/* * driver for Microsemi PQI-based storage controllers * Copyright (c) 2016 Microsemi Corporation * Copyright (c) 2016 PMC-Sierra, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smartpqi.h" #include "smartpqi_sis.h" #if !defined(BUILD_TIMESTAMP) #define BUILD_TIMESTAMP #endif #define DRIVER_VERSION "0.9.9-100" #define DRIVER_MAJOR 0 #define DRIVER_MINOR 9 #define DRIVER_RELEASE 9 #define DRIVER_REVISION 100 #define DRIVER_NAME "Microsemi PQI Driver (v" DRIVER_VERSION ")" #define DRIVER_NAME_SHORT "smartpqi" MODULE_AUTHOR("Microsemi"); MODULE_DESCRIPTION("Driver for Microsemi Smart Family Controller version " DRIVER_VERSION); MODULE_SUPPORTED_DEVICE("Microsemi Smart Family Controllers"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL"); #define PQI_ENABLE_MULTI_QUEUE_SUPPORT 0 static char *hpe_branded_controller = "HPE Smart Array Controller"; static char *microsemi_branded_controller = "Microsemi Smart Family Controller"; static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info); static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info); static void pqi_scan_start(struct Scsi_Host *shost); static void pqi_start_io(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group, enum pqi_io_path path, struct pqi_io_request *io_request); static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info, struct pqi_iu_header *request, unsigned int flags, struct pqi_raid_error_info *error_info, unsigned long timeout_msecs); static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info, struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb, unsigned int cdb_length, struct pqi_queue_group *queue_group, struct pqi_encryption_info *encryption_info); /* for flags argument to pqi_submit_raid_request_synchronous() */ #define PQI_SYNC_FLAGS_INTERRUPTABLE 0x1 static struct scsi_transport_template *pqi_sas_transport_template; static atomic_t pqi_controller_count = ATOMIC_INIT(0); static int pqi_disable_device_id_wildcards; module_param_named(disable_device_id_wildcards, pqi_disable_device_id_wildcards, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_device_id_wildcards, "Disable device ID wildcards."); static char *raid_levels[] = { "RAID-0", "RAID-4", "RAID-1(1+0)", "RAID-5", "RAID-5+1", "RAID-ADG", "RAID-1(ADM)", }; static char *pqi_raid_level_to_string(u8 raid_level) { if (raid_level < ARRAY_SIZE(raid_levels)) return raid_levels[raid_level]; return ""; } #define SA_RAID_0 0 #define SA_RAID_4 1 #define SA_RAID_1 2 /* also used for RAID 10 */ #define SA_RAID_5 3 /* also used for RAID 50 */ #define SA_RAID_51 4 #define SA_RAID_6 5 /* also used for RAID 60 */ #define SA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ #define SA_RAID_MAX SA_RAID_ADM #define SA_RAID_UNKNOWN 0xff static inline void pqi_scsi_done(struct scsi_cmnd *scmd) { scmd->scsi_done(scmd); } static inline bool pqi_scsi3addr_equal(u8 *scsi3addr1, u8 *scsi3addr2) { return memcmp(scsi3addr1, scsi3addr2, 8) == 0; } static inline struct pqi_ctrl_info *shost_to_hba(struct Scsi_Host *shost) { void *hostdata = shost_priv(shost); return *((struct pqi_ctrl_info **)hostdata); } static inline bool pqi_is_logical_device(struct pqi_scsi_dev *device) { return !device->is_physical_device; } static inline bool pqi_ctrl_offline(struct pqi_ctrl_info *ctrl_info) { return !ctrl_info->controller_online; } static inline void pqi_check_ctrl_health(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->controller_online) if (!sis_is_firmware_running(ctrl_info)) pqi_take_ctrl_offline(ctrl_info); } static inline bool pqi_is_hba_lunid(u8 *scsi3addr) { return pqi_scsi3addr_equal(scsi3addr, RAID_CTLR_LUNID); } #define PQI_RESCAN_WORK_INTERVAL (10 * HZ) static inline void pqi_schedule_rescan_worker(struct pqi_ctrl_info *ctrl_info) { schedule_delayed_work(&ctrl_info->rescan_work, PQI_RESCAN_WORK_INTERVAL); } static int pqi_map_single(struct pci_dev *pci_dev, struct pqi_sg_descriptor *sg_descriptor, void *buffer, size_t buffer_length, int data_direction) { dma_addr_t bus_address; if (!buffer || buffer_length == 0 || data_direction == PCI_DMA_NONE) return 0; bus_address = pci_map_single(pci_dev, buffer, buffer_length, data_direction); if (pci_dma_mapping_error(pci_dev, bus_address)) return -ENOMEM; put_unaligned_le64((u64)bus_address, &sg_descriptor->address); put_unaligned_le32(buffer_length, &sg_descriptor->length); put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); return 0; } static void pqi_pci_unmap(struct pci_dev *pci_dev, struct pqi_sg_descriptor *descriptors, int num_descriptors, int data_direction) { int i; if (data_direction == PCI_DMA_NONE) return; for (i = 0; i < num_descriptors; i++) pci_unmap_single(pci_dev, (dma_addr_t)get_unaligned_le64(&descriptors[i].address), get_unaligned_le32(&descriptors[i].length), data_direction); } static int pqi_build_raid_path_request(struct pqi_ctrl_info *ctrl_info, struct pqi_raid_path_request *request, u8 cmd, u8 *scsi3addr, void *buffer, size_t buffer_length, u16 vpd_page, int *pci_direction) { u8 *cdb; int pci_dir; memset(request, 0, sizeof(*request)); request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; put_unaligned_le16(offsetof(struct pqi_raid_path_request, sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request->header.iu_length); put_unaligned_le32(buffer_length, &request->buffer_length); memcpy(request->lun_number, scsi3addr, sizeof(request->lun_number)); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; cdb = request->cdb; switch (cmd) { case INQUIRY: request->data_direction = SOP_READ_FLAG; cdb[0] = INQUIRY; if (vpd_page & VPD_PAGE) { cdb[1] = 0x1; cdb[2] = (u8)vpd_page; } cdb[4] = (u8)buffer_length; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: request->data_direction = SOP_READ_FLAG; cdb[0] = cmd; if (cmd == CISS_REPORT_PHYS) cdb[1] = CISS_REPORT_PHYS_EXTENDED; else cdb[1] = CISS_REPORT_LOG_EXTENDED; put_unaligned_be32(buffer_length, &cdb[6]); break; case CISS_GET_RAID_MAP: request->data_direction = SOP_READ_FLAG; cdb[0] = CISS_READ; cdb[1] = CISS_GET_RAID_MAP; put_unaligned_be32(buffer_length, &cdb[6]); break; case SA_CACHE_FLUSH: request->data_direction = SOP_WRITE_FLAG; cdb[0] = BMIC_WRITE; cdb[6] = BMIC_CACHE_FLUSH; put_unaligned_be16(buffer_length, &cdb[7]); break; case BMIC_IDENTIFY_CONTROLLER: case BMIC_IDENTIFY_PHYSICAL_DEVICE: request->data_direction = SOP_READ_FLAG; cdb[0] = BMIC_READ; cdb[6] = cmd; put_unaligned_be16(buffer_length, &cdb[7]); break; case BMIC_WRITE_HOST_WELLNESS: request->data_direction = SOP_WRITE_FLAG; cdb[0] = BMIC_WRITE; cdb[6] = cmd; put_unaligned_be16(buffer_length, &cdb[7]); break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown command 0x%c\n", cmd); WARN_ON(cmd); break; } switch (request->data_direction) { case SOP_READ_FLAG: pci_dir = PCI_DMA_FROMDEVICE; break; case SOP_WRITE_FLAG: pci_dir = PCI_DMA_TODEVICE; break; case SOP_NO_DIRECTION_FLAG: pci_dir = PCI_DMA_NONE; break; default: pci_dir = PCI_DMA_BIDIRECTIONAL; break; } *pci_direction = pci_dir; return pqi_map_single(ctrl_info->pci_dev, &request->sg_descriptors[0], buffer, buffer_length, pci_dir); } static struct pqi_io_request *pqi_alloc_io_request( struct pqi_ctrl_info *ctrl_info) { struct pqi_io_request *io_request; u16 i = ctrl_info->next_io_request_slot; /* benignly racy */ while (1) { io_request = &ctrl_info->io_request_pool[i]; if (atomic_inc_return(&io_request->refcount) == 1) break; atomic_dec(&io_request->refcount); i = (i + 1) % ctrl_info->max_io_slots; } /* benignly racy */ ctrl_info->next_io_request_slot = (i + 1) % ctrl_info->max_io_slots; io_request->scmd = NULL; io_request->status = 0; io_request->error_info = NULL; return io_request; } static void pqi_free_io_request(struct pqi_io_request *io_request) { atomic_dec(&io_request->refcount); } static int pqi_identify_controller(struct pqi_ctrl_info *ctrl_info, struct bmic_identify_controller *buffer) { int rc; int pci_direction; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, BMIC_IDENTIFY_CONTROLLER, RAID_CTLR_LUNID, buffer, sizeof(*buffer), 0, &pci_direction); if (rc) return rc; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); return rc; } static int pqi_scsi_inquiry(struct pqi_ctrl_info *ctrl_info, u8 *scsi3addr, u16 vpd_page, void *buffer, size_t buffer_length) { int rc; int pci_direction; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, INQUIRY, scsi3addr, buffer, buffer_length, vpd_page, &pci_direction); if (rc) return rc; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); return rc; } static int pqi_identify_physical_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct bmic_identify_physical_device *buffer, size_t buffer_length) { int rc; int pci_direction; u16 bmic_device_index; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, BMIC_IDENTIFY_PHYSICAL_DEVICE, RAID_CTLR_LUNID, buffer, buffer_length, 0, &pci_direction); if (rc) return rc; bmic_device_index = CISS_GET_DRIVE_NUMBER(device->scsi3addr); request.cdb[2] = (u8)bmic_device_index; request.cdb[9] = (u8)(bmic_device_index >> 8); rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); return rc; } #define SA_CACHE_FLUSH_BUFFER_LENGTH 4 #define PQI_FLUSH_CACHE_TIMEOUT (30 * 1000) static int pqi_flush_cache(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_raid_path_request request; int pci_direction; u8 *buffer; /* * Don't bother trying to flush the cache if the controller is * locked up. */ if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; buffer = kzalloc(SA_CACHE_FLUSH_BUFFER_LENGTH, GFP_KERNEL); if (!buffer) return -ENOMEM; rc = pqi_build_raid_path_request(ctrl_info, &request, SA_CACHE_FLUSH, RAID_CTLR_LUNID, buffer, SA_CACHE_FLUSH_BUFFER_LENGTH, 0, &pci_direction); if (rc) goto out; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, PQI_FLUSH_CACHE_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); out: kfree(buffer); return rc; } static int pqi_write_host_wellness(struct pqi_ctrl_info *ctrl_info, void *buffer, size_t buffer_length) { int rc; struct pqi_raid_path_request request; int pci_direction; rc = pqi_build_raid_path_request(ctrl_info, &request, BMIC_WRITE_HOST_WELLNESS, RAID_CTLR_LUNID, buffer, buffer_length, 0, &pci_direction); if (rc) return rc; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); return rc; } #pragma pack(1) struct bmic_host_wellness_driver_version { u8 start_tag[4]; u8 driver_version_tag[2]; __le16 driver_version_length; char driver_version[32]; u8 end_tag[2]; }; #pragma pack() static int pqi_write_driver_version_to_host_wellness( struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_host_wellness_driver_version *buffer; size_t buffer_length; buffer_length = sizeof(*buffer); buffer = kmalloc(buffer_length, GFP_KERNEL); if (!buffer) return -ENOMEM; buffer->start_tag[0] = '<'; buffer->start_tag[1] = 'H'; buffer->start_tag[2] = 'W'; buffer->start_tag[3] = '>'; buffer->driver_version_tag[0] = 'D'; buffer->driver_version_tag[1] = 'V'; put_unaligned_le16(sizeof(buffer->driver_version), &buffer->driver_version_length); strncpy(buffer->driver_version, DRIVER_VERSION, sizeof(buffer->driver_version) - 1); buffer->driver_version[sizeof(buffer->driver_version) - 1] = '\0'; buffer->end_tag[0] = 'Z'; buffer->end_tag[1] = 'Z'; rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length); kfree(buffer); return rc; } #pragma pack(1) struct bmic_host_wellness_time { u8 start_tag[4]; u8 time_tag[2]; __le16 time_length; u8 time[8]; u8 dont_write_tag[2]; u8 end_tag[2]; }; #pragma pack() static int pqi_write_current_time_to_host_wellness( struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_host_wellness_time *buffer; size_t buffer_length; time64_t local_time; unsigned int year; struct timeval time; struct rtc_time tm; buffer_length = sizeof(*buffer); buffer = kmalloc(buffer_length, GFP_KERNEL); if (!buffer) return -ENOMEM; buffer->start_tag[0] = '<'; buffer->start_tag[1] = 'H'; buffer->start_tag[2] = 'W'; buffer->start_tag[3] = '>'; buffer->time_tag[0] = 'T'; buffer->time_tag[1] = 'D'; put_unaligned_le16(sizeof(buffer->time), &buffer->time_length); do_gettimeofday(&time); local_time = time.tv_sec - (sys_tz.tz_minuteswest * 60); rtc_time64_to_tm(local_time, &tm); year = tm.tm_year + 1900; buffer->time[0] = bin2bcd(tm.tm_hour); buffer->time[1] = bin2bcd(tm.tm_min); buffer->time[2] = bin2bcd(tm.tm_sec); buffer->time[3] = 0; buffer->time[4] = bin2bcd(tm.tm_mon + 1); buffer->time[5] = bin2bcd(tm.tm_mday); buffer->time[6] = bin2bcd(year / 100); buffer->time[7] = bin2bcd(year % 100); buffer->dont_write_tag[0] = 'D'; buffer->dont_write_tag[1] = 'W'; buffer->end_tag[0] = 'Z'; buffer->end_tag[1] = 'Z'; rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length); kfree(buffer); return rc; } #define PQI_UPDATE_TIME_WORK_INTERVAL (24UL * 60 * 60 * HZ) static void pqi_update_time_worker(struct work_struct *work) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info, update_time_work); if (!ctrl_info) { printk("%s: NULL controller pointer.\n", __func__); return; } rc = pqi_write_current_time_to_host_wellness(ctrl_info); if (rc) dev_warn(&ctrl_info->pci_dev->dev, "error updating time on controller\n"); schedule_delayed_work(&ctrl_info->update_time_work, PQI_UPDATE_TIME_WORK_INTERVAL); } static inline void pqi_schedule_update_time_worker( struct pqi_ctrl_info *ctrl_info) { schedule_delayed_work(&ctrl_info->update_time_work, 120); } static int pqi_report_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd, void *buffer, size_t buffer_length) { int rc; int pci_direction; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, cmd, RAID_CTLR_LUNID, buffer, buffer_length, 0, &pci_direction); if (rc) return rc; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); return rc; } static int pqi_report_phys_logical_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd, void **buffer) { int rc; size_t lun_list_length; size_t lun_data_length; size_t new_lun_list_length; void *lun_data = NULL; struct report_lun_header *report_lun_header; report_lun_header = kmalloc(sizeof(*report_lun_header), GFP_KERNEL); if (!report_lun_header) { rc = -ENOMEM; goto out; } rc = pqi_report_luns(ctrl_info, cmd, report_lun_header, sizeof(*report_lun_header)); if (rc) goto out; lun_list_length = get_unaligned_be32(&report_lun_header->list_length); again: lun_data_length = sizeof(struct report_lun_header) + lun_list_length; lun_data = kmalloc(lun_data_length, GFP_KERNEL); if (!lun_data) { rc = -ENOMEM; goto out; } if (lun_list_length == 0) { memcpy(lun_data, report_lun_header, sizeof(*report_lun_header)); goto out; } rc = pqi_report_luns(ctrl_info, cmd, lun_data, lun_data_length); if (rc) goto out; new_lun_list_length = get_unaligned_be32( &((struct report_lun_header *)lun_data)->list_length); if (new_lun_list_length > lun_list_length) { lun_list_length = new_lun_list_length; kfree(lun_data); goto again; } out: kfree(report_lun_header); if (rc) { kfree(lun_data); lun_data = NULL; } *buffer = lun_data; return rc; } static inline int pqi_report_phys_luns(struct pqi_ctrl_info *ctrl_info, void **buffer) { return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_PHYS, buffer); } static inline int pqi_report_logical_luns(struct pqi_ctrl_info *ctrl_info, void **buffer) { return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_LOG, buffer); } static int pqi_get_device_lists(struct pqi_ctrl_info *ctrl_info, struct report_phys_lun_extended **physdev_list, struct report_log_lun_extended **logdev_list) { int rc; size_t logdev_list_length; size_t logdev_data_length; struct report_log_lun_extended *internal_logdev_list; struct report_log_lun_extended *logdev_data; struct report_lun_header report_lun_header; rc = pqi_report_phys_luns(ctrl_info, (void **)physdev_list); if (rc) dev_err(&ctrl_info->pci_dev->dev, "report physical LUNs failed\n"); rc = pqi_report_logical_luns(ctrl_info, (void **)logdev_list); if (rc) dev_err(&ctrl_info->pci_dev->dev, "report logical LUNs failed\n"); /* * Tack the controller itself onto the end of the logical device list. */ logdev_data = *logdev_list; if (logdev_data) { logdev_list_length = get_unaligned_be32(&logdev_data->header.list_length); } else { memset(&report_lun_header, 0, sizeof(report_lun_header)); logdev_data = (struct report_log_lun_extended *)&report_lun_header; logdev_list_length = 0; } logdev_data_length = sizeof(struct report_lun_header) + logdev_list_length; internal_logdev_list = kmalloc(logdev_data_length + sizeof(struct report_log_lun_extended), GFP_KERNEL); if (!internal_logdev_list) { kfree(*logdev_list); *logdev_list = NULL; return -ENOMEM; } memcpy(internal_logdev_list, logdev_data, logdev_data_length); memset((u8 *)internal_logdev_list + logdev_data_length, 0, sizeof(struct report_log_lun_extended_entry)); put_unaligned_be32(logdev_list_length + sizeof(struct report_log_lun_extended_entry), &internal_logdev_list->header.list_length); kfree(*logdev_list); *logdev_list = internal_logdev_list; return 0; } static inline void pqi_set_bus_target_lun(struct pqi_scsi_dev *device, int bus, int target, int lun) { device->bus = bus; device->target = target; device->lun = lun; } static void pqi_assign_bus_target_lun(struct pqi_scsi_dev *device) { u8 *scsi3addr; u32 lunid; scsi3addr = device->scsi3addr; lunid = get_unaligned_le32(scsi3addr); if (pqi_is_hba_lunid(scsi3addr)) { /* The specified device is the controller. */ pqi_set_bus_target_lun(device, PQI_HBA_BUS, 0, lunid & 0x3fff); device->target_lun_valid = true; return; } if (pqi_is_logical_device(device)) { pqi_set_bus_target_lun(device, PQI_RAID_VOLUME_BUS, 0, lunid & 0x3fff); device->target_lun_valid = true; return; } /* * Defer target and LUN assignment for non-controller physical devices * because the SAS transport layer will make these assignments later. */ pqi_set_bus_target_lun(device, PQI_PHYSICAL_DEVICE_BUS, 0, 0); } static void pqi_get_raid_level(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 raid_level; u8 *buffer; raid_level = SA_RAID_UNKNOWN; buffer = kmalloc(64, GFP_KERNEL); if (buffer) { rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_DEVICE_GEOMETRY, buffer, 64); if (rc == 0) { raid_level = buffer[8]; if (raid_level > SA_RAID_MAX) raid_level = SA_RAID_UNKNOWN; } kfree(buffer); } device->raid_level = raid_level; } static int pqi_validate_raid_map(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct raid_map *raid_map) { char *err_msg; u32 raid_map_size; u32 r5or6_blocks_per_row; unsigned int num_phys_disks; unsigned int num_raid_map_entries; raid_map_size = get_unaligned_le32(&raid_map->structure_size); if (raid_map_size < offsetof(struct raid_map, disk_data)) { err_msg = "RAID map too small"; goto bad_raid_map; } if (raid_map_size > sizeof(*raid_map)) { err_msg = "RAID map too large"; goto bad_raid_map; } num_phys_disks = get_unaligned_le16(&raid_map->layout_map_count) * (get_unaligned_le16(&raid_map->data_disks_per_row) + get_unaligned_le16(&raid_map->metadata_disks_per_row)); num_raid_map_entries = num_phys_disks * get_unaligned_le16(&raid_map->row_cnt); if (num_raid_map_entries > RAID_MAP_MAX_ENTRIES) { err_msg = "invalid number of map entries in RAID map"; goto bad_raid_map; } if (device->raid_level == SA_RAID_1) { if (get_unaligned_le16(&raid_map->layout_map_count) != 2) { err_msg = "invalid RAID-1 map"; goto bad_raid_map; } } else if (device->raid_level == SA_RAID_ADM) { if (get_unaligned_le16(&raid_map->layout_map_count) != 3) { err_msg = "invalid RAID-1(ADM) map"; goto bad_raid_map; } } else if ((device->raid_level == SA_RAID_5 || device->raid_level == SA_RAID_6) && get_unaligned_le16(&raid_map->layout_map_count) > 1) { /* RAID 50/60 */ r5or6_blocks_per_row = get_unaligned_le16(&raid_map->strip_size) * get_unaligned_le16(&raid_map->data_disks_per_row); if (r5or6_blocks_per_row == 0) { err_msg = "invalid RAID-5 or RAID-6 map"; goto bad_raid_map; } } return 0; bad_raid_map: dev_warn(&ctrl_info->pci_dev->dev, "%s\n", err_msg); return -EINVAL; } static int pqi_get_raid_map(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; int pci_direction; struct pqi_raid_path_request request; struct raid_map *raid_map; raid_map = kmalloc(sizeof(*raid_map), GFP_KERNEL); if (!raid_map) return -ENOMEM; rc = pqi_build_raid_path_request(ctrl_info, &request, CISS_GET_RAID_MAP, device->scsi3addr, raid_map, sizeof(*raid_map), 0, &pci_direction); if (rc) goto error; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, pci_direction); if (rc) goto error; rc = pqi_validate_raid_map(ctrl_info, device, raid_map); if (rc) goto error; device->raid_map = raid_map; return 0; error: kfree(raid_map); return rc; } static void pqi_get_offload_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 *buffer; u8 offload_status; buffer = kmalloc(64, GFP_KERNEL); if (!buffer) return; rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_OFFLOAD_STATUS, buffer, 64); if (rc) goto out; #define OFFLOAD_STATUS_BYTE 4 #define OFFLOAD_CONFIGURED_BIT 0x1 #define OFFLOAD_ENABLED_BIT 0x2 offload_status = buffer[OFFLOAD_STATUS_BYTE]; device->offload_configured = !!