (DEBUG_FLAGS & DEBUG_POINTER) sym_print_msg(cp,"ign wide residue", np->msgin); if (cp->host_flags & HF_SENSE) OUTL_DSP(np, SCRIPTA_BA(np, clrack)); else sym_modify_dp(np, tp, cp, -1); return; case M_REJECT: if (INB(np, HS_PRT) == HS_NEGOTIATE) sym_nego_rejected(np, tp, cp); else { sym_print_addr(cp->cmd, "M_REJECT received (%x:%x).\n", scr_to_cpu(np->lastmsg), np->msgout[0]); } goto out_clrack; break; default: goto out_reject; } break; /* * We received an unknown message. * Ignore all MSG IN phases and reject it. */ case SIR_MSG_WEIRD: sym_print_msg(cp, "WEIRD message received", np->msgin); OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); return; /* * Negotiation failed. * Target does not send us the reply. * Remove the HS_NEGOTIATE status. */ case SIR_NEGO_FAILED: OUTB(np, HS_PRT, HS_BUSY); /* * Negotiation failed. * Target does not want answer message. */ case SIR_NEGO_PROTO: sym_nego_default(np, tp, cp); goto out; } out: OUTONB_STD(); return; out_reject: OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); return; out_clrack: OUTL_DSP(np, SCRIPTA_BA(np, clrack)); return; out_stuck: return; } /* * Acquire a control block */ struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) { u_char tn = cmd->device->id; u_char ln = cmd->device->lun; struct sym_tcb *tp = &np->target[tn]; struct sym_lcb *lp = sym_lp(tp, ln); u_short tag = NO_TAG; SYM_QUEHEAD *qp; struct sym_ccb *cp = NULL; /* * Look for a free CCB */ if (sym_que_empty(&np->free_ccbq)) sym_alloc_ccb(np); qp = sym_remque_head(&np->free_ccbq); if (!qp) goto out; cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); { /* * If we have been asked for a tagged command. */ if (tag_order) { /* * Debugging purpose. */ #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING if (lp->busy_itl != 0) goto out_free; #endif /* * Allocate resources for tags if not yet. */ if (!lp->cb_tags) { sym_alloc_lcb_tags(np, tn, ln); if (!lp->cb_tags) goto out_free; } /* * Get a tag for this SCSI IO and set up * the CCB bus address for reselection, * and count it for this LUN. * Toggle reselect path to tagged. */ if (lp->busy_itlq < SYM_CONF_MAX_TASK) { tag = lp->cb_tags[lp->ia_tag]; if (++lp->ia_tag == SYM_CONF_MAX_TASK) lp->ia_tag = 0; ++lp->busy_itlq; #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA(np, resel_tag)); #endif #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING cp->tags_si = lp->tags_si; ++lp->tags_sum[cp->tags_si]; ++lp->tags_since; #endif } else goto out_free; } /* * This command will not be tagged. * If we already have either a tagged or untagged * one, refuse to overlap this untagged one. */ else { /* * Debugging purpose. */ #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING if (lp->busy_itl != 0 || lp->busy_itlq != 0) goto out_free; #endif /* * Count this nexus for this LUN. * Set up the CCB bus address for reselection. * Toggle reselect path to untagged. */ ++lp->busy_itl; #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING if (lp->busy_itl == 1) { lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); lp->head.resel_sa = cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); } else goto out_free; #endif } } /* * Put the CCB into the busy queue. */ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING if (lp) { sym_remque(&cp->link2_ccbq); sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); } #endif cp->to_abort = 0; cp->odd_byte_adjustment = 0; cp->tag = tag; cp->order = tag_order; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); } out: return cp; out_free: sym_insque_head(&cp->link_ccbq, &np->free_ccbq); return NULL; } /* * Release one control block */ void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) { struct sym_tcb *tp = &np->target[cp->target]; struct sym_lcb *lp = sym_lp(tp, cp->lun); if (DEBUG_FLAGS & DEBUG_TAGS) { sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag); } /* * If LCB available, */ if (lp) { /* * If tagged, release the tag, set the relect path */ if (cp->tag != NO_TAG) { #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING --lp->tags_sum[cp->tags_si]; #endif /* * Free the tag value. */ lp->cb_tags[lp->if_tag] = cp->tag; if (++lp->if_tag == SYM_CONF_MAX_TASK) lp->if_tag = 0; /* * Make the reselect path invalid, * and uncount this CCB. */ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); --lp->busy_itlq; } else { /* Untagged */ /* * Make the reselect path invalid, * and uncount this CCB. */ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); --lp->busy_itl; } /* * If no JOB active, make the LUN reselect path invalid. */ if (lp->busy_itlq == 0 && lp->busy_itl == 0) lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); } /* * We donnot queue more than 1 ccb per target * with negotiation at any time. If this ccb