(offload_status & OFFLOAD_CONFIGURED_BIT); if (device->offload_configured) { device->offload_enabled_pending = !!(offload_status & OFFLOAD_ENABLED_BIT); if (pqi_get_raid_map(ctrl_info, device)) device->offload_enabled_pending = false; } out: kfree(buffer); } /* * Use vendor-specific VPD to determine online/offline status of a volume. */ static void pqi_get_volume_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; size_t page_length; u8 volume_status = CISS_LV_STATUS_UNAVAILABLE; bool volume_offline = true; u32 volume_flags; struct ciss_vpd_logical_volume_status *vpd; vpd = kmalloc(sizeof(*vpd), GFP_KERNEL); if (!vpd) goto no_buffer; rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_STATUS, vpd, sizeof(*vpd)); if (rc) goto out; page_length = offsetof(struct ciss_vpd_logical_volume_status, volume_status) + vpd->page_length; if (page_length < sizeof(*vpd)) goto out; volume_status = vpd->volume_status; volume_flags = get_unaligned_be32(&vpd->flags); volume_offline = (volume_flags & CISS_LV_FLAGS_NO_HOST_IO) != 0; out: kfree(vpd); no_buffer: device->volume_status = volume_status; device->volume_offline = volume_offline; } static int pqi_get_device_info(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 *buffer; buffer = kmalloc(64, GFP_KERNEL); if (!buffer) return -ENOMEM; /* Send an inquiry to the device to see what it is. */ rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, 0, buffer, 64); if (rc) goto out; scsi_sanitize_inquiry_string(&buffer[8], 8); scsi_sanitize_inquiry_string(&buffer[16], 16); device->devtype = buffer[0] & 0x1f; memcpy(device->vendor, &buffer[8], sizeof(device->vendor)); memcpy(device->model, &buffer[16], sizeof(device->model)); if (pqi_is_logical_device(device) && device->devtype == TYPE_DISK) { pqi_get_raid_level(ctrl_info, device); pqi_get_offload_status(ctrl_info, device); pqi_get_volume_status(ctrl_info, device); } out: kfree(buffer); return rc; } static void pqi_get_physical_disk_info(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct bmic_identify_physical_device *id_phys) { int rc; memset(id_phys, 0, sizeof(*id_phys)); rc = pqi_identify_physical_device(ctrl_info, device, id_phys, sizeof(*id_phys)); if (rc) { device->queue_depth = PQI_PHYSICAL_DISK_DEFAULT_MAX_QUEUE_DEPTH; return; } device->queue_depth = get_unaligned_le16(&id_phys->current_queue_depth_limit); device->device_type = id_phys->device_type; device->active_path_index = id_phys->active_path_number; device->path_map = id_phys->redundant_path_present_map; memcpy(&device->box, &id_phys->alternate_paths_phys_box_on_port, sizeof(device->box)); memcpy(&device->phys_connector, &id_phys->alternate_paths_phys_connector, sizeof(device->phys_connector)); device->bay = id_phys->phys_bay_in_box; } static void pqi_show_volume_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { char *status; static const char unknown_state_str[] = "Volume is in an unknown state (%u)"; char unknown_state_buffer[sizeof(unknown_state_str) + 10]; switch (device->volume_status) { case CISS_LV_OK: status = "Volume online"; break; case CISS_LV_FAILED: status = "Volume failed"; break; case CISS_LV_NOT_CONFIGURED: status = "Volume not configured"; break; case CISS_LV_DEGRADED: status = "Volume degraded"; break; case CISS_LV_READY_FOR_RECOVERY: status = "Volume ready for recovery operation"; break; case CISS_LV_UNDERGOING_RECOVERY: status = "Volume undergoing recovery"; break; case CISS_LV_WRONG_PHYSICAL_DRIVE_REPLACED: status = "Wrong physical drive was replaced"; break; case CISS_LV_PHYSICAL_DRIVE_CONNECTION_PROBLEM: status = "A physical drive not properly connected"; break; case CISS_LV_HARDWARE_OVERHEATING: status = "Hardware is overheating"; break; case CISS_LV_HARDWARE_HAS_OVERHEATED: status = "Hardware has overheated"; break; case CISS_LV_UNDERGOING_EXPANSION: status = "Volume undergoing expansion"; break; case CISS_LV_NOT_AVAILABLE: status = "Volume waiting for transforming volume"; break; case CISS_LV_QUEUED_FOR_EXPANSION: status = "Volume queued for expansion"; break; case CISS_LV_DISABLED_SCSI_ID_CONFLICT: status = "Volume disabled due to SCSI ID conflict"; break; case CISS_LV_EJECTED: status = "Volume has been ejected"; break; case CISS_LV_UNDERGOING_ERASE: status = "Volume undergoing background erase"; break; case CISS_LV_READY_FOR_PREDICTIVE_SPARE_REBUILD: status = "Volume ready for predictive spare rebuild"; break; case CISS_LV_UNDERGOING_RPI: status = "Volume undergoing rapid parity initialization"; break; case CISS_LV_PENDING_RPI: status = "Volume queued for rapid parity initialization"; break; case CISS_LV_ENCRYPTED_NO_KEY: status = "Encrypted volume inaccessible - key not present"; break; case CISS_LV_UNDERGOING_ENCRYPTION: status = "Volume undergoing encryption process"; break; case CISS_LV_UNDERGOING_ENCRYPTION_REKEYING: status = "Volume undergoing encryption re-keying process"; break; case CISS_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: status = "Encrypted volume inaccessible - disabled on ctrl"; break; case CISS_LV_PENDING_ENCRYPTION: status = "Volume pending migration to encrypted state"; break; case CISS_LV_PENDING_ENCRYPTION_REKEYING: status = "Volume pending encryption rekeying"; break; case CISS_LV_NOT_SUPPORTED: status = "Volume not supported on this controller"; break; case CISS_LV_STATUS_UNAVAILABLE: status = "Volume status not available"; break; default: snprintf(unknown_state_buffer, sizeof(unknown_state_buffer), unknown_state_str, device->volume_status); status = unknown_state_buffer; break; } dev_info(&ctrl_info->pci_dev->dev, "scsi %d:%d:%d:%d %s\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, status); } static struct pqi_scsi_dev *pqi_find_disk_by_aio_handle( struct pqi_ctrl_info *ctrl_info, u32 aio_handle) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->devtype != TYPE_DISK && device->devtype != TYPE_ZBC) continue; if (pqi_is_logical_device(device)) continue; if (device->aio_handle == aio_handle) return device; } return NULL; } static void pqi_update_logical_drive_queue_depth( struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *logical_drive) { unsigned int i; struct raid_map *raid_map; struct raid_map_disk_data *disk_data; struct pqi_scsi_dev *phys_disk; unsigned int num_phys_disks; unsigned int num_raid_map_entries; unsigned int queue_depth; logical_drive->queue_depth = PQI_LOGICAL_DRIVE_DEFAULT_MAX_QUEUE_DEPTH; raid_map = logical_drive->raid_map; if (!raid_map) return; disk_data = raid_map->disk_data; num_phys_disks = get_unaligned_le16(&raid_map->layout_map_count) * (get_unaligned_le16(&raid_map->data_disks_per_row) + get_unaligned_le16(&raid_map->metadata_disks_per_row)); num_raid_map_entries = num_phys_disks * get_unaligned_le16(&raid_map->row_cnt); queue_depth = 0; for (i = 0; i < num_raid_map_entries; i++) { phys_disk = pqi_find_disk_by_aio_handle(ctrl_info, disk_data[i].aio_handle); if (!phys_disk) { dev_warn(&ctrl_info->pci_dev->dev, "failed to find physical disk for logical drive %016llx\n", get_unaligned_be64(logical_drive->scsi3addr)); logical_drive->offload_enabled = false; logical_drive->offload_enabled_pending = false; kfree(raid_map); logical_drive->raid_map = NULL; return; } queue_depth += phys_disk->queue_depth; } logical_drive->queue_depth = queue_depth; } static void pqi_update_all_logical_drive_queue_depths( struct pqi_ctrl_info *ctrl_info) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->devtype != TYPE_DISK && device->devtype != TYPE_ZBC) continue; if (!pqi_is_logical_device(device)) continue; pqi_update_logical_drive_queue_depth(ctrl_info, device); } } static void pqi_rescan_worker(struct work_struct *work) { struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info, rescan_work); pqi_scan_scsi_devices(ctrl_info); } static int pqi_add_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; if (pqi_is_logical_device(device)) rc = scsi_add_device(ctrl_info->scsi_host, device->bus, device->target, device->lun); else rc = pqi_add_sas_device(ctrl_info->sas_host, device); return rc; } static inline void pqi_remove_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { if (pqi_is_logical_device(device)) scsi_remove_device(device->sdev); else pqi_remove_sas_device(device); } /* Assumes the SCSI device list lock is held. */ static struct pqi_scsi_dev *pqi_find_scsi_dev(struct pqi_ctrl_info *ctrl_info, int bus, int target, int lun) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) if (device->bus == bus && device->target == target && device->lun == lun) return device; return NULL; } static inline bool pqi_device_equal(struct pqi_scsi_dev *dev1, struct pqi_scsi_dev *dev2) { if (dev1->is_physical_device != dev2->is_physical_device) return false; if (dev1->is_physical_device) return dev1->wwid == dev2->wwid; return memcmp(dev1->volume_id, dev2->volume_id, sizeof(dev1->volume_id)) == 0; } enum pqi_find_result { DEVICE_NOT_FOUND, DEVICE_CHANGED, DEVICE_SAME, }; static enum pqi_find_result pqi_scsi_find_entry(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device_to_find, struct pqi_scsi_dev **matching_device) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (pqi_scsi3addr_equal(device_to_find->scsi3addr, device->scsi3addr)) { *matching_device = device; if (pqi_device_equal(device_to_find, device)) { if (device_to_find->volume_offline) return DEVICE_CHANGED; return DEVICE_SAME; } return DEVICE_CHANGED; } } return DEVICE_NOT_FOUND; } static void pqi_dev_info(struct pqi_ctrl_info *ctrl_info, char *action, struct pqi_scsi_dev *device) { dev_info(&ctrl_info->pci_dev->dev, "%s scsi %d:%d:%d:%d: %s %.8s %.16s %-12s SSDSmartPathCap%c En%c Exp%c qd=%d\n", action, ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, scsi_device_type(device->devtype), device->vendor, device->model, pqi_raid_level_to_string(device->raid_level), device->offload_configured ? '+' : '-', device->offload_enabled_pending ? '+' : '-', device->expose_device ? '+' : '-', device->queue_depth); } /* Assumes the SCSI device list lock is held. */ static void pqi_scsi_update_device(struct pqi_scsi_dev *existing_device, struct pqi_scsi_dev *new_device) { existing_device->devtype = new_device->devtype; existing_device->device_type = new_device->device_type; existing_device->bus = new_device->bus; if (new_device->target_lun_valid) { existing_device->target = new_device->target; existing_device->lun = new_device->lun; existing_device->target_lun_valid = true; } /* By definition, the scsi3addr and wwid fields are already the same. */ existing_device->is_physical_device = new_device->is_physical_device; existing_device->expose_device = new_device->expose_device; existing_device->no_uld_attach = new_device->no_uld_attach; existing_device->aio_enabled = new_device->aio_enabled; memcpy(existing_device->vendor, new_device->vendor, sizeof(existing_device->vendor)); memcpy(existing_device->model, new_device->model, sizeof(existing_device->model)); existing_device->sas_address = new_device->sas_address; existing_device->raid_level = new_device->raid_level; existing_device->queue_depth = new_device->queue_depth; existing_device->aio_handle = new_device->aio_handle; existing_device->volume_status = new_device->volume_status; existing_device->active_path_index = new_device->active_path_index; existing_device->path_map = new_device->path_map; existing_device->bay = new_device->bay; memcpy(existing_device->box, new_device->box, sizeof(existing_device->box)); memcpy(existing_device->phys_connector, new_device->phys_connector, sizeof(existing_device->phys_connector)); existing_device->offload_configured = new_device->offload_configured; existing_device->offload_enabled = false; existing_device->offload_enabled_pending = new_device->offload_enabled_pending; existing_device->offload_to_mirror = 0; kfree(existing_device->raid_map); existing_device->raid_map = new_device->raid_map; /* To prevent this from being freed later. */ new_device->raid_map = NULL; } static inline void pqi_free_device(struct pqi_scsi_dev *device) { if (device) { kfree(device->raid_map); kfree(device); } } /* * Called when exposing a new device to the OS fails in order to re-adjust * our internal SCSI device list to match the SCSI ML's view. */ static inline void pqi_fixup_botched_add(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { unsigned long flags; spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); list_del(&device->scsi_device_list_entry); spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); /* Allow the device structure to be freed later. */ device->keep_device = false; } static void pqi_update_device_list(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *new_device_list[], unsigned int num_new_devices) { int rc; unsigned int i; unsigned long flags; enum pqi_find_result find_result; struct pqi_scsi_dev *device; struct pqi_scsi_dev *next; struct pqi_scsi_dev *matching_device; struct list_head add_list; struct list_head delete_list; INIT_LIST_HEAD(&add_list); INIT_LIST_HEAD(&delete_list); /* * The idea here is to do as little work as possible while holding the * spinlock. That's why we go to great pains to defer anything other * than updating the internal device list until after we release the * spinlock. */ spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); /* Assume that all devices in the existing list have gone away. */ list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) device->device_gone = true; for (i = 0; i < num_new_devices; i++) { device = new_device_list[i]; find_result = pqi_scsi_find_entry(ctrl_info, device, &matching_device); switch (find_result) { case DEVICE_SAME: /* * The newly found device is already in the existing * device list. */ device->new_device = false; matching_device->device_gone = false; pqi_scsi_update_device(matching_device, device); break; case DEVICE_NOT_FOUND: /* * The newly found device is NOT in the existing device * list. */ device->new_device = true; break; case DEVICE_CHANGED: /* * The original device has gone away and we need to add * the new device. */ device->new_device = true; break; default: WARN_ON(find_result); break; } } /* Process all devices that have gone away. */ list_for_each_entry_safe(device, next, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->device_gone) { list_del(&device->scsi_device_list_entry); list_add_tail(&device->delete_list_entry, &delete_list); } } /* Process all new devices. */ for (i = 0; i < num_new_devices; i++) { device = new_device_list[i]; if (!device->new_device) continue; if (device->volume_offline) continue; list_add_tail(&device->scsi_device_list_entry, &ctrl_info->scsi_device_list); list_add_tail(&device->add_list_entry, &add_list); /* To prevent this device structure from being freed later. */ device->keep_device = true; } pqi_update_all_logical_drive_queue_depths(ctrl_info); list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) device->offload_enabled = device->offload_enabled_pending; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); /* Remove all devices that have gone away. */ list_for_each_entry_safe(device, next, &delete_list, delete_list_entry) { if (device->sdev) pqi_remove_device(ctrl_info, device); if (device->volume_offline) { pqi_dev_info(ctrl_info, "offline", device); pqi_show_volume_status(ctrl_info, device); } else { pqi_dev_info(ctrl_info, "removed", device); } list_del(&device->delete_list_entry); pqi_free_device(device); } /* * Notify the SCSI ML if the queue depth of any existing device has * changed. */ list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->sdev && device->queue_depth != device->advertised_queue_depth) { device->advertised_queue_depth = device->queue_depth; scsi_change_queue_depth(device->sdev, device->advertised_queue_depth); } } /* Expose any new devices. */ list_for_each_entry_safe(device, next, &add_list, add_list_entry) { if (device->expose_device && !device->sdev) { rc = pqi_add_device(ctrl_info, device); if (rc) { dev_warn(&ctrl_info->pci_dev->dev, "scsi %d:%d:%d:%d addition failed, device not added\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun); pqi_fixup_botched_add(ctrl_info, device); continue; } } pqi_dev_info(ctrl_info, "added", device); } } static bool pqi_is_supported_device(struct pqi_scsi_dev *device) { bool is_supported = false; switch (device->devtype) { case TYPE_DISK: case TYPE_ZBC: case TYPE_TAPE: case TYPE_MEDIUM_CHANGER: case TYPE_ENCLOSURE: is_supported = true; break; case TYPE_RAID: /* * Only support the HBA controller itself as a RAID * controller. If it's a RAID controller other than * the HBA itself (an external RAID controller, MSA500 * or similar), we don't support it. */ if (pqi_is_hba_lunid(device->scsi3addr)) is_supported = true; break; } return is_supported; } static inline bool pqi_skip_device(u8 *scsi3addr, struct report_phys_lun_extended_entry *phys_lun_ext_entry) { u8 device_flags; if (!MASKED_DEVICE(scsi3addr)) return false; /* The device is masked. */ device_flags = phys_lun_ext_entry->device_flags; if (device_flags & REPORT_PHYS_LUN_DEV_FLAG_NON_DISK) { /* * It's a non-disk device. We ignore all devices of this type * when they're masked. */ return true; } return false; } static inline bool pqi_expose_device(struct pqi_scsi_dev *device) { /* Expose all devices except for physical devices that are masked. */ if (device->is_physical_device && MASKED_DEVICE(device->scsi3addr)) return false; return true; } static int pqi_update_scsi_devices(struct pqi_ctrl_info *ctrl_info) { int i; int rc; struct list_head new_device_list_head; struct report_phys_lun_extended *physdev_list = NULL; struct report_log_lun_extended *logdev_list = NULL; struct report_phys_lun_extended_entry *phys_lun_ext_entry; struct report_log_lun_extended_entry *log_lun_ext_entry; struct bmic_identify_physical_device *id_phys = NULL; u32 num_physicals; u32 num_logicals; struct pqi_scsi_dev **new_device_list = NULL; struct pqi_scsi_dev *device; struct pqi_scsi_dev *next; unsigned int num_new_devices; unsigned int num_valid_devices; bool is_physical_device; u8 *scsi3addr; static char *out_of_memory_msg = "out of memory, device discovery stopped"; INIT_LIST_HEAD(&new_device_list_head); rc = pqi_get_device_lists(ctrl_info, &physdev_list, &logdev_list); if (rc) goto out; if (physdev_list) num_physicals = get_unaligned_be32(&physdev_list->header.list_length) / sizeof(physdev_list->lun_entries[0]); else num_physicals = 0; if (logdev_list) num_logicals = get_unaligned_be32(&logdev_list->header.list_length) / sizeof(logdev_list->lun_entries[0]); else num_logicals = 0; if (num_physicals) { /* * We need this buffer for calls to pqi_get_physical_disk_info() * below. We allocate it here instead of inside * pqi_get_physical_disk_info() because it's a fairly large * buffer. */ id_phys = kmalloc(sizeof(*id_phys), GFP_KERNEL); if (!id_phys) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } } num_new_devices = num_physicals + num_logicals; new_device_list = kmalloc(sizeof(*new_device_list) * num_new_devices, GFP_KERNEL); if (!new_device_list) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } for (i = 0; i < num_new_devices; i++) { device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } list_add_tail(&device->new_device_list_entry, &new_device_list_head); } device = NULL; num_valid_devices = 0; for (i = 0; i < num_new_devices; i++) { if (i < num_physicals) { is_physical_device = true; phys_lun_ext_entry = &physdev_list->lun_entries[i]; log_lun_ext_entry = NULL; scsi3addr = phys_lun_ext_entry->lunid; } else { is_physical_device = false; phys_lun_ext_entry = NULL; log_lun_ext_entry = &logdev_list->lun_entries[i - num_physicals]; scsi3addr = log_lun_ext_entry->lunid; } if (is_physical_device && pqi_skip_device(scsi3addr, phys_lun_ext_entry)) continue; if (device) device = list_next_entry(device, new_device_list_entry); else device = list_first_entry(&new_device_list_head, struct pqi_scsi_dev, new_device_list_entry); memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); device->is_physical_device = is_physical_device; device->raid_level = SA_RAID_UNKNOWN; /* Gather information about the device. */ rc = pqi_get_device_info(ctrl_info, device); if (rc == -ENOMEM) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); goto out; } if (rc) { dev_warn(&ctrl_info->pci_dev->dev, "obtaining device info failed, skipping device %016llx\n", get_unaligned_be64(device->scsi3addr)); rc = 0; continue; } if (!pqi_is_supported_device(device)) continue; pqi_assign_bus_target_lun(device); device->expose_device = pqi_expose_device(device); if (device->is_physical_device) { device->wwid = phys_lun_ext_entry->wwid; if ((phys_lun_ext_entry->device_flags & REPORT_PHYS_LUN_DEV_FLAG_AIO_ENABLED) && phys_lun_ext_entry->aio_handle) device->aio_enabled = true; } else { memcpy(device->volume_id, log_lun_ext_entry->volume_id, sizeof(device->volume_id)); } switch (device->devtype) { case TYPE_DISK: case TYPE_ZBC: case TYPE_ENCLOSURE: if (device->is_physical_device) { device->sas_address = get_unaligned_be64(&device->wwid); if (device->devtype == TYPE_DISK || device->devtype == TYPE_ZBC) { device->aio_handle = phys_lun_ext_entry->aio_handle; pqi_get_physical_disk_info(ctrl_info, device, id_phys); } } break; } new_device_list[num_valid_devices++] = device; } pqi_update_device_list(ctrl_info, new_device_list, num_valid_devices); out: list_for_each_entry_safe(device, next, &new_device_list_head, new_device_list_entry) { if (device->keep_device) continue; list_del(&device->new_device_list_entry); pqi_free_device(device); } kfree(new_device_list); kfree(physdev_list); kfree(logdev_list); kfree(id_phys); return rc; } static void pqi_remove_all_scsi_devices(struct pqi_ctrl_info *ctrl_info) { unsigned long flags; struct pqi_scsi_dev *device; struct pqi_scsi_dev *next; spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); list_for_each_entry_safe(device, next, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->sdev) pqi_remove_device(ctrl_info, device); list_del(&device->scsi_device_list_entry); pqi_free_device(device); } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); } static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info) { int rc; if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; mutex_lock(&ctrl_info->scan_mutex); rc = pqi_update_scsi_devices(ctrl_info); if (rc) pqi_schedule_rescan_worker(ctrl_info); mutex_unlock(&ctrl_info->scan_mutex); return rc; } static void pqi_scan_start(struct Scsi_Host *shost) { pqi_scan_scsi_devices(shost_to_hba(shost)); } /* Returns TRUE if scan is finished. */ static int pqi_scan_finished(struct Scsi_Host *shost, unsigned long elapsed_time) { struct pqi_ctrl_info *ctrl_info; ctrl_info = shost_priv(shost); return !mutex_is_locked(&ctrl_info->scan_mutex); } static inline void pqi_set_encryption_info( struct pqi_encryption_info *encryption_info, struct raid_map *raid_map, u64 first_block) { u32 volume_blk_size; /* * Set the encryption tweak values based on logical block address. * If the block size is 512, the tweak value is equal to the LBA. * For other block sizes, tweak value is (LBA * block size) / 512. */ volume_blk_size = get_unaligned_le32(&raid_map->volume_blk_size); if (volume_blk_size != 512) first_block = (first_block * volume_blk_size) / 512; encryption_info->data_encryption_key_index = get_unaligned_le16(&raid_map->data_encryption_key_index); encryption_info->encrypt_tweak_lower = lower_32_bits(first_block); encryption_info->encrypt_tweak_upper = upper_32_bits(first_block); } /* * Attempt to perform offload RAID mapping for a logical volume I/O. */ #define PQI_RAID_BYPASS_INELIGIBLE 1 static int pqi_raid_bypass_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { struct raid_map *raid_map; bool is_write = false; u32 map_index; u64 first_block; u64 last_block; u32 block_cnt; u32 blocks_per_row; u64 first_row; u64 last_row; u32 first_row_offset; u32 last_row_offset; u32 first_column; u32 last_column; u64 r0_first_row; u64 r0_last_row; u32 r5or6_blocks_per_row; u64 r5or6_first_row; u64 r5or6_last_row; u32 r5or6_first_row_offset; u32 r5or6_last_row_offset; u32 r5or6_first_column; u32 r5or6_last_column; u16 data_disks_per_row; u32 total_disks_per_row; u16 layout_map_count; u32 stripesize; u16 strip_size; u32 first_group; u32 last_group; u32 current_group; u32 map_row; u32 aio_handle; u64 disk_block; u32 disk_block_cnt; u8 cdb[16]; u8 cdb_length; int offload_to_mirror; struct pqi_encryption_info *encryption_info_ptr; struct pqi_encryption_info encryption_info; #if BITS_PER_LONG == 32 u64 tmpdiv; #endif /* Check for valid opcode, get LBA and block count. */ switch (scmd->cmnd[0]) { case WRITE_6: is_write = true; /* fall through */ case READ_6: first_block = (u64)get_unaligned_be16(&scmd->cmnd[2]); block_cnt = (u32)scmd->cmnd[4]; if (block_cnt == 0) block_cnt = 256; break; case WRITE_10: is_write = true; /* fall through */ case READ_10: first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]); block_cnt = (u32)get_unaligned_be16(&scmd->cmnd[7]); break; case WRITE_12: is_write = true; /* fall through */ case READ_12: first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]); block_cnt = get_unaligned_be32(&scmd->cmnd[6]); break; case WRITE_16: is_write = true; /* fall through */ case READ_16: first_block = get_unaligned_be64(&scmd->cmnd[2]); block_cnt = get_unaligned_be32(&scmd->cmnd[10]); break; default: /* Process via normal I/O path. */ return PQI_RAID_BYPASS_INELIGIBLE; } /* Check for write to non-RAID-0. */ if (is_write && device->raid_level != SA_RAID_0) return PQI_RAID_BYPASS_INELIGIBLE; if (unlikely(block_cnt == 0)) return PQI_RAID_BYPASS_INELIGIBLE; last_block = first_block + block_cnt - 1; raid_map = device->raid_map; /* Check for invalid block or wraparound. */ if (last_block >= get_unaligned_le64(&raid_map->volume_blk_cnt) || last_block < first_block) return PQI_RAID_BYPASS_INELIGIBLE; data_disks_per_row = get_unaligned_le16(&raid_map->data_disks_per_row); strip_size = get_unaligned_le16(&raid_map->strip_size); layout_map_count = get_unaligned_le16(&raid_map->layout_map_count); /* Calculate stripe information for the request. */ blocks_per_row = data_disks_per_row * strip_size; #if BITS_PER_LONG == 32 tmpdiv = first_block; do_div(tmpdiv, blocks_per_row); first_row = tmpdiv; tmpdiv = last_block; do_div(tmpdiv, blocks_per_row); last_row = tmpdiv; first_row_offset = (u32)(first_block - (first_row * blocks_per_row)); last_row_offset = (u32)(last_block - (last_row * blocks_per_row)); tmpdiv = first_row_offset; do_div(tmpdiv, strip_size); first_column = tmpdiv; tmpdiv = last_row_offset; do_div(tmpdiv, strip_size); last_column = tmpdiv; #else first_row = first_block / blocks_per_row; last_row = last_block / blocks_per_row; first_row_offset = (u32)(first_block - (first_row * blocks_per_row)); last_row_offset = (u32)(last_block - (last_row * blocks_per_row)); first_column = first_row_offset / strip_size; last_column = last_row_offset / strip_size; #endif /* If this isn't a single row/column then give to the controller. */ if (first_row != last_row || first_column != last_column) return PQI_RAID_BYPASS_INELIGIBLE; /* Proceeding with driver mapping. */ total_disks_per_row = data_disks_per_row + get_unaligned_le16(&raid_map->metadata_disks_per_row); map_row = ((u32)(first_row >> raid_map->parity_rotation_shift)) % get_unaligned_le16(&raid_map->row_cnt); map_index = (map_row * total_disks_per_row) + first_column; /* RAID 1 */ if (device->raid_level == SA_RAID_1) { if (device->offload_to_mirror) map_index += data_disks_per_row; device->offload_to_mirror = !device->offload_to_mirror; } else if (device->raid_level == SA_RAID_ADM) { /* RAID ADM */ /* * Handles N-way mirrors (R1-ADM) and R10 with # of drives * divisible by 3. */ offload_to_mirror = device->offload_to_mirror; if (offload_to_mirror == 0) { /* use physical disk in the first mirrored group. */ map_index %= data_disks_per_row; } else { do { /* * Determine mirror group that map_index * indicates. */ current_group = map_index / data_disks_per_row; if (offload_to_mirror != current_group) { if (current_group < layout_map_count - 1) { /* * Select raid index from * next group. */ map_index += data_disks_per_row; current_group++; } else { /* * Select raid index from first * group. */ map_index %= data_disks_per_row; current_group = 0; } } } while (offload_to_mirror != current_group); } /* Set mirror group to use next time. */ offload_to_mirror = (offload_to_mirror >= layout_map_count - 1) ? 0 : offload_to_mirror + 1; WARN_ON(offload_to_mirror >= layout_map_count); device->offload_to_mirror = offload_to_mirror; /* * Avoid direct use of device->offload_to_mirror within this * function since multiple threads might simultaneously * increment it beyond the range of device->layout_map_count -1. */ } else if ((device->raid_level == SA_RAID_5 || device->raid_level == SA_RAID_6) && layout_map_count > 1) { /* RAID 50/60 */ /* Verify first and last block are in same RAID group */ r5or6_blocks_per_row = strip_size * data_disks_per_row; stripesize = r5or6_blocks_per_row * layout_map_count; #if BITS_PER_LONG == 32 tmpdiv = first_block; first_group = do_div(tmpdiv, stripesize); tmpdiv = first_group; do_div(tmpdiv, r5or6_blocks_per_row); first_group = tmpdiv; tmpdiv = last_block; last_group = do_div(tmpdiv, stripesize); tmpdiv = last_group; do_div(tmpdiv, r5or6_blocks_per_row); last_group = tmpdiv; #else first_group = (first_block % stripesize) / r5or6_blocks_per_row; last_group = (last_block % stripesize) / r5or6_blocks_per_row; #endif if (first_group != last_group) return PQI_RAID_BYPASS_INELIGIBLE; /* Verify request is in a single row of RAID 5/6 */ #if BITS_PER_LONG == 32 tmpdiv = first_block; do_div(tmpdiv, stripesize); first_row = r5or6_first_row = r0_first_row = tmpdiv; tmpdiv = last_block; do_div(tmpdiv, stripesize); r5or6_last_row = r0_last_row = tmpdiv; #else first_row = r5or6_first_row = r0_first_row = first_block / stripesize; r5or6_last_row = r0_last_row = last_block / stripesize; #endif if (r5or6_first_row != r5or6_last_row) return PQI_RAID_BYPASS_INELIGIBLE; /* Verify request is in a single column */ #if BITS_PER_LONG == 32 tmpdiv = first_block; first_row_offset = do_div(tmpdiv, stripesize); tmpdiv = first_row_offset; first_row_offset = (u32)do_div(tmpdiv, r5or6_blocks_per_row); r5or6_first_row_offset = first_row_offset; tmpdiv = last_block; r5or6_last_row_offset = do_div(tmpdiv, stripesize); tmpdiv = r5or6_last_row_offset; r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); tmpdiv = r5or6_first_row_offset; do_div(tmpdiv, strip_size); first_column = r5or6_first_column = tmpdiv; tmpdiv = r5or6_last_row_offset; do_div(tmpdiv, strip_size); r5or6_last_column = tmpdiv; #else first_row_offset = r5or6_first_row_offset = (u32)((first_block % stripesize) % r5or6_blocks_per_row); r5or6_last_row_offset = (u32)((last_block % stripesize) % r5or6_blocks_per_row); first_column = r5or6_first_row_offset / strip_size; r5or6_first_column = first_column; r5or6_last_column = r5or6_last_row_offset / strip_size; #endif if (r5or6_first_column != r5or6_last_column) return PQI_RAID_BYPASS_INELIGIBLE; /* Request is eligible */ map_row = ((u32)(first_row >> raid_map->parity_rotation_shift)) % get_unaligned_le16(&raid_map->row_cnt); map_index = (first_group * (get_unaligned_le16(&raid_map->row_cnt) * total_disks_per_row)) + (map_row * total_disks_per_row) + first_column; } if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) return PQI_RAID_BYPASS_INELIGIBLE; aio_handle = raid_map->disk_data[map_index].aio_handle; disk_block = get_unaligned_le64(&raid_map->disk_starting_blk) + first_row * strip_size + (first_row_offset - first_column * strip_size); disk_block_cnt = block_cnt; /* Handle differing logical/physical block sizes. */ if (raid_map->phys_blk_shift) { disk_block <<= raid_map->phys_blk_shift; disk_block_cnt <<= raid_map->phys_blk_shift; } if (unlikely(disk_block_cnt > 0xffff)) return PQI_RAID_BYPASS_INELIGIBLE; /* Build the new CDB for the physical disk I/O. */ if (disk_block > 0xffffffff) { cdb[0] = is_write ? WRITE_16 : READ_16; cdb[1] = 0; put_unaligned_be64(disk_block, &cdb[2]); put_unaligned_be32(disk_block_cnt, &cdb[10]); cdb[14] = 0; cdb[15] = 0; cdb_length = 16; } else { cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; put_unaligned_be32((u32)disk_block, &cdb[2]); cdb[6] = 0; put_unaligned_be16((u16)disk_block_cnt, &cdb[7]); cdb[9] = 0; cdb_length = 10; } if (get_unaligned_le16(&raid_map->flags) & RAID_MAP_ENCRYPTION_ENABLED) { pqi_set_encryption_info(&encryption_info, raid_map, first_block); encryption_info_ptr = &encryption_info; } else { encryption_info_ptr = NULL; } return pqi_aio_submit_io(ctrl_info, scmd, aio_handle, cdb, cdb_length, queue_group, encryption_info_ptr); } #define PQI_STATUS_IDLE 0x0 #define PQI_CREATE_ADMIN_QUEUE_PAIR 1 #define PQI_DELETE_ADMIN_QUEUE_PAIR 2 #define PQI_DEVICE_STATE_POWER_ON_AND_RESET 0x0 #define PQI_DEVICE_STATE_STATUS_AVAILABLE 0x1 #define PQI_DEVICE_STATE_ALL_REGISTERS_READY 0x2 #define PQI_DEVICE_STATE_ADMIN_QUEUE_PAIR_READY 0x3 #define PQI_DEVICE_STATE_ERROR 0x4 #define PQI_MODE_READY_TIMEOUT_SECS 30 #define PQI_MODE_READY_POLL_INTERVAL_MSECS 1 static int pqi_wait_for_pqi_mode_ready(struct pqi_ctrl_info *ctrl_info) { struct pqi_device_registers __iomem *pqi_registers; unsigned long timeout; u64 signature; u8 status; pqi_registers = ctrl_info->pqi_registers; timeout = (PQI_MODE_READY_TIMEOUT_SECS * HZ) + jiffies; while (1) { signature = readq(&pqi_registers->signature); if (memcmp(&signature, PQI_DEVICE_SIGNATURE, sizeof(signature)) == 0) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI signature\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } while (1) { status = readb(&pqi_registers->function_and_status_code); if (status == PQI_STATUS_IDLE) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI IDLE\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } while (1) { if (readl(&pqi_registers->device_status) == PQI_DEVICE_STATE_ALL_REGISTERS_READY) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI all registers