was * used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = NULL; #ifdef SYM_CONF_IARB_SUPPORT /* * If we just complete the last queued CCB, * clear this info that is no longer relevant. */ if (cp == np->last_cp) np->last_cp = 0; #endif /* * Make this CCB available. */ cp->cmd = NULL; cp->host_status = HS_IDLE; sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->free_ccbq); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING if (lp) { sym_remque(&cp->link2_ccbq); sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); if (cp->started) { if (cp->tag != NO_TAG) --lp->started_tags; else --lp->started_no_tag; } } cp->started = 0; #endif } /* * Allocate a CCB from memory and initialize its fixed part. */ static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) { struct sym_ccb *cp = NULL; int hcode; /* * Prevent from allocating more CCBs than we can * queue to the controller. */ if (np->actccbs >= SYM_CONF_MAX_START) return NULL; /* * Allocate memory for this CCB. */ cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); if (!cp) goto out_free; /* * Count it. */ np->actccbs++; /* * Compute the bus address of this ccb. */ cp->ccb_ba = vtobus(cp); /* * Insert this ccb into the hashed list. */ hcode = CCB_HASH_CODE(cp->ccb_ba); cp->link_ccbh = np->ccbh[hcode]; np->ccbh[hcode] = cp; /* * Initialyze the start and restart actions. */ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); /* * Initilialyze some other fields. */ cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); /* * Chain into free ccb queue. */ sym_insque_head(&cp->link_ccbq, &np->free_ccbq); /* * Chain into optionnal lists. */ #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); #endif return cp; out_free: if (cp) sym_mfree_dma(cp, sizeof(*cp), "CCB"); return NULL; } /* * Look up a CCB from a DSA value. */ static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) { int hcode; struct sym_ccb *cp; hcode = CCB_HASH_CODE(dsa); cp = np->ccbh[hcode]; while (cp) { if (cp->ccb_ba == dsa) break; cp = cp->link_ccbh; } return cp; } /* * Target control block initialisation. * Nothing important to do at the moment. */ static void sym_init_tcb (struct sym_hcb *np, u_char tn) { #if 0 /* Hmmm... this checking looks paranoid. */ /* * Check some alignments required by the chip. */ assert (((offsetof(struct sym_reg, nc_sxfer) ^ offsetof(struct sym_tcb, head.sval)) &3) == 0); assert (((offsetof(struct sym_reg, nc_scntl3) ^ offsetof(struct sym_tcb, head.wval)) &3) == 0); #endif } /* * Lun control block allocation and initialization. */ struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) { struct sym_tcb *tp = &np->target[tn]; struct sym_lcb *lp = NULL; /* * Initialize the target control block if not yet. */ sym_init_tcb (np, tn); /* * Allocate the LCB bus address array. * Compute the bus address of this table. */ if (ln && !tp->luntbl) { int i; tp->luntbl = sym_calloc_dma(256, "LUNTBL"); if (!tp->luntbl) goto fail; for (i = 0 ; i < 64 ; i++) tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); } /* * Allocate the table of pointers for LUN(s) > 0, if needed. */ if (ln && !tp->lunmp) { tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), GFP_KERNEL); if (!tp->lunmp) goto fail; } /* * Allocate the lcb. * Make it available to the chip. */ lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); if (!lp) goto fail; if (ln) { tp->lunmp[ln] = lp; tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); } else { tp->lun0p = lp; tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); } /* * Let the itl task point to error handling. */ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); /* * Set the reselect pattern to our default. :) */ lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); /* * Set user capabilities. */ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * Initialize device queueing. */ sym_que_init(&lp->waiting_ccbq); sym_que_init(&lp->started_ccbq); lp->started_max = SYM_CONF_MAX_TASK; lp->started_limit = SYM_CONF_MAX_TASK; #endif fail: return lp; } /* * Allocate LCB resources for tagged command queuing. */ static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) { struct sym_tcb *tp = &np->target[tn]; struct sym_lcb *lp = sym_lp(tp, ln); int i; /* * Allocate the task table and and the tag allocation * circular buffer. We want both or none. */ lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); if (!lp->itlq_tbl) goto fail; lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); if (!lp->cb_tags) { sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); lp->itlq_tbl = NULL; goto fail; } /* * Initialize the task table with invalid entries. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); /* * Fill up the tag buffer with tag numbers. */ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) lp->cb_tags[i] = i; /* * Make the task table available to SCRIPTS, * And accept tagged commands now. */ lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); return; fail: return; } /* * Queue a SCSI IO to the controller. */ int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) { struct scsi_device *sdev = cmd->device; struct sym_tcb *tp; struct sym_lcb *lp; u_char *msgptr; u_int msglen; int can_disconnect; /* * Keep track of the IO in our CCB. */ cp->cmd = cmd; /* * Retrieve the target descriptor. */ tp = &np->target[cp->target]; /* * Retrieve the lun descriptor. */ lp = sym_lp(tp, sdev->lun); can_disconnect = (cp->tag != NO_TAG) || (lp && (lp->curr_flags & SYM_DISC_ENABLED)); msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); /* * Build the tag message if present. */ if (cp->tag != NO_TAG) { u_char order = cp->order; switch(order) { case M_ORDERED_TAG: break; case M_HEAD_TAG: break; default: order = M_SIMPLE_TAG; } #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING /* * Avoid too much reordering of SCSI commands. * The algorithm tries to prevent completion of any * tagged command from being delayed against more * than 3 times the max number of queued commands. */ if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { lp->tags_si = !(lp->tags_si); if (lp->tags_sum[lp->tags_si]) { order = M_ORDERED_TAG; if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { sym_print_addr(cmd, "ordered tag forced.\n"); } } lp->tags_since = 0; } #endif msgptr[msglen++] = order; /* * For less than 128 tags, actual tags are numbered * 1,3,5,..2*MAXTAGS+1,since we may have to deal * with devices that have problems with #TAG 0 or too * great #TAG numbers. For more tags (up to 256), * we use directly our tag number. */ #if SYM_CONF_MAX_TASK > (512/4) msgptr[msglen++] = cp->tag; #else msgptr[msglen++] = (cp->tag << 1) + 1; #endif } /* * Build a negotiation message if needed. * (nego_status is filled by sym_prepare_nego()) */ cp->nego_status = 0; if (tp->tgoal.check_nego && !tp->nego_cp && lp) { msglen += sym_prepare_nego(np, cp, msgptr + msglen); } /* * Startqueue */ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); /* * select */ cp->phys.select.sel_id = cp->target; cp->phys.select.sel_scntl3 = tp->head.wval; cp->phys.select.sel_sxfer = tp->head.sval; cp->phys.select.sel_scntl4 = tp->head.uval; /* * message */ cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); cp->phys.smsg.size = cpu_to_scr(msglen); /* * status */ cp->host_xflags = 0; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->ssss_status = S_ILLEGAL; cp->xerr_status = 0; cp->host_flags = 0; cp->extra_bytes = 0; /* * extreme data pointer. * shall be positive, so -1 is lower than lowest.:) */ cp->ext_sg = -1; cp->ext_ofs = 0; /* * Build the CDB and DATA descriptor block * and start the IO. */ return sym_setup_data_and_start(np, cmd, cp); } /* * Reset a SCSI target (all LUNs of this target). */ int sym_reset_scsi_target(struct sym_hcb *np, int target) { struct sym_tcb *tp; if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) return -1; tp = &np->target[target]; tp->to_reset = 1; np->istat_sem = SEM; OUTB(np, nc_istat, SIGP|SEM); return 0; } /* * Abort a SCSI IO. */ static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) { /* * Check that the IO is active. */ if (!cp || !cp->host_status || cp->host_status == HS_WAIT) return -1; /* * If a previous abort didn't succeed in time, * perform a BUS reset. */ if (cp->to_abort) { sym_reset_scsi_bus(np, 1); return 0; } /* * Mark the CCB for abort and allow time for. */ cp->to_abort = timed_out ? 2 : 1; /* * Tell the SCRIPTS processor to stop and synchronize with us. */ np->istat_sem = SEM; OUTB(np, nc_istat, SIGP|SEM); return 0; } int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) { struct sym_ccb *cp; SYM_QUEHEAD *qp; /* * Look up our CCB control block. */ cp = NULL; FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp2->cmd == cmd) { cp = cp2; break; } } return sym_abort_ccb(np, cp, timed_out); } /* * Complete execution of a SCSI command with extended * error, SCSI status error, or having been auto-sensed. * * The SCRIPTS processor is not running there, so we * can safely access IO registers and remove JOBs from * the START queue. * SCRATCHA is assumed to have been loaded with STARTPOS * before the SCRIPTS called the C code. */ void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) { struct scsi_device *sdev; struct scsi_cmnd *cmd; struct sym_tcb *tp; struct sym_lcb *lp; int resid; int i; /* * Paranoid check. :) */ if (!cp || !cp->cmd) return; cmd = cp->cmd; sdev = cmd->device; if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, cp->host_status, cp->ssss_status, cp->host_flags); } /* * Get target and lun pointers. */ tp = &np->target[cp->target]; lp = sym_lp(tp, sdev->lun); /* * Check for extended errors. */ if (cp->xerr_status) { if (sym_verbose) sym_print_xerr(cmd, cp->xerr_status); if (cp->host_status == HS_COMPLETE) cp->host_status = HS_COMP_ERR; } /* * Calculate the residual. */ resid = sym_compute_residual(np, cp); if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ resid = 0; /* throw them away. :) */ cp->sv_resid = 0; } #ifdef DEBUG_2_0_X if (resid) printf("XXXX RESID= %d - 0x%x\n", resid, resid); #endif /* * Dequeue all queued CCBs for that device * not yet started by SCRIPTS. */ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); /* * Restart the SCRIPTS processor. */ OUTL_DSP(np, SCRIPTA_BA(np, start)); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING if (cp->host_status == HS_COMPLETE && cp->ssss_status == S_QUEUE_FULL) { if (!lp || lp->started_tags - i < 2) goto weirdness; /* * Decrease queue depth as needed. */ lp->started_max = lp->started_tags - i - 1; lp->num_sgood = 0; if (sym_verbose >= 2) { sym_print_addr(cmd, " queue depth is now %d\n", lp->started_max); } /* * Repair the CCB. */ cp->host_status = HS_BUSY; cp->ssss_status = S_ILLEGAL; /* * Let's requeue it to device. */ sym_set_cam_status(cmd, DID_SOFT_ERROR); goto finish; } weirdness: #endif /* * Build result in CAM ccb. */ sym_set_cam_result_error(np, cp, resid); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING finish: #endif /* * Add this one to the COMP queue. */ sym_remque(&cp->link_ccbq); sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); /* * Complete all those commands with either error * or requeue condition. */ sym_flush_comp_queue(np, 0); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * Donnot start more than 1 command after an error. */ sym_start_next_ccbs(np, lp, 1); #endif } /* * Complete execution of a successful SCSI command. * * Only successful commands go to the DONE queue, * since we need to have the SCRIPTS processor * stopped on any error condition. * The SCRIPTS processor is running while we are * completing successful commands. */ void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) { struct sym_tcb *tp; struct sym_lcb *lp; struct scsi_cmnd *cmd; int resid; /* * Paranoid check. :) */ if (!cp || !cp->cmd) return; assert (cp->host_status == HS_COMPLETE); /* * Get user command. */ cmd = cp->cmd; /* * Get target and lun pointers. */ tp = &np->target[cp->target]; lp = sym_lp(tp, cp->lun); /* * If all data have been transferred, given than no * extended error did occur, there is no residual. */ resid = 0; if (cp->phys.head.lastp != cp->goalp) resid = sym_compute_residual(np, cp); /* * Wrong transfer residuals may be worse than just always * returning zero. User can disable this feature in * sym53c8xx.h. Residual support is enabled by default. */ if (!SYM_SETUP_RESIDUAL_SUPPORT) resid = 0; #ifdef DEBUG_2_0_X if (resid) printf("XXXX RESID= %d - 0x%x\n", resid, resid); #endif /* * Build result in CAM ccb. */ sym_set_cam_result_ok(cp, cmd, resid); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * If max number of started ccbs had been reduced, * increase it if 200 good status received. */ if (lp && lp->started_max < lp->started_limit) { ++lp->num_sgood; if (lp->num_sgood >= 200) { lp->num_sgood = 0; ++lp->started_max; if (sym_verbose >= 2) { sym_print_addr(cmd, " queue depth is now %d\n", lp->started_max); } } } #endif /* * Free our CCB. */ sym_free_ccb (np, cp); #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING /* * Requeue a couple of awaiting scsi commands. */ if (!sym_que_empty(&lp->waiting_ccbq)) sym_start_next_ccbs(np, lp, 2); #endif /* * Complete the command. */ sym_xpt_done(np, cmd); } /* * Soft-attach the controller. */ int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) { struct sym_hcb *np = sym_get_hcb(shost); int i; /* * Get some info about the firmware. */ np->scripta_sz = fw->a_size; np->scriptb_sz = fw->b_size; np->scriptz_sz = fw->z_size; np->fw_setup = fw->setup; np->fw_patch = fw->patch; np->fw_name = fw->name; /* * Save setting of some IO registers, so we will * be able to probe specific implementations. */ sym_save_initial_setting (np); /* * Reset the chip now, since it has been reported * that SCSI clock calibration may not work properly * if the chip is currently active. */ sym_chip_reset(np); /* * Prepare controller and devices settings, according * to chip features, user set-up and driver set-up. */ sym_prepare_setting(shost, np, nvram); /* * Check the PCI clock frequency. * Must be performed after prepare_setting since it destroys * STEST1 that is used to probe for the clock doubler. */ i = sym_getpciclock(np); if (i > 37000 && !(np->features & FE_66MHZ)) printf("%s: PCI BUS clock seems too high: %u KHz.\n", sym_name(np), i); /* * Allocate the start queue. */ np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); if (!np->squeue) goto attach_failed; np->squeue_ba = vtobus(np->squeue); /* * Allocate the done queue. */ np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); if (!np->dqueue) goto attach_failed; np->dqueue_ba = vtobus(np->dqueue); /* * Allocate the target bus address array. */ np->targtbl = sym_calloc_dma(256, "TARGTBL"); if (!np->targtbl) goto attach_failed; np->targtbl_ba = vtobus(np->targtbl); /* * Allocate SCRIPTS areas. */ np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) goto attach_failed; /* * Allocate the array of lists of CCBs hashed by DSA. */ np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL); if (!np->ccbh) goto attach_failed; /* * Initialyze the CCB free and busy queues. */ sym_que_init(&np->free_ccbq); sym_que_init(&np->busy_ccbq); sym_que_init(&np->comp_ccbq); /* * Initialization for optional handling * of device queueing. */ #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING sym_que_init(&np->dummy_ccbq); #endif /* * Allocate some CCB. We need at least ONE. */ if (!sym_alloc_ccb(np)) goto attach_failed; /* * Calculate BUS addresses where we are going * to load the SCRIPTS. */ np->scripta_ba = vtobus(np->scripta0); np->scriptb_ba = vtobus(np->scriptb0); np->scriptz_ba = vtobus(np->scriptz0); if (np->ram_ba) { np->scripta_ba = np->ram_ba; if (np->features & FE_RAM8K) { np->ram_ws = 8192; np->scriptb_ba = np->scripta_ba + 4096; #if 0 /* May get useful for 64 BIT PCI addressing */ np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); #endif } else np->ram_ws = 4096; } /* * Copy scripts to controller instance. */ memcpy(np->scripta0, fw->a_base, np->scripta_sz); memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); /* * Setup variable parts in scripts and compute * scripts bus addresses used from the C code. */ np->fw_setup(np, fw); /* * Bind SCRIPTS with physical addresses usable by the * SCRIPTS processor (as seen from the BUS = BUS addresses). */ sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); #ifdef SYM_CONF_IARB_SUPPORT /* * If user wants IARB to be set when we win arbitration * and have other jobs, compute the max number of consecutive * settings of IARB hints before we leave devices a chance to * arbitrate for reselection. */ #ifdef SYM_SETUP_IARB_MAX np->iarb_max = SYM_SETUP_IARB_MAX; #else np->iarb_max = 4; #endif #endif /* * Prepare the idle and invalid task actions. */ np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); np->idletask_ba = vtobus(&np->idletask); np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); np->notask_ba = vtobus(&np->notask); np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); np->bad_itl_ba = vtobus(&np->bad_itl); np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); np->bad_itlq_ba = vtobus(&np->bad_itlq); /* * Allocate and prepare the lun JUMP table that is used * for a target prior the probing of devices (bad lun table). * A private table will be allocated for the target on the * first INQUIRY response received. */ np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); if (!np->badluntbl) goto attach_failed; np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); /* * Prepare the bus address array that contains the bus * address of each target control block. * For now, assume all logical units are wrong. :) */ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); np->target[i].head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); np->target[i].head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); } /* * Now check the cache handling of the pci chipset. */ if (sym_snooptest (np)) { printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); goto attach_failed; } /* * Sigh! we are done. */ return 0; attach_failed: return -ENXIO; } /* * Free everything that has been allocated for this device. */ void sym_hcb_free(struct sym_hcb *np) { SYM_QUEHEAD *qp; struct sym_ccb *cp; struct sym_tcb *tp; int target; if (np->scriptz0) sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); if (np->scriptb0) sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); if (np->scripta0) sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); if (np->squeue) sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); if (np->dqueue) sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); if (np->actccbs) { while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); sym_mfree_dma(cp, sizeof(*cp), "CCB"); } } kfree(np->ccbh); if (np->badluntbl) sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { tp = &np->target[target]; #if SYM_CONF_MAX_LUN > 1 kfree(tp->lunmp); #endif } if (np->targtbl) sym_mfree_dma(np->targtbl, 256, "TARGTBL"); }