ready\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } return 0; } static inline void pqi_aio_path_disabled(struct pqi_io_request *io_request) { struct pqi_scsi_dev *device; device = io_request->scmd->device->hostdata; device->offload_enabled = false; } static inline void pqi_take_device_offline(struct scsi_device *sdev) { struct pqi_ctrl_info *ctrl_info; if (scsi_device_online(sdev)) { scsi_device_set_state(sdev, SDEV_OFFLINE); ctrl_info = shost_to_hba(sdev->host); schedule_delayed_work(&ctrl_info->rescan_work, 0); } } static void pqi_process_raid_io_error(struct pqi_io_request *io_request) { u8 scsi_status; u8 host_byte; struct scsi_cmnd *scmd; struct pqi_raid_error_info *error_info; size_t sense_data_length; int residual_count; int xfer_count; struct scsi_sense_hdr sshdr; scmd = io_request->scmd; if (!scmd) return; error_info = io_request->error_info; scsi_status = error_info->status; host_byte = DID_OK; if (error_info->data_out_result == PQI_DATA_IN_OUT_UNDERFLOW) { xfer_count = get_unaligned_le32(&error_info->data_out_transferred); residual_count = scsi_bufflen(scmd) - xfer_count; scsi_set_resid(scmd, residual_count); if (xfer_count < scmd->underflow) host_byte = DID_SOFT_ERROR; } sense_data_length = get_unaligned_le16(&error_info->sense_data_length); if (sense_data_length == 0) sense_data_length = get_unaligned_le16(&error_info->response_data_length); if (sense_data_length) { if (sense_data_length > sizeof(error_info->data)) sense_data_length = sizeof(error_info->data); if (scsi_status == SAM_STAT_CHECK_CONDITION && scsi_normalize_sense(error_info->data, sense_data_length, &sshdr) && sshdr.sense_key == HARDWARE_ERROR && sshdr.asc == 0x3e && sshdr.ascq == 0x1) { pqi_take_device_offline(scmd->device); host_byte = DID_NO_CONNECT; } if (sense_data_length > SCSI_SENSE_BUFFERSIZE) sense_data_length = SCSI_SENSE_BUFFERSIZE; memcpy(scmd->sense_buffer, error_info->data, sense_data_length); } scmd->result = scsi_status; set_host_byte(scmd, host_byte); } static void pqi_process_aio_io_error(struct pqi_io_request *io_request) { u8 scsi_status; u8 host_byte; struct scsi_cmnd *scmd; struct pqi_aio_error_info *error_info; size_t sense_data_length; int residual_count; int xfer_count; bool device_offline; scmd = io_request->scmd; error_info = io_request->error_info; host_byte = DID_OK; sense_data_length = 0; device_offline = false; switch (error_info->service_response) { case PQI_AIO_SERV_RESPONSE_COMPLETE: scsi_status = error_info->status; break; case PQI_AIO_SERV_RESPONSE_FAILURE: switch (error_info->status) { case PQI_AIO_STATUS_IO_ABORTED: scsi_status = SAM_STAT_TASK_ABORTED; break; case PQI_AIO_STATUS_UNDERRUN: scsi_status = SAM_STAT_GOOD; residual_count = get_unaligned_le32( &error_info->residual_count); scsi_set_resid(scmd, residual_count); xfer_count = scsi_bufflen(scmd) - residual_count; if (xfer_count < scmd->underflow) host_byte = DID_SOFT_ERROR; break; case PQI_AIO_STATUS_OVERRUN: scsi_status = SAM_STAT_GOOD; break; case PQI_AIO_STATUS_AIO_PATH_DISABLED: pqi_aio_path_disabled(io_request); scsi_status = SAM_STAT_GOOD; io_request->status = -EAGAIN; break; case PQI_AIO_STATUS_NO_PATH_TO_DEVICE: case PQI_AIO_STATUS_INVALID_DEVICE: device_offline = true; pqi_take_device_offline(scmd->device); host_byte = DID_NO_CONNECT; scsi_status = SAM_STAT_CHECK_CONDITION; break; case PQI_AIO_STATUS_IO_ERROR: default: scsi_status = SAM_STAT_CHECK_CONDITION; break; } break; case PQI_AIO_SERV_RESPONSE_TMF_COMPLETE: case PQI_AIO_SERV_RESPONSE_TMF_SUCCEEDED: scsi_status = SAM_STAT_GOOD; break; case PQI_AIO_SERV_RESPONSE_TMF_REJECTED: case PQI_AIO_SERV_RESPONSE_TMF_INCORRECT_LUN: default: scsi_status = SAM_STAT_CHECK_CONDITION; break; } if (error_info->data_present) { sense_data_length = get_unaligned_le16(&error_info->data_length); if (sense_data_length) { if (sense_data_length > sizeof(error_info->data)) sense_data_length = sizeof(error_info->data); if (sense_data_length > SCSI_SENSE_BUFFERSIZE) sense_data_length = SCSI_SENSE_BUFFERSIZE; memcpy(scmd->sense_buffer, error_info->data, sense_data_length); } } if (device_offline && sense_data_length == 0) scsi_build_sense_buffer(0, scmd->sense_buffer, HARDWARE_ERROR, 0x3e, 0x1); scmd->result = scsi_status; set_host_byte(scmd, host_byte); } static void pqi_process_io_error(unsigned int iu_type, struct pqi_io_request *io_request) { switch (iu_type) { case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR: pqi_process_raid_io_error(io_request); break; case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR: pqi_process_aio_io_error(io_request); break; } } static int pqi_interpret_task_management_response( struct pqi_task_management_response *response) { int rc; switch (response->response_code) { case SOP_TMF_COMPLETE: case SOP_TMF_FUNCTION_SUCCEEDED: rc = 0; break; default: rc = -EIO; break; } return rc; } static unsigned int pqi_process_io_intr(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group) { unsigned int num_responses; pqi_index_t oq_pi; pqi_index_t oq_ci; struct pqi_io_request *io_request; struct pqi_io_response *response; u16 request_id; num_responses = 0; oq_ci = queue_group->oq_ci_copy; while (1) { oq_pi = *queue_group->oq_pi; if (oq_pi == oq_ci) break; num_responses++; response = queue_group->oq_element_array + (oq_ci * PQI_OPERATIONAL_OQ_ELEMENT_LENGTH); request_id = get_unaligned_le16(&response->request_id); WARN_ON(request_id >= ctrl_info->max_io_slots); io_request = &ctrl_info->io_request_pool[request_id]; WARN_ON(atomic_read(&io_request->refcount) == 0); switch (response->header.iu_type) { case PQI_RESPONSE_IU_RAID_PATH_IO_SUCCESS: case PQI_RESPONSE_IU_AIO_PATH_IO_SUCCESS: case PQI_RESPONSE_IU_GENERAL_MANAGEMENT: break; case PQI_RESPONSE_IU_TASK_MANAGEMENT: io_request->status = pqi_interpret_task_management_response( (void *)response); break; case PQI_RESPONSE_IU_AIO_PATH_DISABLED: pqi_aio_path_disabled(io_request); io_request->status = -EAGAIN; break; case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR: case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR: io_request->error_info = ctrl_info->error_buffer + (get_unaligned_le16(&response->error_index) * PQI_ERROR_BUFFER_ELEMENT_LENGTH); pqi_process_io_error(response->header.iu_type, io_request); break; default: dev_err(&ctrl_info->pci_dev->dev, "unexpected IU type: 0x%x\n", response->header.iu_type); WARN_ON(response->header.iu_type); break; } io_request->io_complete_callback(io_request, io_request->context); /* * Note that the I/O request structure CANNOT BE TOUCHED after * returning from the I/O completion callback! */ oq_ci = (oq_ci + 1) % ctrl_info->num_elements_per_oq; } if (num_responses) { queue_group->oq_ci_copy = oq_ci; writel(oq_ci, queue_group->oq_ci); } return num_responses; } static inline unsigned int pqi_num_elements_free(unsigned int pi, unsigned int ci, unsigned int elements_in_queue) { unsigned int num_elements_used; if (pi >= ci) num_elements_used = pi - ci; else num_elements_used = elements_in_queue - ci + pi; return elements_in_queue - num_elements_used - 1; } #define PQI_EVENT_ACK_TIMEOUT 30 static void pqi_start_event_ack(struct pqi_ctrl_info *ctrl_info, struct pqi_event_acknowledge_request *iu, size_t iu_length) { pqi_index_t iq_pi; pqi_index_t iq_ci; unsigned long flags; void *next_element; unsigned long timeout; struct pqi_queue_group *queue_group; queue_group = &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP]; put_unaligned_le16(queue_group->oq_id, &iu->header.response_queue_id); timeout = (PQI_EVENT_ACK_TIMEOUT * HZ) + jiffies; while (1) { spin_lock_irqsave(&queue_group->submit_lock[RAID_PATH], flags); iq_pi = queue_group->iq_pi_copy[RAID_PATH]; iq_ci = *queue_group->iq_ci[RAID_PATH]; if (pqi_num_elements_free(iq_pi, iq_ci, ctrl_info->num_elements_per_iq)) break; spin_unlock_irqrestore( &queue_group->submit_lock[RAID_PATH], flags); if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "sending event acknowledge timed out\n"); return; } } next_element = queue_group->iq_element_array[RAID_PATH] + (iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); memcpy(next_element, iu, iu_length); iq_pi = (iq_pi + 1) % ctrl_info->num_elements_per_iq; queue_group->iq_pi_copy[RAID_PATH] = iq_pi; /* * This write notifies the controller that an IU is available to be * processed. */ writel(iq_pi, queue_group->iq_pi[RAID_PATH]); spin_unlock_irqrestore(&queue_group->submit_lock[RAID_PATH], flags); /* * We have to special-case this type of request because the firmware * does not generate an interrupt when this type of request completes. * Therefore, we have to poll until we see that the firmware has * consumed the request before we move on. */ timeout = (PQI_EVENT_ACK_TIMEOUT * HZ) + jiffies; while (1) { if (*queue_group->iq_ci[RAID_PATH] == iq_pi) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "completing event acknowledge timed out\n"); break; } usleep_range(1000, 2000); } } static void pqi_acknowledge_event(struct pqi_ctrl_info *ctrl_info, struct pqi_event *event) { struct pqi_event_acknowledge_request request; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_ACKNOWLEDGE_VENDOR_EVENT; put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); request.event_type = event->event_type; request.event_id = event->event_id; request.additional_event_id = event->additional_event_id; pqi_start_event_ack(ctrl_info, &request, sizeof(request)); } static void pqi_event_worker(struct work_struct *work) { unsigned int i; struct pqi_ctrl_info *ctrl_info; struct pqi_event *pending_event; bool got_non_heartbeat_event = false; ctrl_info = container_of(work, struct pqi_ctrl_info, event_work); pending_event = ctrl_info->pending_events; for (i = 0; i < PQI_NUM_SUPPORTED_EVENTS; i++) { if (pending_event->pending) { pending_event->pending = false; pqi_acknowledge_event(ctrl_info, pending_event); if (i != PQI_EVENT_HEARTBEAT) got_non_heartbeat_event = true; } pending_event++; } if (got_non_heartbeat_event) pqi_schedule_rescan_worker(ctrl_info); } static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info) { unsigned int i; unsigned int path; struct pqi_queue_group *queue_group; unsigned long flags; struct pqi_io_request *io_request; struct pqi_io_request *next; struct scsi_cmnd *scmd; ctrl_info->controller_online = false; dev_err(&ctrl_info->pci_dev->dev, "controller offline\n"); for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; for (path = 0; path < 2; path++) { spin_lock_irqsave( &queue_group->submit_lock[path], flags); list_for_each_entry_safe(io_request, next, &queue_group->request_list[path], request_list_entry) { scmd = io_request->scmd; if (scmd) { set_host_byte(scmd, DID_NO_CONNECT); pqi_scsi_done(scmd); } list_del(&io_request->request_list_entry); } spin_unlock_irqrestore( &queue_group->submit_lock[path], flags); } } } #define PQI_HEARTBEAT_TIMER_INTERVAL (5 * HZ) #define PQI_MAX_HEARTBEAT_REQUESTS 5 static void pqi_heartbeat_timer_handler(unsigned long data) { int num_interrupts; struct pqi_ctrl_info *ctrl_info = (struct pqi_ctrl_info *)data; num_interrupts = atomic_read(&ctrl_info->num_interrupts); if (num_interrupts == ctrl_info->previous_num_interrupts) { ctrl_info->num_heartbeats_requested++; if (ctrl_info->num_heartbeats_requested > PQI_MAX_HEARTBEAT_REQUESTS) { pqi_take_ctrl_offline(ctrl_info); return; } ctrl_info->pending_events[PQI_EVENT_HEARTBEAT].pending = true; schedule_work(&ctrl_info->event_work); } else { ctrl_info->num_heartbeats_requested = 0; } ctrl_info->previous_num_interrupts = num_interrupts; mod_timer(&ctrl_info->heartbeat_timer, jiffies + PQI_HEARTBEAT_TIMER_INTERVAL); } static void pqi_start_heartbeat_timer(struct pqi_ctrl_info *ctrl_info) { ctrl_info->previous_num_interrupts = atomic_read(&ctrl_info->num_interrupts); init_timer(&ctrl_info->heartbeat_timer); ctrl_info->heartbeat_timer.expires = jiffies + PQI_HEARTBEAT_TIMER_INTERVAL; ctrl_info->heartbeat_timer.data = (unsigned long)ctrl_info; ctrl_info->heartbeat_timer.function = pqi_heartbeat_timer_handler; add_timer(&ctrl_info->heartbeat_timer); ctrl_info->heartbeat_timer_started = true; } static inline void pqi_stop_heartbeat_timer(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->heartbeat_timer_started) del_timer_sync(&ctrl_info->heartbeat_timer); } static int pqi_event_type_to_event_index(unsigned int event_type) { int index; switch (event_type) { case PQI_EVENT_TYPE_HEARTBEAT: index = PQI_EVENT_HEARTBEAT; break; case PQI_EVENT_TYPE_HOTPLUG: index = PQI_EVENT_HOTPLUG; break; case PQI_EVENT_TYPE_HARDWARE: index = PQI_EVENT_HARDWARE; break; case PQI_EVENT_TYPE_PHYSICAL_DEVICE: index = PQI_EVENT_PHYSICAL_DEVICE; break; case PQI_EVENT_TYPE_LOGICAL_DEVICE: index = PQI_EVENT_LOGICAL_DEVICE; break; case PQI_EVENT_TYPE_AIO_STATE_CHANGE: index = PQI_EVENT_AIO_STATE_CHANGE; break; case PQI_EVENT_TYPE_AIO_CONFIG_CHANGE: index = PQI_EVENT_AIO_CONFIG_CHANGE; break; default: index = -1; break; } return index; } static unsigned int pqi_process_event_intr(struct pqi_ctrl_info *ctrl_info) { unsigned int num_events; pqi_index_t oq_pi; pqi_index_t oq_ci; struct pqi_event_queue *event_queue; struct pqi_event_response *response; struct pqi_event *pending_event; bool need_delayed_work; int event_index; event_queue = &ctrl_info->event_queue; num_events = 0; need_delayed_work = false; oq_ci = event_queue->oq_ci_copy; while (1) { oq_pi = *event_queue->oq_pi; if (oq_pi == oq_ci) break; num_events++; response = event_queue->oq_element_array + (oq_ci * PQI_EVENT_OQ_ELEMENT_LENGTH); event_index = pqi_event_type_to_event_index(response->event_type); if (event_index >= 0) { if (response->request_acknowlege) { pending_event = &ctrl_info->pending_events[event_index]; pending_event->event_type = response->event_type; pending_event->event_id = response->event_id; pending_event->additional_event_id = response->additional_event_id; if (event_index != PQI_EVENT_HEARTBEAT) { pending_event->pending = true; need_delayed_work = true; } } } oq_ci = (oq_ci + 1) % PQI_NUM_EVENT_QUEUE_ELEMENTS; } if (num_events) { event_queue->oq_ci_copy = oq_ci; writel(oq_ci, event_queue->oq_ci); if (need_delayed_work) schedule_work(&ctrl_info->event_work); } return num_events; } static irqreturn_t pqi_irq_handler(int irq, void *data) { struct pqi_ctrl_info *ctrl_info; struct pqi_queue_group *queue_group; unsigned int num_responses_handled; queue_group = data; ctrl_info = queue_group->ctrl_info; if (!ctrl_info || !queue_group->oq_ci) return IRQ_NONE; num_responses_handled = pqi_process_io_intr(ctrl_info, queue_group); if (irq == ctrl_info->event_irq) num_responses_handled += pqi_process_event_intr(ctrl_info); if (num_responses_handled) atomic_inc(&ctrl_info->num_interrupts); pqi_start_io(ctrl_info, queue_group, RAID_PATH, NULL); pqi_start_io(ctrl_info, queue_group, AIO_PATH, NULL); return IRQ_HANDLED; } static int pqi_request_irqs(struct pqi_ctrl_info *ctrl_info) { int i; int rc; ctrl_info->event_irq = ctrl_info->msix_vectors[0]; for (i = 0; i < ctrl_info->num_msix_vectors_enabled; i++) { rc = request_irq(ctrl_info->msix_vectors[i], pqi_irq_handler, 0, DRIVER_NAME_SHORT, ctrl_info->intr_data[i]); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "irq %u init failed with error %d\n", ctrl_info->msix_vectors[i], rc); return rc; } ctrl_info->num_msix_vectors_initialized++; } return 0; } static void pqi_free_irqs(struct pqi_ctrl_info *ctrl_info) { int i; for (i = 0; i < ctrl_info->num_msix_vectors_initialized; i++) free_irq(ctrl_info->msix_vectors[i], ctrl_info->intr_data[i]); } static int pqi_enable_msix_interrupts(struct pqi_ctrl_info *ctrl_info) { unsigned int i; int max_vectors; int num_vectors_enabled; struct msix_entry msix_entries[PQI_MAX_MSIX_VECTORS]; max_vectors = ctrl_info->num_queue_groups; for (i = 0; i < max_vectors; i++) msix_entries[i].entry = i; num_vectors_enabled = pci_enable_msix_range(ctrl_info->pci_dev, msix_entries, PQI_MIN_MSIX_VECTORS, max_vectors); if (num_vectors_enabled < 0) { dev_err(&ctrl_info->pci_dev->dev, "MSI-X init failed with error %d\n", num_vectors_enabled); return num_vectors_enabled; } ctrl_info->num_msix_vectors_enabled = num_vectors_enabled; for (i = 0; i < num_vectors_enabled; i++) { ctrl_info->msix_vectors[i] = msix_entries[i].vector; ctrl_info->intr_data[i] = &ctrl_info->queue_groups[i]; } return 0; } static void pqi_irq_set_affinity_hint(struct pqi_ctrl_info *ctrl_info) { int i; int rc; int cpu; cpu = cpumask_first(cpu_online_mask); for (i = 0; i < ctrl_info->num_msix_vectors_initialized; i++) { rc = irq_set_affinity_hint(ctrl_info->msix_vectors[i], get_cpu_mask(cpu)); if (rc) dev_err(&ctrl_info->pci_dev->dev, "error %d setting affinity hint for irq vector %u\n", rc, ctrl_info->msix_vectors[i]); cpu = cpumask_next(cpu, cpu_online_mask); } } static void pqi_irq_unset_affinity_hint(struct pqi_ctrl_info *ctrl_info) { int i; for (i = 0; i < ctrl_info->num_msix_vectors_initialized; i++) irq_set_affinity_hint(ctrl_info->msix_vectors[i], NULL); } static int pqi_alloc_operational_queues(struct pqi_ctrl_info *ctrl_info) { unsigned int i; size_t alloc_length; size_t element_array_length_per_iq; size_t element_array_length_per_oq; void *element_array; void *next_queue_index; void *aligned_pointer; unsigned int num_inbound_queues; unsigned int num_outbound_queues; unsigned int num_queue_indexes; struct pqi_queue_group *queue_group; element_array_length_per_iq = PQI_OPERATIONAL_IQ_ELEMENT_LENGTH * ctrl_info->num_elements_per_iq; element_array_length_per_oq = PQI_OPERATIONAL_OQ_ELEMENT_LENGTH * ctrl_info->num_elements_per_oq; num_inbound_queues = ctrl_info->num_queue_groups * 2; num_outbound_queues = ctrl_info->num_queue_groups; num_queue_indexes = (ctrl_info->num_queue_groups * 3) + 1; aligned_pointer = NULL; for (i = 0; i < num_inbound_queues; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += element_array_length_per_iq; } for (i = 0; i < num_outbound_queues; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += element_array_length_per_oq; } aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += PQI_NUM_EVENT_QUEUE_ELEMENTS * PQI_EVENT_OQ_ELEMENT_LENGTH; for (i = 0; i < num_queue_indexes; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_OPERATIONAL_INDEX_ALIGNMENT); aligned_pointer += sizeof(pqi_index_t); } alloc_length = (size_t)aligned_pointer + PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT; ctrl_info->queue_memory_base = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, alloc_length, &ctrl_info->queue_memory_base_dma_handle, GFP_KERNEL); if (!ctrl_info->queue_memory_base) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate memory for PQI admin queues\n"); return -ENOMEM; } ctrl_info->queue_memory_length = alloc_length; element_array = PTR_ALIGN(ctrl_info->queue_memory_base, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->iq_element_array[RAID_PATH] = element_array; queue_group->iq_element_array_bus_addr[RAID_PATH] = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_iq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); queue_group->iq_element_array[AIO_PATH] = element_array; queue_group->iq_element_array_bus_addr[AIO_PATH] = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_iq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); } for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->oq_element_array = element_array; queue_group->oq_element_array_bus_addr = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_oq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); } ctrl_info->event_queue.oq_element_array = element_array; ctrl_info->event_queue.oq_element_array_bus_addr = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += PQI_NUM_EVENT_QUEUE_ELEMENTS * PQI_EVENT_OQ_ELEMENT_LENGTH; next_queue_index = PTR_ALIGN(element_array, PQI_OPERATIONAL_INDEX_ALIGNMENT); for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->iq_ci[RAID_PATH] = next_queue_index; queue_group->iq_ci_bus_addr[RAID_PATH] = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); queue_group->iq_ci[AIO_PATH] = next_queue_index; queue_group->iq_ci_bus_addr[AIO_PATH] = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); queue_group->oq_pi = next_queue_index; queue_group->oq_pi_bus_addr = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); } ctrl_info->event_queue.oq_pi = next_queue_index; ctrl_info->event_queue.oq_pi_bus_addr = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - ctrl_info->queue_memory_base); return 0; } static void pqi_init_operational_queues(struct pqi_ctrl_info *ctrl_info) { unsigned int i; u16 next_iq_id = PQI_MIN_OPERATIONAL_QUEUE_ID; u16 next_oq_id = PQI_MIN_OPERATIONAL_QUEUE_ID; /* * Initialize the backpointers to the controller structure in * each operational queue group structure. */ for (i = 0; i < ctrl_info->num_queue_groups; i++) ctrl_info->queue_groups[i].ctrl_info = ctrl_info; /* * Assign IDs to all operational queues. Note that the IDs * assigned to operational IQs are independent of the IDs * assigned to operational OQs. */ ctrl_info->event_queue.oq_id = next_oq_id++; for (i = 0; i < ctrl_info->num_queue_groups; i++) { ctrl_info->queue_groups[i].iq_id[RAID_PATH] = next_iq_id++; ctrl_info->queue_groups[i].iq_id[AIO_PATH] = next_iq_id++; ctrl_info->queue_groups[i].oq_id = next_oq_id++; } /* * Assign MSI-X table entry indexes to all queues. Note that the * interrupt for the event queue is shared with the first queue group. */ ctrl_info->event_queue.int_msg_num = 0; for (i = 0; i < ctrl_info->num_queue_groups; i++) ctrl_info->queue_groups[i].int_msg_num = i; for (i = 0; i < ctrl_info->num_queue_groups; i++) { spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[0]); spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[1]); INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[0]); INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[1]); } } static int pqi_alloc_admin_queues(struct pqi_ctrl_info *ctrl_info) { size_t alloc_length; struct pqi_admin_queues_aligned *admin_queues_aligned; struct pqi_admin_queues *admin_queues; alloc_length = sizeof(struct pqi_admin_queues_aligned) + PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT; ctrl_info->admin_queue_memory_base = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, alloc_length, &ctrl_info->admin_queue_memory_base_dma_handle, GFP_KERNEL); if (!ctrl_info->admin_queue_memory_base) return -ENOMEM; ctrl_info->admin_queue_memory_length = alloc_length; admin_queues = &ctrl_info->admin_queues; admin_queues_aligned = PTR_ALIGN(ctrl_info->admin_queue_memory_base, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); admin_queues->iq_element_array = &admin_queues_aligned->iq_element_array; admin_queues->oq_element_array = &admin_queues_aligned->oq_element_array; admin_queues->iq_ci = &admin_queues_aligned->iq_ci; admin_queues->oq_pi = &admin_queues_aligned->oq_pi; admin_queues->iq_element_array_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + (admin_queues->iq_element_array - ctrl_info->admin_queue_memory_base); admin_queues->oq_element_array_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + (admin_queues->oq_element_array - ctrl_info->admin_queue_memory_base); admin_queues->iq_ci_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + ((void *)admin_queues->iq_ci - ctrl_info->admin_queue_memory_base); admin_queues->oq_pi_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + ((void *)admin_queues->oq_pi - ctrl_info->admin_queue_memory_base); return 0; } #define PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES HZ #define PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS 1 static int pqi_create_admin_queues(struct pqi_ctrl_info *ctrl_info) { struct pqi_device_registers __iomem *pqi_registers; struct pqi_admin_queues *admin_queues; unsigned long timeout; u8 status; u32 reg; pqi_registers = ctrl_info->pqi_registers; admin_queues = &ctrl_info->admin_queues; writeq((u64)admin_queues->iq_element_array_bus_addr, &pqi_registers->admin_iq_element_array_addr); writeq((u64)admin_queues->oq_element_array_bus_addr, &pqi_registers->admin_oq_element_array_addr); writeq((u64)admin_queues->iq_ci_bus_addr, &pqi_registers->admin_iq_ci_addr); writeq((u64)admin_queues->oq_pi_bus_addr, &pqi_registers->admin_oq_pi_addr); reg = PQI_ADMIN_IQ_NUM_ELEMENTS | (PQI_ADMIN_OQ_NUM_ELEMENTS) << 8 | (admin_queues->int_msg_num << 16); writel(reg, &pqi_registers->admin_iq_num_elements); writel(PQI_CREATE_ADMIN_QUEUE_PAIR, &pqi_registers->function_and_status_code); timeout = PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES + jiffies; while (1) { status = readb(&pqi_registers->function_and_status_code); if (status == PQI_STATUS_IDLE) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS); } /* * The offset registers are not initialized to the correct * offsets until *after* the create admin queue pair command * completes successfully. */ admin_queues->iq_pi = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + readq(&pqi_registers->admin_iq_pi_offset); admin_queues->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + readq(&pqi_registers->admin_oq_ci_offset); return 0; } static void pqi_submit_admin_request(struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_request *request) { struct pqi_admin_queues *admin_queues; void *next_element; pqi_index_t iq_pi; admin_queues = &ctrl_info->admin_queues; iq_pi = admin_queues->iq_pi_copy; next_element = admin_queues->iq_element_array + (iq_pi * PQI_ADMIN_IQ_ELEMENT_LENGTH); memcpy(next_element, request, sizeof(*request)); iq_pi = (iq_pi + 1) % PQI_ADMIN_IQ_NUM_ELEMENTS; admin_queues->iq_pi_copy = iq_pi; /* * This write notifies the controller that an IU is available to be * processed. */ writel(iq_pi, admin_queues->iq_pi); } static int pqi_poll_for_admin_response(struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_response *response) { struct pqi_admin_queues *admin_queues; pqi_index_t oq_pi; pqi_index_t oq_ci; unsigned long timeout; admin_queues = &ctrl_info->admin_queues; oq_ci = admin_queues->oq_ci_copy; timeout = (3 * HZ) + jiffies; while (1) { oq_pi = *admin_queues->oq_pi; if (oq_pi != oq_ci) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for admin response\n"); return -ETIMEDOUT; } usleep_range(1000, 2000); } memcpy(response, admin_queues->oq_element_array + (oq_ci * PQI_ADMIN_OQ_ELEMENT_LENGTH), sizeof(*response)); oq_ci = (oq_ci + 1) % PQI_ADMIN_OQ_NUM_ELEMENTS; admin_queues->oq_ci_copy = oq_ci; writel(oq_ci, admin_queues->oq_ci); return 0; } static void pqi_start_io(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group, enum pqi_io_path path, struct pqi_io_request *io_request) { struct pqi_io_request *next; void *next_element; pqi_index_t iq_pi; pqi_index_t iq_ci; size_t iu_length; unsigned long flags; unsigned int num_elements_needed; unsigned int num_elements_to_end_of_queue; size_t copy_count; struct pqi_iu_header *request; spin_lock_irqsave(&queue_group->submit_lock[path], flags); if (io_request) list_add_tail(&io_request->request_list_entry, &queue_group->request_list[path]); iq_pi = queue_group->iq_pi_copy[path]; list_for_each_entry_safe(io_request, next, &queue_group->request_list[path], request_list_entry) { request = io_request->iu; iu_length = get_unaligned_le16(&request->iu_length) + PQI_REQUEST_HEADER_LENGTH; num_elements_needed = DIV_ROUND_UP(iu_length, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); iq_ci = *queue_group->iq_ci[path]; if (num_elements_needed > pqi_num_elements_free(iq_pi, iq_ci, ctrl_info->num_elements_per_iq)) break; put_unaligned_le16(queue_group->oq_id, &request->response_queue_id); next_element = queue_group->iq_element_array[path] + (iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); num_elements_to_end_of_queue = ctrl_info->num_elements_per_iq - iq_pi; if (num_elements_needed <= num_elements_to_end_of_queue) { memcpy(next_element, request, iu_length); } else { copy_count = num_elements_to_end_of_queue * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH; memcpy(next_element, request, copy_count); memcpy(queue_group->iq_element_array[path], (u8 *)request + copy_count, iu_length - copy_count); } iq_pi = (iq_pi + num_elements_needed) % ctrl_info->num_elements_per_iq; list_del(&io_request->request_list_entry); } if (iq_pi != queue_group->iq_pi_copy[path]) { queue_group->iq_pi_copy[path] = iq_pi; /* * This write notifies the controller that one or more IUs are * available to be processed. */ writel(iq_pi, queue_group->iq_pi[path]); } spin_unlock_irqrestore(&queue_group->submit_lock[path], flags); } static void pqi_raid_synchronous_complete(struct pqi_io_request *io_request, void *context) { struct completion *waiting = context; complete(waiting); } static int pqi_submit_raid_request_synchronous_with_io_request( struct pqi_ctrl_info *ctrl_info, struct pqi_io_request *io_request, unsigned long timeout_msecs) { int rc = 0; DECLARE_COMPLETION_ONSTACK(wait); io_request->io_complete_callback = pqi_raid_synchronous_complete; io_request->context = &wait; pqi_start_io(ctrl_info, &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH, io_request); if (timeout_msecs == NO_TIMEOUT) { wait_for_completion_io(&wait); } else { if (!wait_for_completion_io_timeout(&wait, msecs_to_jiffies(timeout_msecs))) { dev_warn(&ctrl_info->pci_dev->dev, "command timed out\n"); rc = -ETIMEDOUT; } } return rc; } static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info, struct pqi_iu_header *request, unsigned int flags, struct pqi_raid_error_info *error_info, unsigned long timeout_msecs) { int rc; struct pqi_io_request *io_request; unsigned long start_jiffies; unsigned long msecs_blocked; size_t iu_length; /* * Note that specifying PQI_SYNC_FLAGS_INTERRUPTABLE and a timeout value * are mutually exclusive. */ if (flags & PQI_SYNC_FLAGS_INTERRUPTABLE) { if (down_interruptible(&ctrl_info->sync_request_sem)) return -ERESTARTSYS; } else { if (timeout_msecs == NO_TIMEOUT) { down(&ctrl_info->sync_request_sem); } else { start_jiffies = jiffies; if (down_timeout(&ctrl_info->sync_request_sem, msecs_to_jiffies(timeout_msecs))) return -ETIMEDOUT; msecs_blocked = jiffies_to_msecs(jiffies - start_jiffies); if (msecs_blocked >= timeout_msecs) return -ETIMEDOUT; timeout_msecs -= msecs_blocked; } } io_request = pqi_alloc_io_request(ctrl_info); put_unaligned_le16(io_request->index, &(((struct pqi_raid_path_request *)request)->request_id)); if (request->iu_type == PQI_REQUEST_IU_RAID_PATH_IO) ((struct pqi_raid_path_request *)request)->error_index = ((struct pqi_raid_path_request *)request)->request_id; iu_length = get_unaligned_le16(&request->iu_length) + PQI_REQUEST_HEADER_LENGTH; memcpy(io_request->iu, request, iu_length); rc = pqi_submit_raid_request_synchronous_with_io_request(ctrl_info, io_request, timeout_msecs); if (error_info) { if (io_request->error_info) memcpy(error_info, io_request->error_info, sizeof(*error_info)); else memset(error_info, 0, sizeof(*error_info)); } else if (rc == 0 && io_request->error_info) { u8 scsi_status; struct pqi_raid_error_info *raid_error_info; raid_error_info = io_request->error_info; scsi_status = raid_error_info->status; if (scsi_status == SAM_STAT_CHECK_CONDITION && raid_error_info->data_out_result == PQI_DATA_IN_OUT_UNDERFLOW) scsi_status = SAM_STAT_GOOD; if (scsi_status != SAM_STAT_GOOD) rc = -EIO; } pqi_free_io_request(io_request); up(&ctrl_info->sync_request_sem); return rc; } static int pqi_validate_admin_response( struct pqi_general_admin_response *response, u8 expected_function_code) { if (response->header.iu_type != PQI_RESPONSE_IU_GENERAL_ADMIN) return -EINVAL; if (get_unaligned_le16(&response->header.iu_length) != PQI_GENERAL_ADMIN_IU_LENGTH) return -EINVAL; if (response->function_code != expected_function_code) return -EINVAL; if (response->status != PQI_GENERAL_ADMIN_STATUS_SUCCESS) return -EINVAL; return 0; } static int pqi_submit_admin_request_synchronous( struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_request *request, struct pqi_general_admin_response *response) { int rc; pqi_submit_admin_request(ctrl_info, request); rc = pqi_poll_for_admin_response(ctrl_info, response); if (rc == 0) rc = pqi_validate_admin_response(response, request->function_code); return rc; } static int pqi_report_device_capability(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_general_admin_request request; struct pqi_general_admin_response response; struct pqi_device_capability *capability; struct pqi_iu_layer_descriptor *sop_iu_layer_descriptor; capability = kmalloc(sizeof(*capability), GFP_KERNEL); if (!capability) return -ENOMEM; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_REPORT_DEVICE_CAPABILITY; put_unaligned_le32(sizeof(*capability), &request.data.report_device_capability.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, &request.data.report_device_capability.sg_descriptor, capability, sizeof(*capability), PCI_DMA_FROMDEVICE); if (rc) goto out; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); pqi_pci_unmap(ctrl_info->pci_dev, &request.data.report_device_capability.sg_descriptor, 1, PCI_DMA_FROMDEVICE); if (rc) goto out; if (response.status != PQI_GENERAL_ADMIN_STATUS_SUCCESS) { rc = -EIO; goto out; } ctrl_info->max_inbound_queues = get_unaligned_le16(&capability->max_inbound_queues); ctrl_info->max_elements_per_iq = get_unaligned_le16(&capability->max_elements_per_iq); ctrl_info->max_iq_element_length = get_unaligned_le16(&capability->max_iq_element_length) * 16; ctrl_info->max_outbound_queues = get_unaligned_le16(&capability->max_outbound_queues); ctrl_info->max_elements_per_oq = get_unaligned_le16(&capability->max_elements_per_oq); ctrl_info->max_oq_element_length = get_unaligned_le16(&capability->max_oq_element_length) * 16; sop_iu_layer_descriptor = &capability->iu_layer_descriptors[PQI_PROTOCOL_SOP]; ctrl_info->max_inbound_iu_length_per_firmware = get_unaligned_le16( &sop_iu_layer_descriptor->max_inbound_iu_length); ctrl_info->inbound_spanning_supported = sop_iu_layer_descriptor->inbound_spanning_supported; ctrl_info->outbound_spanning_supported = sop_iu_layer_descriptor->outbound_spanning_supported; out: kfree(capability); return rc; } static int pqi_validate_device_capability(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->max_iq_element_length < PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. inbound queue element length of %d is less than the required length of %d\n", ctrl_info->max_iq_element_length, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); return -EINVAL; } if (ctrl_info->max_oq_element_length < PQI_OPERATIONAL_OQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. outbound queue element length of %d is less than the required length of %d\n", ctrl_info->max_oq_element_length, PQI_OPERATIONAL_OQ_ELEMENT_LENGTH); return -EINVAL; } if (ctrl_info->max_inbound_iu_length_per_firmware < PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. inbound IU length of %u is less than the min. required length of %d\n", ctrl_info->max_inbound_iu_length_per_firmware, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); return -EINVAL; } if (!ctrl_info->inbound_spanning_supported) { dev_err(&ctrl_info->pci_dev->dev, "the controller does not support inbound spanning\n"); return -EINVAL; } if (ctrl_info->outbound_spanning_supported) { dev_err(&ctrl_info->pci_dev->dev, "the controller supports outbound spanning but this driver does not\n"); return -EINVAL; } return 0; } static int pqi_delete_operational_queue(struct pqi_ctrl_info *ctrl_info, bool inbound_queue, u16 queue_id) { struct pqi_general_admin_request request; struct pqi_general_admin_response response; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); if (inbound_queue) request.function_code = PQI_GENERAL_ADMIN_FUNCTION_DELETE_IQ; else request.function_code = PQI_GENERAL_ADMIN_FUNCTION_DELETE_OQ; put_unaligned_le16(queue_id, &request.data.delete_operational_queue.queue_id); return pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); } static int pqi_create_event_queue(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_event_queue *event_queue; struct pqi_general_admin_request request; struct pqi_general_admin_response response; event_queue = &ctrl_info->event_queue; /* * Create OQ (Outbound Queue - device to host queue) to dedicate * to events. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ; put_unaligned_le16(event_queue->oq_id, &request.data.create_operational_oq.queue_id); put_unaligned_le64((u64)event_queue->oq_element_array_bus_addr, &request.data.create_operational_oq.element_array_addr); put_unaligned_le64((u64)event_queue->oq_pi_bus_addr, &request.data.create_operational_oq.pi_addr); put_unaligned_le16(PQI_NUM_EVENT_QUEUE_ELEMENTS, &request.data.create_operational_oq.num_elements); put_unaligned_le16(PQI_EVENT_OQ_ELEMENT_LENGTH / 16, &request.data.create_operational_oq.element_length); request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP; put_unaligned_le16(event_queue->int_msg_num, &request.data.create_operational_oq.int_msg_num); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) return rc; event_queue->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_oq.oq_ci_offset); return 0; } static int pqi_create_queue_group(struct pqi_ctrl_info *ctrl_info) { unsigned int i; int rc; struct pqi_queue_group *queue_group; struct pqi_general_admin_request request; struct pqi_general_admin_response response; i = ctrl_info->num_active_queue_groups; queue_group = &ctrl_info->queue_groups[i]; /* * Create IQ (Inbound Queue - host to device queue) for * RAID path. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ; put_unaligned_le16(queue_group->iq_id[RAID_PATH], &request.data.create_operational_iq.queue_id); put_unaligned_le64( (u64)queue_group->iq_element_array_bus_addr[RAID_PATH], &request.data.create_operational_iq.element_array_addr); put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[RAID_PATH], &request.data.create_operational_iq.ci_addr); put_unaligned_le16(ctrl_info->num_elements_per_iq, &request.data.create_operational_iq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16, &request.data.create_operational_iq.element_length); request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating inbound RAID queue\n"); return rc; } queue_group->iq_pi[RAID_PATH] = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_iq.iq_pi_offset); /* * Create IQ (Inbound Queue - host to device queue) for * Advanced I/O (AIO) path. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ; put_unaligned_le16(queue_group->iq_id[AIO_PATH], &request.data.create_operational_iq.queue_id); put_unaligned_le64((u64)queue_group-> iq_element_array_bus_addr[AIO_PATH], &request.data.create_operational_iq.element_array_addr); put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[AIO_PATH], &request.data.create_operational_iq.ci_addr); put_unaligned_le16(ctrl_info->num_elements_per_iq, &request.data.create_operational_iq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16, &request.data.create_operational_iq.element_length); request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating inbound AIO queue\n"); goto delete_inbound_queue_raid; } queue_group->iq_pi[AIO_PATH] = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_iq.iq_pi_offset); /* * Designate the 2nd IQ as the AIO path. By default, all IQs are * assumed to be for RAID path I/O unless we change the queue's * property. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CHANGE_IQ_PROPERTY; put_unaligned_le16(queue_group->iq_id[AIO_PATH], &request.data.change_operational_iq_properties.queue_id); put_unaligned_le32(PQI_IQ_PROPERTY_IS_AIO_QUEUE, &request.data.change_operational_iq_properties.vendor_specific); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error changing queue property\n"); goto delete_inbound_queue_aio; } /* * Create OQ (Outbound Queue - device to host queue). */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ; put_unaligned_le16(queue_group->oq_id, &request.data.create_operational_oq.queue_id); put_unaligned_le64((u64)queue_group->oq_element_array_bus_addr, &request.data.create_operational_oq.element_array_addr); put_unaligned_le64((u64)queue_group->oq_pi_bus_addr, &request.data.create_operational_oq.pi_addr); put_unaligned_le16(ctrl_info->num_elements_per_oq, &request.data.create_operational_oq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH / 16, &request.data.create_operational_oq.element_length); request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP; put_unaligned_le16(queue_group->int_msg_num, &request.data.create_operational_oq.int_msg_num); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating outbound queue\n"); goto delete_inbound_queue_aio; } queue_group->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_oq.oq_ci_offset); ctrl_info->num_active_queue_groups++; return 0; delete_inbound_queue_aio: pqi_delete_operational_queue(ctrl_info, true, queue_group->iq_id[AIO_PATH]); delete_inbound_queue_raid: pqi_delete_operational_queue(ctrl_info, true, queue_group->iq_id[RAID_PATH]); return rc; } static int pqi_create_queues(struct pqi_ctrl_info *ctrl_info) { int rc; unsigned int i; rc = pqi_create_event_queue(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating event queue\n"); return rc; } for (i = 0; i < ctrl_info->num_queue_groups; i++) { rc = pqi_create_queue_group(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating queue group number %u/%u\n", i, ctrl_info->num_queue_groups); return rc; } } return 0; } #define PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH \ (offsetof(struct pqi_event_config, descriptors) + \ (PQI_MAX_EVENT_DESCRIPTORS * sizeof(struct pqi_event_descriptor))) static int pqi_configure_events(struct pqi_ctrl_info *ctrl_info) { int rc; unsigned int i; struct pqi_event_config *event_config; struct pqi_general_management_request request; event_config = kmalloc(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, GFP_KERNEL); if (!event_config) return -ENOMEM; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_REPORT_VENDOR_EVENT_CONFIG; put_unaligned_le16(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, &request.data.report_event_configuration.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, PCI_DMA_FROMDEVICE); if (rc) goto out; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, 1, PCI_DMA_FROMDEVICE); if (rc) goto out; for (i = 0; i < event_config->num_event_descriptors; i++) put_unaligned_le16(ctrl_info->event_queue.oq_id, &event_config->descriptors[i].oq_id); memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_SET_VENDOR_EVENT_CONFIG; put_unaligned_le16(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, &request.data.report_event_configuration.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, PCI_DMA_TODEVICE); if (rc) goto out; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, 1, PCI_DMA_TODEVICE); out: kfree(event_config); return rc; } static void pqi_free_all_io_requests(struct pqi_ctrl_info *ctrl_info) { unsigned int i; struct device *dev; size_t sg_chain_buffer_length; struct pqi_io_request *io_request; if (!ctrl_info->io_request_pool) return; dev = &ctrl_info->pci_dev->dev; sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length; io_request = ctrl_info->io_request_pool; for (i = 0; i < ctrl_info->max_io_slots; i++) { kfree(io_request->iu); if (!io_request->sg_chain_buffer) break; dma_free_coherent(dev, sg_chain_buffer_length, io_request->sg_chain_buffer, io_request->sg_chain_buffer_dma_handle); io_request++; } kfree(ctrl_info->io_request_pool); ctrl_info->io_request_pool = NULL; } static inline int pqi_alloc_error_buffer(struct pqi_ctrl_info *ctrl_info) { ctrl_info->error_buffer = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, ctrl_info->error_buffer_length, &ctrl_info->error_buffer_dma_handle, GFP_KERNEL); if (!ctrl_info->error_buffer) return -ENOMEM; return 0; } static int pqi_alloc_io_resources(struct pqi_ctrl_info *ctrl_info) { unsigned int i; void *sg_chain_buffer; size_t sg_chain_buffer_length; dma_addr_t sg_chain_buffer_dma_handle; struct device *dev; struct pqi_io_request *io_request; ctrl_info->io_request_pool = kzalloc(ctrl_info->max_io_slots * sizeof(ctrl_info->io_request_pool[0]), GFP_KERNEL); if (!ctrl_info->io_request_pool) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate I/O request pool\n"); goto error; } dev = &ctrl_info->pci_dev->dev; sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length; io_request = ctrl_info->io_request_pool; for (i = 0; i < ctrl_info->max_io_slots; i++) { io_request->iu = kmalloc(ctrl_info->max_inbound_iu_length, GFP_KERNEL); if (!io_request->iu) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate IU buffers\n"); goto error; } sg_chain_buffer = dma_alloc_coherent(dev, sg_chain_buffer_length, &sg_chain_buffer_dma_handle, GFP_KERNEL); if (!sg_chain_buffer) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate PQI scatter-gather chain buffers\n"); goto error; } io_request->index = i; io_request->sg_chain_buffer = sg_chain_buffer; io_request->sg_chain_buffer_dma_handle = sg_chain_buffer_dma_handle; io_request++; } return 0; error: pqi_free_all_io_requests(ctrl_info); return -ENOMEM; } /* * Calculate required resources that are sized based on max. outstanding * requests and max. transfer size. */ static void pqi_calculate_io_resources(struct pqi_ctrl_info *ctrl_info) { u32 max_transfer_size; u32 max_sg_entries; ctrl_info->scsi_ml_can_queue = ctrl_info->max_outstanding_requests - PQI_RESERVED_IO_SLOTS; ctrl_info->max_io_slots = ctrl_info->max_outstanding_requests; ctrl_info->error_buffer_length = ctrl_info->max_io_slots * PQI_ERROR_BUFFER_ELEMENT_LENGTH; max_transfer_size = min(ctrl_info->max_transfer_size, PQI_MAX_TRANSFER_SIZE); max_sg_entries = max_transfer_size / PAGE_SIZE; /* +1 to cover when the buffer is not page-aligned. */ max_sg_entries++; max_sg_entries = min(ctrl_info->max_sg_entries, max_sg_entries); max_transfer_size = (max_sg_entries - 1) * PAGE_SIZE; ctrl_info->sg_chain_buffer_length = max_sg_entries * sizeof(struct pqi_sg_descriptor); ctrl_info->sg_tablesize = max_sg_entries; ctrl_info->max_sectors = max_transfer_size / 512; } static void pqi_calculate_queue_resources(struct pqi_ctrl_info *ctrl_info) { int num_cpus; int max_queue_groups; int num_queue_groups; u16 num_elements_per_iq; u16 num_elements_per_oq; max_queue_groups = min(ctrl_info->max_inbound_queues / 2, ctrl_info->max_outbound_queues - 1); max_queue_groups = min(max_queue_groups, PQI_MAX_QUEUE_GROUPS); num_cpus = num_online_cpus(); num_queue_groups = min(num_cpus, ctrl_info->max_msix_vectors); num_queue_groups = min(num_queue_groups, max_queue_groups); ctrl_info->num_queue_groups = num_queue_groups; /* * Make sure that the max. inbound IU length is an even multiple * of our inbound element length. */ ctrl_info->max_inbound_iu_length = (ctrl_info->max_inbound_iu_length_per_firmware / PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH; num_elements_per_iq = (ctrl_info->max_inbound_iu_length / PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); /* Add one because one element in each queue is unusable. */ num_elements_per_iq++; num_elements_per_iq = min(num_elements_per_iq, ctrl_info->max_elements_per_iq); num_elements_per_oq = ((num_elements_per_iq - 1) * 2) + 1; num_elements_per_oq = min(num_elements_per_oq, ctrl_info->max_elements_per_oq); ctrl_info->num_elements_per_iq = num_elements_per_iq; ctrl_info->num_elements_per_oq = num_elements_per_oq; ctrl_info->max_sg_per_iu = ((ctrl_info->max_inbound_iu_length - PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) / sizeof(struct pqi_sg_descriptor)) + PQI_MAX_EMBEDDED_SG_DESCRIPTORS; } static inline void pqi_set_sg_descriptor( struct pqi_sg_descriptor *sg_descriptor, struct scatterlist *sg) { u64 address = (u64)sg_dma_address(sg); unsigned int length = sg_dma_len(sg); put_unaligned_le64(address, &sg_descriptor->address); put_unaligned_le32(length, &sg_descriptor->length); put_unaligned_le32(0, &sg_descriptor->flags); } static int pqi_build_raid_sg_list(struct pqi_ctrl_info *ctrl_info, struct pqi_raid_path_request *request, struct scsi_cmnd *scmd, struct pqi_io_request *io_request) { int i; u16 iu_length; int sg_count; bool chained; unsigned int num_sg_in_iu; unsigned int max_sg_per_iu; struct scatterlist *sg; struct pqi_sg_descriptor *sg_descriptor; sg_count = scsi_dma_map(scmd); if (sg_count < 0) return sg_count; iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; if (sg_count == 0) goto out; sg = scsi_sglist(scmd); sg_descriptor = request->sg_descriptors; max_sg_per_iu = ctrl_info->max_sg_per_iu - 1; chained = false; num_sg_in_iu = 0; i = 0; while (1) { pqi_set_sg_descriptor(sg_descriptor, sg); if (!chained) num_sg_in_iu++; i++; if (i == sg_count) break; sg_descriptor++; if (i == max_sg_per_iu) { put_unaligned_le64( (u64)io_request->sg_chain_buffer_dma_handle, &sg_descriptor->address); put_unaligned_le32((sg_count - num_sg_in_iu) * sizeof(*sg_descriptor), &sg_descriptor->length); put_unaligned_le32(CISS_SG_CHAIN, &sg_descriptor->flags); chained = true; num_sg_in_iu++; sg_descriptor = io_request->sg_chain_buffer; } sg = sg_next(sg); } put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); request->partial = chained; iu_length += num_sg_in_iu * sizeof(*sg_descriptor); out: put_unaligned_le16(iu_length, &request->header.iu_length); return 0; } static int pqi_build_aio_sg_list(struct pqi_ctrl_info *ctrl_info, struct pqi_aio_path_request *request, struct scsi_cmnd *scmd, struct pqi_io_request *io_request) { int i; u16 iu_length; int sg_count; bool chained; unsigned int num_sg_in_iu; unsigned int max_sg_per_iu; struct scatterlist *sg; struct pqi_sg_descriptor *sg_descriptor; sg_count = scsi_dma_map(scmd); if (sg_count < 0) return sg_count; iu_length = offsetof(struct pqi_aio_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; num_sg_in_iu = 0; if (sg_count == 0) goto out; sg = scsi_sglist(scmd); sg_descriptor = request->sg_descriptors; max_sg_per_iu = ctrl_info->max_sg_per_iu - 1; chained = false; i = 0; while (1) { pqi_set_sg_descriptor(sg_descriptor, sg); if (!chained) num_sg_in_iu++; i++; if (i == sg_count) break; sg_descriptor++; if (i == max_sg_per_iu) { put_unaligned_le64( (u64)io_request->sg_chain_buffer_dma_handle, &sg_descriptor->address); put_unaligned_le32((sg_count - num_sg_in_iu) * sizeof(*sg_descriptor), &sg_descriptor->length); put_unaligned_le32(CISS_SG_CHAIN, &sg_descriptor->flags); chained = true; num_sg_in_iu++; sg_descriptor = io_request->sg_chain_buffer; } sg = sg_next(sg); } put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); request->partial = chained; iu_length += num_sg_in_iu * sizeof(*sg_descriptor); out: put_unaligned_le16(iu_length, &request->header.iu_length); request->num_sg_descriptors = num_sg_in_iu; return 0; } static void pqi_raid_io_complete(struct pqi_io_request *io_request, void *context) { struct scsi_cmnd *scmd; scmd = io_request->scmd; pqi_free_io_request(io_request); scsi_dma_unmap(scmd); pqi_scsi_done(scmd); } static int pqi_raid_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { int rc; size_t cdb_length; struct pqi_io_request *io_request; struct pqi_raid_path_request *request; io_request = pqi_alloc_io_request(ctrl_info); io_request->io_complete_callback = pqi_raid_io_complete; io_request->scmd = scmd; scmd->host_scribble = (unsigned char *)io_request; request = io_request->iu; memset(request, 0, offsetof(struct pqi_raid_path_request, sg_descriptors)); request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; put_unaligned_le16(io_request->index, &request->request_id); request->error_index = request->request_id; memcpy(request->lun_number, device->scsi3addr, sizeof(request->lun_number)); cdb_length = min_t(size_t, scmd->cmd_len, sizeof(request->cdb)); memcpy(request->cdb, scmd->cmnd, cdb_length); switch (cdb_length) { case 6: case 10: case 12: case 16: /* No bytes in the Additional CDB bytes field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; break; case 20: /* 4 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_4; break; case 24: /* 8 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_8; break; case 28: /* 12 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_12; break; case 32: default: /* 16 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_16; break; } switch (scmd->sc_data_direction) { case DMA_TO_DEVICE: request->data_direction = SOP_READ_FLAG; break; case DMA_FROM_DEVICE: request->data_direction = SOP_WRITE_FLAG; break; case DMA_NONE: request->data_direction = SOP_NO_DIRECTION_FLAG; break; case DMA_BIDIRECTIONAL: request->data_direction = SOP_BIDIRECTIONAL; break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown data direction: %d\n", scmd->sc_data_direction); WARN_ON(scmd->sc_data_direction); break; } rc = pqi_build_raid_sg_list(ctrl_info, request, scmd, io_request); if (rc) { pqi_free_io_request(io_request); return SCSI_MLQUEUE_HOST_BUSY; } pqi_start_io(ctrl_info, queue_group, RAID_PATH, io_request); return 0; } static void pqi_aio_io_complete(struct pqi_io_request *io_request, void *context) { struct scsi_cmnd *scmd; scmd = io_request->scmd; scsi_dma_unmap(scmd); if (io_request->status == -EAGAIN) set_host_byte(scmd, DID_IMM_RETRY); pqi_free_io_request(io_request); pqi_scsi_done(scmd); } static inline int pqi_aio_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { return pqi_aio_submit_io(ctrl_info, scmd, device->aio_handle, scmd->cmnd, scmd->cmd_len, queue_group, NULL); } static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info, struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb, unsigned int cdb_length, struct pqi_queue_group *queue_group, struct pqi_encryption_info *encryption_info) { int rc; struct pqi_io_request *io_request; struct pqi_aio_path_request *request; io_request = pqi_alloc_io_request(ctrl_info); io_request->io_complete_callback = pqi_aio_io_complete; io_request->scmd = scmd; scmd->host_scribble = (unsigned char *)io_request; request = io_request->iu; memset(request, 0, offsetof(struct pqi_raid_path_request, sg_descriptors)); request->header.iu_type = PQI_REQUEST_IU_AIO_PATH_IO; put_unaligned_le32(aio_handle, &request->nexus_id); put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; put_unaligned_le16(io_request->index, &request->request_id); request->error_index = request->request_id; if (cdb_length > sizeof(request->cdb)) cdb_length = sizeof(request->cdb); request->cdb_length = cdb_length; memcpy(request->cdb, cdb, cdb_length); switch (scmd->sc_data_direction) { case DMA_TO_DEVICE: request->data_direction = SOP_READ_FLAG; break; case DMA_FROM_DEVICE: request->data_direction = SOP_WRITE_FLAG; break; case DMA_NONE: request->data_direction = SOP_NO_DIRECTION_FLAG; break; case DMA_BIDIRECTIONAL: request->data_direction = SOP_BIDIRECTIONAL; break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown data direction: %d\n", scmd->sc_data_direction); WARN_ON(scmd->sc_data_direction); break; } if (encryption_info) { request->encryption_enable = true; put_unaligned_le16(encryption_info->data_encryption_key_index, &request->data_encryption_key_index); put_unaligned_le32(encryption_info->encrypt_tweak_lower, &request->encrypt_tweak_lower); put_unaligned_le32(encryption_info->encrypt_tweak_upper, &request->encrypt_tweak_upper); } rc = pqi_build_aio_sg_list(ctrl_info, request, scmd, io_request); if (rc) { pqi_free_io_request(io_request); return SCSI_MLQUEUE_HOST_BUSY; } pqi_start_io(ctrl_info, queue_group, AIO_PATH, io_request); return 0; } static int pqi_scsi_queue_command(struct Scsi_Host *shost, struct scsi_cmnd *scmd) { int rc; struct pqi_ctrl_info *ctrl_info; struct pqi_scsi_dev *device; u16 hwq; struct pqi_queue_group *queue_group; bool raid_bypassed; device = scmd->device->hostdata; if (device->reset_in_progress) { set_host_byte(scmd, DID_RESET); pqi_scsi_done(scmd); return 0; } ctrl_info = shost_to_hba(shost); if (pqi_ctrl_offline(ctrl_info)) { set_host_byte(scmd, DID_NO_CONNECT); pqi_scsi_done(scmd); return 0; } hwq = blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(scmd->request)); if (hwq >= ctrl_info->num_queue_groups) hwq = 0; queue_group = &ctrl_info->queue_groups[hwq]; if (pqi_is_logical_device(device)) { raid_bypassed = false; if (device->offload_enabled && scmd->request->cmd_type == REQ_TYPE_FS) { rc = pqi_raid_bypass_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); if (rc == 0 || rc == SCSI_MLQUEUE_HOST_BUSY || rc == SAM_STAT_CHECK_CONDITION || rc == SAM_STAT_RESERVATION_CONFLICT) raid_bypassed = true; } if (!raid_bypassed) rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); } else { if (device->aio_enabled) rc = pqi_aio_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); else rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); } return rc; } static inline void pqi_complete_queued_requests_queue_group( struct pqi_queue_group *queue_group, struct pqi_scsi_dev *device_in_reset) { unsigned int path; unsigned long flags; struct pqi_io_request *io_request; struct pqi_io_request *next; struct scsi_cmnd *scmd; struct pqi_scsi_dev *device; for (path = 0; path < 2; path++) { spin_lock_irqsave(&queue_group->submit_lock[path], flags); list_for_each_entry_safe(io_request, next, &queue_group->request_list[path], request_list_entry) { scmd = io_request->scmd; if (!scmd) continue; device = scmd->device->hostdata; if (device == device_in_reset) { set_host_byte(scmd, DID_RESET); pqi_scsi_done(scmd); list_del(&io_request-> request_list_entry); } } spin_unlock_irqrestore(&queue_group->submit_lock[path], flags); } } static void pqi_complete_queued_requests(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device_in_reset) { unsigned int i; struct pqi_queue_group *queue_group; for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; pqi_complete_queued_requests_queue_group(queue_group, device_in_reset); } } static void pqi_reset_lun_complete(struct pqi_io_request *io_request, void *context) { struct completion *waiting = context; complete(waiting); } static int pqi_reset_lun(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; struct pqi_io_request *io_request; DECLARE_COMPLETION_ONSTACK(wait); struct pqi_task_management_request *request; down(&ctrl_info->lun_reset_sem); io_request = pqi_alloc_io_request(ctrl_info); io_request->io_complete_callback = pqi_reset_lun_complete; io_request->context = &wait; request = io_request->iu; memset(request, 0, sizeof(*request)); request->header.iu_type = PQI_REQUEST_IU_TASK_MANAGEMENT; put_unaligned_le16(sizeof(*request) - PQI_REQUEST_HEADER_LENGTH, &request->header.iu_length); put_unaligned_le16(io_request->index, &request->request_id); memcpy(request->lun_number, device->scsi3addr, sizeof(request->lun_number)); request->task_management_function = SOP_TASK_MANAGEMENT_LUN_RESET; pqi_start_io(ctrl_info, &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH, io_request); if (!wait_for_completion_io_timeout(&wait, msecs_to_jiffies(PQI_ABORT_TIMEOUT_MSECS))) { rc = -ETIMEDOUT; } else { rc = io_request->status; } pqi_free_io_request(io_request); up(&ctrl_info->lun_reset_sem); return rc; } /* Performs a reset at the LUN level. */ static int pqi_device_reset(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return FAILED; device->reset_in_progress = true; pqi_complete_queued_requests(ctrl_info, device); rc = pqi_reset_lun(ctrl_info, device); device->reset_in_progress = false; if (rc) return FAILED; return SUCCESS; } static int pqi_eh_device_reset_handler(struct scsi_cmnd *scmd) { int rc; struct pqi_ctrl_info *ctrl_info; struct pqi_scsi_dev *device; ctrl_info = shost_to_hba(scmd->device->host); device = scmd->device->hostdata; dev_err(&ctrl_info->pci_dev->dev, "resetting scsi %d:%d:%d:%d\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun); rc = pqi_device_reset(ctrl_info, device); dev_err(&ctrl_info->pci_dev->dev, "reset of scsi %d:%d:%d:%d: %s\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, rc == SUCCESS ? "SUCCESS" : "FAILED"); return rc; } static int pqi_slave_alloc(struct scsi_device *sdev) { struct pqi_scsi_dev *device; unsigned long flags; struct pqi_ctrl_info *ctrl_info; struct scsi_target *starget; struct sas_rphy *rphy; ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); if (sdev_channel(sdev) == PQI_PHYSICAL_DEVICE_BUS) { starget = scsi_target(sdev); rphy = target_to_rphy(starget); device = pqi_find_device_by_sas_rphy(ctrl_info, rphy); if (device) { device->target = sdev_id(sdev); device->lun = sdev->lun; device->target_lun_valid = true; } } else { device = pqi_find_scsi_dev(ctrl_info, sdev_channel(sdev), sdev_id(sdev), sdev->lun); } if (device && device->expose_device) { sdev->hostdata = device; device->sdev = sdev; if (device->queue_depth) { device->advertised_queue_depth = device->queue_depth; scsi_change_queue_depth(sdev, device->advertised_queue_depth); } } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return 0; } static int pqi_slave_configure(struct scsi_device *sdev) { struct pqi_scsi_dev *device; device = sdev->hostdata; if (!device->expose_device) sdev->no_uld_attach = true; return 0; } static int pqi_getpciinfo_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg) { struct pci_dev *pci_dev; u32 subsystem_vendor; u32 subsystem_device; cciss_pci_info_struct pciinfo; if (!arg) return -EINVAL; pci_dev = ctrl_info->pci_dev; pciinfo.domain = pci_domain_nr(pci_dev->bus); pciinfo.bus = pci_dev->bus->number; pciinfo.dev_fn = pci_dev->devfn; subsystem_vendor = pci_dev->subsystem_vendor; subsystem_device = pci_dev->subsystem_device; pciinfo.board_id = ((subsystem_device << 16) & 0xffff0000) | subsystem_vendor; if (copy_to_user(arg, &pciinfo, sizeof(pciinfo))) return -EFAULT; return 0; } static int pqi_getdrivver_ioctl(void __user *arg) { u32 version; if (!arg) return -EINVAL; version = (DRIVER_MAJOR << 28) | (DRIVER_MINOR << 24) | (DRIVER_RELEASE << 16) | DRIVER_REVISION; if (copy_to_user(arg, &version, sizeof(version))) return -EFAULT; return 0; } struct ciss_error_info { u8 scsi_status; int command_status; size_t sense_data_length; }; static void pqi_error_info_to_ciss(struct pqi_raid_error_info *pqi_error_info, struct ciss_error_info *ciss_error_info) { int ciss_cmd_status; size_t sense_data_length; switch (pqi_error_info->data_out_result) { case PQI_DATA_IN_OUT_GOOD: ciss_cmd_status = CISS_CMD_STATUS_SUCCESS; break; case PQI_DATA_IN_OUT_UNDERFLOW: ciss_cmd_status = CISS_CMD_STATUS_DATA_UNDERRUN; break; case PQI_DATA_IN_OUT_BUFFER_OVERFLOW: ciss_cmd_status = CISS_CMD_STATUS_DATA_OVERRUN; break; case PQI_DATA_IN_OUT_PROTOCOL_ERROR: case PQI_DATA_IN_OUT_BUFFER_ERROR: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_DESCRIPTOR_AREA: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_BRIDGE: case PQI_DATA_IN_OUT_ERROR: ciss_cmd_status = CISS_CMD_STATUS_PROTOCOL_ERROR; break; case PQI_DATA_IN_OUT_HARDWARE_ERROR: case PQI_DATA_IN_OUT_PCIE_FABRIC_ERROR: case PQI_DATA_IN_OUT_PCIE_COMPLETION_TIMEOUT: case PQI_DATA_IN_OUT_PCIE_COMPLETER_ABORT_RECEIVED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST_RECEIVED: case PQI_DATA_IN_OUT_PCIE_ECRC_CHECK_FAILED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST: case PQI_DATA_IN_OUT_PCIE_ACS_VIOLATION: case PQI_DATA_IN_OUT_PCIE_TLP_PREFIX_BLOCKED: case PQI_DATA_IN_OUT_PCIE_POISONED_MEMORY_READ: ciss_cmd_status = CISS_CMD_STATUS_HARDWARE_ERROR; break; case PQI_DATA_IN_OUT_UNSOLICITED_ABORT: ciss_cmd_status = CISS_CMD_STATUS_UNSOLICITED_ABORT; break; case PQI_DATA_IN_OUT_ABORTED: ciss_cmd_status = CISS_CMD_STATUS_ABORTED; break; case PQI_DATA_IN_OUT_TIMEOUT: ciss_cmd_status = CISS_CMD_STATUS_TIMEOUT; break; default: ciss_cmd_status = CISS_CMD_STATUS_TARGET_STATUS; break; } sense_data_length = get_unaligned_le16(&pqi_error_info->sense_data_length); if (sense_data_length == 0) sense_data_length = get_unaligned_le16(&pqi_error_info->response_data_length); if (sense_data_length) if (sense_data_length > sizeof(pqi_error_info->data)) sense_data_length = sizeof(pqi_error_info->data); ciss_error_info->scsi_status = pqi_error_info->status; ciss_error_info->command_status = ciss_cmd_status; ciss_error_info->sense_data_length = sense_data_length; } static int pqi_passthru_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg) { int rc; char *kernel_buffer = NULL; u16 iu_length; size_t sense_data_length; IOCTL_Command_struct iocommand; struct pqi_raid_path_request request; struct pqi_raid_error_info pqi_error_info; struct ciss_error_info ciss_error_info; if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, arg, sizeof(iocommand))) return -EFAULT; if (iocommand.buf_size < 1 && iocommand.Request.Type.Direction != XFER_NONE) return -EINVAL; if (iocommand.Request.CDBLen > sizeof(request.cdb)) return -EINVAL; if (iocommand.Request.Type.Type != TYPE_CMD) return -EINVAL; switch (iocommand.Request.Type.Direction) { case XFER_NONE: case XFER_WRITE: case XFER_READ: break; default: return -EINVAL; } if (iocommand.buf_size > 0) { kernel_buffer = kmalloc(iocommand.buf_size, GFP_KERNEL); if (!kernel_buffer) return -ENOMEM; if (iocommand.Request.Type.Direction & XFER_WRITE) { if (copy_from_user(kernel_buffer, iocommand.buf, iocommand.buf_size)) { rc = -EFAULT; goto out; } } else { memset(kernel_buffer, 0, iocommand.buf_size); } } memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; memcpy(request.lun_number, iocommand.LUN_info.LunAddrBytes, sizeof(request.lun_number)); memcpy(request.cdb, iocommand.Request.CDB, iocommand.Request.CDBLen); request.additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; switch (iocommand.Request.Type.Direction) { case XFER_NONE: request.data_direction = SOP_NO_DIRECTION_FLAG; break; case XFER_WRITE: request.data_direction = SOP_WRITE_FLAG; break; case XFER_READ: request.data_direction = SOP_READ_FLAG; break; } request.task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; if (iocommand.buf_size > 0) { put_unaligned_le32(iocommand.buf_size, &request.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, &request.sg_descriptors[0], kernel_buffer, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); if (rc) goto out; iu_length += sizeof(request.sg_descriptors[0]); } put_unaligned_le16(iu_length, &request.header.iu_length); rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, PQI_SYNC_FLAGS_INTERRUPTABLE, &pqi_error_info, NO_TIMEOUT); if (iocommand.buf_size > 0) pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, PCI_DMA_BIDIRECTIONAL); memset(&iocommand.error_info, 0, sizeof(iocommand.error_info)); if (rc == 0) { pqi_error_info_to_ciss(&pqi_error_info, &ciss_error_info); iocommand.error_info.ScsiStatus = ciss_error_info.scsi_status; iocommand.error_info.CommandStatus = ciss_error_info.command_status; sense_data_length = ciss_error_info.sense_data_length; if (sense_data_length) { if (sense_data_length > sizeof(iocommand.error_info.SenseInfo)) sense_data_length = sizeof(iocommand.error_info.SenseInfo); memcpy(iocommand.error_info.SenseInfo, pqi_error_info.data, sense_data_length); iocommand.error_info.SenseLen = sense_data_length; } } if (copy_to_user(arg, &iocommand, sizeof(iocommand))) { rc = -EFAULT; goto out; } if (rc == 0 && iocommand.buf_size > 0 && (iocommand.Request.Type.Direction & XFER_READ)) { if (copy_to_user(iocommand.buf, kernel_buffer, iocommand.buf_size)) { rc = -EFAULT; } } out: kfree(kernel_buffer); return rc; } static int pqi_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = shost_to_hba(sdev->host); switch (cmd) { case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: rc = pqi_scan_scsi_devices(ctrl_info); break; case CCISS_GETPCIINFO: rc = pqi_getpciinfo_ioctl(ctrl_info, arg); break; case CCISS_GETDRIVVER: rc = pqi_getdrivver_ioctl(arg); break; case CCISS_PASSTHRU: rc = pqi_passthru_ioctl(ctrl_info, arg); break; default: rc = -EINVAL; break; } return rc; } static ssize_t pqi_version_show(struct device *dev, struct device_attribute *attr, char *buffer) { ssize_t count = 0; struct Scsi_Host *shost; struct pqi_ctrl_info *ctrl_info; shost = class_to_shost(dev); ctrl_info = shost_to_hba(shost); count += snprintf(buffer + count, PAGE_SIZE - count, " driver: %s\n", DRIVER_VERSION BUILD_TIMESTAMP); count += snprintf(buffer + count, PAGE_SIZE - count, "firmware: %s\n", ctrl_info->firmware_version); return count; } static ssize_t pqi_host_rescan_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); pqi_scan_start(shost); return count; } static DEVICE_ATTR(version, S_IRUGO, pqi_version_show, NULL); static DEVICE_ATTR(rescan, S_IWUSR, NULL, pqi_host_rescan_store); static struct device_attribute *pqi_shost_attrs[] = { &dev_attr_version, &dev_attr_rescan, NULL }; static ssize_t pqi_sas_address_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; u64 sas_address; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (pqi_is_logical_device(device)) { spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return -ENODEV; } sas_address = device->sas_address; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return snprintf(buffer, PAGE_SIZE, "0x%016llx\n", sas_address); } static ssize_t pqi_ssd_smart_path_enabled_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; buffer[0] = device->offload_enabled ? '1' : '0'; buffer[1] = '\n'; buffer[2] = '\0'; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return 2; } static DEVICE_ATTR(sas_address, S_IRUGO, pqi_sas_address_show, NULL); static DEVICE_ATTR(ssd_smart_path_enabled, S_IRUGO, pqi_ssd_smart_path_enabled_show, NULL); static struct device_attribute *pqi_sdev_attrs[] = { &dev_attr_sas_address, &dev_attr_ssd_smart_path_enabled, NULL }; static struct scsi_host_template pqi_driver_template = { .module = THIS_MODULE, .name = DRIVER_NAME_SHORT, .proc_name = DRIVER_NAME_SHORT, .queuecommand = pqi_scsi_queue_command, .scan_start = pqi_scan_start, .scan_finished = pqi_scan_finished, .this_id = -1, .use_clustering = ENABLE_CLUSTERING, .eh_device_reset_handler = pqi_eh_device_reset_handler, .ioctl = pqi_ioctl, .slave_alloc = pqi_slave_alloc, .slave_configure = pqi_slave_configure, .sdev_attrs = pqi_sdev_attrs, .shost_attrs = pqi_shost_attrs, }; static int pqi_register_scsi(struct pqi_ctrl_info *ctrl_info) { int rc; struct Scsi_Host *shost; shost = scsi_host_alloc(&pqi_driver_template, sizeof(ctrl_info)); if (!shost) { dev_err(&ctrl_info->pci_dev->dev, "scsi_host_alloc failed for controller %u\n", ctrl_info->ctrl_id); return -ENOMEM; } shost->io_port = 0; shost->n_io_port = 0; shost->this_id = -1; shost->max_channel = PQI_MAX_BUS; shost->max_cmd_len = MAX_COMMAND_SIZE; shost->max_lun = ~0; shost->max_id = ~0; shost->max_sectors = ctrl_info->max_sectors; shost->can_queue = ctrl_info->scsi_ml_can_queue; shost->cmd_per_lun = shost->can_queue; shost->sg_tablesize = ctrl_info->sg_tablesize; shost->transportt = pqi_sas_transport_template; shost->irq = ctrl_info->msix_vectors[0]; shost->unique_id = shost->irq; shost->nr_hw_queues = ctrl_info->num_queue_groups; shost->hostdata[0] = (unsigned long)ctrl_info; rc = scsi_add_host(shost, &ctrl_info->pci_dev->dev); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "scsi_add_host failed for controller %u\n", ctrl_info->ctrl_id); goto free_host; } rc = pqi_add_sas_host(shost, ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "add SAS host failed for controller %u\n", ctrl_info->ctrl_id); goto remove_host; } ctrl_info->scsi_host = shost; return 0; remove_host: scsi_remove_host(shost); free_host: scsi_host_put(shost); return rc; } static void pqi_unregister_scsi(struct pqi_ctrl_info *ctrl_info) { struct Scsi_Host *shost; pqi_delete_sas_host(ctrl_info); shost = ctrl_info->scsi_host; if (!shost) return; scsi_remove_host(shost); scsi_host_put(shost); } #define PQI_RESET_ACTION_RESET 0x1 #define PQI_RESET_TYPE_NO_RESET 0x0 #define PQI_RESET_TYPE_SOFT_RESET 0x1 #define PQI_RESET_TYPE_FIRM_RESET 0x2 #define PQI_RESET_TYPE_HARD_RESET 0x3 static int pqi_reset(struct pqi_ctrl_info *ctrl_info) { int rc; u32 reset_params; reset_params = (PQI_RESET_ACTION_RESET << 5) | PQI_RESET_TYPE_HARD_RESET; writel(reset_params, &ctrl_info->pqi_registers->device_reset); rc = pqi_wait_for_pqi_mode_ready(ctrl_info); if (rc) dev_err(&ctrl_info->pci_dev->dev, "PQI reset failed\n"); return rc; } static int pqi_get_ctrl_firmware_version(struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_identify_controller *identify; identify = kmalloc(sizeof(*identify), GFP_KERNEL); if (!identify) return -ENOMEM; rc = pqi_identify_controller(ctrl_info, identify); if (rc) goto out; memcpy(ctrl_info->firmware_version, identify->firmware_version, sizeof(identify->firmware_version)); ctrl_info->firmware_version[sizeof(identify->firmware_version)] = '\0'; snprintf(ctrl_info->firmware_version + strlen(ctrl_info->firmware_version), sizeof(ctrl_info->firmware_version), "-%u", get_unaligned_le16(&identify->firmware_build_number)); out: kfree(identify); return rc; } static int pqi_ctrl_init(struct pqi_ctrl_info *ctrl_info) { int rc; /* * When the controller comes out of reset, it is always running * in legacy SIS mode. This is so that it can be compatible * with legacy drivers shipped with OSes. So we have to talk * to it using SIS commands at first. Once we are satisified * that the controller supports PQI, we transition it into PQI * mode. */ /* * Wait until the controller is ready to start accepting SIS * commands. */ rc = sis_wait_for_ctrl_ready(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error initializing SIS interface\n"); return rc; } /* * Get the controller properties. This allows us to determine * whether or not it supports PQI mode. */ rc = sis_get_ctrl_properties(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining controller properties\n"); return rc; } rc = sis_get_pqi_capabilities(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining controller capabilities\n"); return rc; } if (ctrl_info->max_outstanding_requests > PQI_MAX_OUTSTANDING_REQUESTS) ctrl_info->max_outstanding_requests = PQI_MAX_OUTSTANDING_REQUESTS; pqi_calculate_io_resources(ctrl_info); rc = pqi_alloc_error_buffer(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate PQI error buffer\n"); return rc; } /* * If the function we are about to call succeeds, the * controller will transition from legacy SIS mode * into PQI mode. */ rc = sis_init_base_struct_addr(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error initializing PQI mode\n"); return rc; } /* Wait for the controller to complete the SIS -> PQI transition. */ rc = pqi_wait_for_pqi_mode_ready(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "transition to PQI mode failed\n"); return rc; } /* From here on, we are running in PQI mode. */ ctrl_info->pqi_mode_enabled = true; rc = pqi_alloc_admin_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error allocating admin queues\n"); return rc; } rc = pqi_create_admin_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating admin queues\n"); return rc; } rc = pqi_report_device_capability(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "obtaining device capability failed\n"); return rc; } rc = pqi_validate_device_capability(ctrl_info); if (rc) return rc; pqi_calculate_queue_resources(ctrl_info); rc = pqi_enable_msix_interrupts(ctrl_info); if (rc) return rc; if (ctrl_info->num_msix_vectors_enabled < ctrl_info->num_queue_groups) { ctrl_info->max_msix_vectors = ctrl_info->num_msix_vectors_enabled; pqi_calculate_queue_resources(ctrl_info); } rc = pqi_alloc_io_resources(ctrl_info); if (rc) return rc; rc = pqi_alloc_operational_queues(ctrl_info); if (rc) return rc; pqi_init_operational_queues(ctrl_info); rc = pqi_request_irqs(ctrl_info); if (rc) return rc; pqi_irq_set_affinity_hint(ctrl_info); rc = pqi_create_queues(ctrl_info); if (rc) return rc; sis_enable_msix(ctrl_info); rc = pqi_configure_events(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error configuring events\n"); return rc; } pqi_start_heartbeat_timer(ctrl_info); ctrl_info->controller_online = true; /* Register with the SCSI subsystem. */ rc = pqi_register_scsi(ctrl_info); if (rc) return rc; rc = pqi_get_ctrl_firmware_version(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining firmware version\n"); return rc; } rc = pqi_write_driver_version_to_host_wellness(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error updating host wellness\n"); return rc; } pqi_schedule_update_time_worker(ctrl_info); pqi_scan_scsi_devices(ctrl_info); return 0; } static int pqi_pci_init(struct pqi_ctrl_info *ctrl_info) { int rc; u64 mask; rc = pci_enable_device(ctrl_info->pci_dev); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to enable PCI device\n"); return rc; } if (sizeof(dma_addr_t) > 4) mask = DMA_BIT_MASK(64); else mask = DMA_BIT_MASK(32); rc = dma_set_mask(&ctrl_info->pci_dev->dev, mask); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to set DMA mask\n"); goto disable_device; } rc = pci_request_regions(ctrl_info->pci_dev, DRIVER_NAME_SHORT); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to obtain PCI resources\n"); goto disable_device; } ctrl_info->iomem_base = ioremap_nocache(pci_resource_start( ctrl_info->pci_dev, 0), sizeof(struct pqi_ctrl_registers)); if (!ctrl_info->iomem_base) { dev_err(&ctrl_info->pci_dev->dev, "failed to map memory for controller registers\n"); rc = -ENOMEM; goto release_regions; } ctrl_info->registers = ctrl_info->iomem_base; ctrl_info->pqi_registers = &ctrl_info->registers->pqi_registers; /* Enable bus mastering. */ pci_set_master(ctrl_info->pci_dev); pci_set_drvdata(ctrl_info->pci_dev, ctrl_info); return 0; release_regions: pci_release_regions(ctrl_info->pci_dev); disable_device: pci_disable_device(ctrl_info->pci_dev); return rc; } static void pqi_cleanup_pci_init(struct pqi_ctrl_info *ctrl_info) { iounmap(ctrl_info->iomem_base); pci_release_regions(ctrl_info->pci_dev); pci_disable_device(ctrl_info->pci_dev); pci_set_drvdata(ctrl_info->pci_dev, NULL); } static struct pqi_ctrl_info *pqi_alloc_ctrl_info(int numa_node) { struct pqi_ctrl_info *ctrl_info; ctrl_info = kzalloc_node(sizeof(struct pqi_ctrl_info), GFP_KERNEL, numa_node); if (!ctrl_info) return NULL; mutex_init(&ctrl_info->scan_mutex); INIT_LIST_HEAD(&ctrl_info->scsi_device_list); spin_lock_init(&ctrl_info->scsi_device_list_lock); INIT_WORK(&ctrl_info->event_work, pqi_event_worker); atomic_set(&ctrl_info->num_interrupts, 0); INIT_DELAYED_WORK(&ctrl_info->rescan_work, pqi_rescan_worker); INIT_DELAYED_WORK(&ctrl_info->update_time_work, pqi_update_time_worker); sema_init(&ctrl_info->sync_request_sem, PQI_RESERVED_IO_SLOTS_SYNCHRONOUS_REQUESTS); sema_init(&ctrl_info->lun_reset_sem, PQI_RESERVED_IO_SLOTS_LUN_RESET); ctrl_info->ctrl_id = atomic_inc_return(&pqi_controller_count) - 1; ctrl_info->max_msix_vectors = PQI_MAX_MSIX_VECTORS; return ctrl_info; } static inline void pqi_free_ctrl_info(struct pqi_ctrl_info *ctrl_info) { kfree(ctrl_info); } static void pqi_free_interrupts(struct pqi_ctrl_info *ctrl_info) { pqi_irq_unset_affinity_hint(ctrl_info); pqi_free_irqs(ctrl_info); if (ctrl_info->num_msix_vectors_enabled) pci_disable_msix(ctrl_info->pci_dev); } static void pqi_free_ctrl_resources(struct pqi_ctrl_info *ctrl_info) { pqi_stop_heartbeat_timer(ctrl_info); pqi_free_interrupts(ctrl_info); if (ctrl_info->queue_memory_base) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->queue_memory_length, ctrl_info->queue_memory_base, ctrl_info->queue_memory_base_dma_handle); if (ctrl_info->admin_queue_memory_base) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->admin_queue_memory_length, ctrl_info->admin_queue_memory_base, ctrl_info->admin_queue_memory_base_dma_handle); pqi_free_all_io_requests(ctrl_info); if (ctrl_info->error_buffer) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->error_buffer_length, ctrl_info->error_buffer, ctrl_info->error_buffer_dma_handle); if (ctrl_info->iomem_base) pqi_cleanup_pci_init(ctrl_info); pqi_free_ctrl_info(ctrl_info); } static void pqi_remove_ctrl(struct pqi_ctrl_info *ctrl_info) { int rc; if (ctrl_info->controller_online) { cancel_delayed_work_sync(&ctrl_info->rescan_work); cancel_delayed_work_sync(&ctrl_info->update_time_work); pqi_remove_all_scsi_devices(ctrl_info); pqi_unregister_scsi(ctrl_info); ctrl_info->controller_online = false; } if (ctrl_info->pqi_mode_enabled) { sis_disable_msix(ctrl_info); rc = pqi_reset(ctrl_info); if (rc == 0) sis_reenable_sis_mode(ctrl_info); } pqi_free_ctrl_resources(ctrl_info); } static void pqi_print_ctrl_info(struct pci_dev *pdev, const struct pci_device_id *id) { char *ctrl_description; if (id->driver_data) { ctrl_description = (char *)id->driver_data; } else { switch (id->subvendor) { case PCI_VENDOR_ID_HP: ctrl_description = hpe_branded_controller; break; case PCI_VENDOR_ID_ADAPTEC2: default: ctrl_description = microsemi_branded_controller; break; } } dev_info(&pdev->dev, "%s found\n", ctrl_description); } static int pqi_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int rc; int node; struct pqi_ctrl_info *ctrl_info; pqi_print_ctrl_info(pdev, id); if (pqi_disable_device_id_wildcards && id->subvendor == PCI_ANY_ID && id->subdevice == PCI_ANY_ID) { dev_warn(&pdev->dev, "controller not probed because device ID wildcards are disabled\n"); return -ENODEV; } if (id->subvendor == PCI_ANY_ID || id->subdevice == PCI_ANY_ID) dev_warn(&pdev->dev, "controller device ID matched using wildcards\n"); node = dev_to_node(&pdev->dev); if (node == NUMA_NO_NODE) set_dev_node(&pdev->dev, 0); ctrl_info = pqi_alloc_ctrl_info(node); if (!ctrl_info) { dev_err(&pdev->dev, "failed to allocate controller info block\n"); return -ENOMEM; } ctrl_info->pci_dev = pdev; rc = pqi_pci_init(ctrl_info); if (rc) goto error; rc = pqi_ctrl_init(ctrl_info); if (rc) goto error; return 0; error: pqi_remove_ctrl(ctrl_info); return rc; } static void pqi_pci_remove(struct pci_dev *pdev) { struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pdev); if (!ctrl_info) return; pqi_remove_ctrl(ctrl_info); } static void pqi_shutdown(struct pci_dev *pdev) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pdev); if (!ctrl_info) goto error; /* * Write all data in the controller's battery-backed cache to * storage. */ rc = pqi_flush_cache(ctrl_info); if (rc == 0) return; error: dev_warn(&pdev->dev, "unable to flush controller cache\n"); } /* Define the PCI IDs for the controllers that we support. */ static const struct pci_device_id pqi_pci_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0110) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0600) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0601) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0602) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0603) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0650) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0651) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0652) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0653) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0654) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0655) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0700) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0701) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0800) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0801) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0802) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0803) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0804) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0805) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0900) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0901) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0902) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0903) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0904) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0905) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0906) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1001) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1100) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1101) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1102) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1150) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_ANY_ID, PCI_ANY_ID) }, { 0 } }; MODULE_DEVICE_TABLE(pci, pqi_pci_id_table); static struct pci_driver pqi_pci_driver = { .name = DRIVER_NAME_SHORT, .id_table = pqi_pci_id_table, .probe = pqi_pci_probe, .remove = pqi_pci_remove, .shutdown = pqi_shutdown, }; static int __init pqi_init(void) { int rc; pr_info(DRIVER_NAME "\n"); pqi_sas_transport_template = sas_attach_transport(&pqi_sas_transport_functions); if (!pqi_sas_transport_template) return -ENODEV; rc = pci_register_driver(&pqi_pci_driver); if (rc) sas_release_transport(pqi_sas_transport_template); return rc; } static void __exit pqi_cleanup(void) { pci_unregister_driver(&pqi_pci_driver); sas_release_transport(pqi_sas_transport_template); } module_init(pqi_init); module_exit(pqi_cleanup); static void __attribute__((unused)) verify_structures(void) { BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_host_to_ctrl_doorbell) != 0x20); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_interrupt_mask) != 0x34); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_ctrl_to_host_doorbell) != 0x9c); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_ctrl_to_host_doorbell_clear) != 0xa0); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_firmware_status) != 0xbc); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_mailbox) != 0x1000); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, pqi_registers) != 0x4000); BUILD_BUG_ON(offsetof(struct pqi_iu_header, iu_type) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_iu_header, iu_length) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_iu_header, response_queue_id) != 0x4); BUILD_BUG_ON(offsetof(struct pqi_iu_header, work_area) != 0x6); BUILD_BUG_ON(sizeof(struct pqi_iu_header) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, status) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, service_response) != 0x1); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data_present) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, reserved) != 0x3); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, residual_count) != 0x4); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data_length) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, reserved1) != 0xa); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data) != 0xc); BUILD_BUG_ON(sizeof(struct pqi_aio_error_info) != 0x10c); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_in_result) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_out_result) != 0x1); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, reserved) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, status) != 0x5); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, status_qualifier) != 0x6); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, sense_data_length) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, response_data_length) != 0xa); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_in_transferred) != 0xc); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_out_transferred) != 0x10); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data) != 0x14); BUILD_BUG_ON(sizeof(struct pqi_raid_error_info) != 0x114); BUILD_BUG_ON(offsetof(struct pqi_device_registers, signature) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_device_registers, function_and_status_code) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_admin_iq_elements) != 0x10); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_admin_oq_elements) != 0x11); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_element_length) != 0x12); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_element_length) != 0x13); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_reset_timeout) != 0x14); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_status) != 0x18); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_mask_set) != 0x1c); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_mask_clear) != 0x20); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_status) != 0x40); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_pi_offset) != 0x48); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_ci_offset) != 0x50); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_element_array_addr) != 0x58); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_element_array_addr) != 0x60); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_ci_addr) != 0x68); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_pi_addr) != 0x70); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_num_elements) != 0x78); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_num_elements) != 0x79); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_queue_int_msg_num) != 0x7a); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_error) != 0x80); BUILD_BUG_ON(offsetof(struct pqi_device_registers, error_details) != 0x88); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_reset) != 0x90); BUILD_BUG_ON(offsetof(struct pqi_device_registers, power_action) != 0x94); BUILD_BUG_ON(sizeof(struct pqi_device_registers) != 0x100); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, function_code) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.report_device_capability.buffer_length) != 44); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.report_device_capability.sg_descriptor) != 48); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.queue_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.element_array_addr) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.ci_addr) != 24); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.num_elements) != 32); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.element_length) != 34); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.queue_protocol) != 36); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.queue_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.element_array_addr) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.pi_addr) != 24); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.num_elements) != 32); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.element_length) != 34); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.queue_protocol) != 36); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.int_msg_num) != 40); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.coalescing_count) != 42); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.min_coalescing_time) != 44); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.max_coalescing_time) != 48); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.delete_operational_queue.queue_id) != 12); BUILD_BUG_ON(sizeof(struct pqi_general_admin_request) != 64); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.create_operational_iq) != 64 - 11); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.create_operational_oq) != 64 - 11); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.delete_operational_queue) != 64 - 11); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, function_code) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, status) != 11); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_iq.status_descriptor) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_iq.iq_pi_offset) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_oq.status_descriptor) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_oq.oq_ci_offset) != 16); BUILD_BUG_ON(sizeof(struct pqi_general_admin_response) != 64); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, lun_number) != 16); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, protocol_specific) != 24); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, error_index) != 27); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, cdb) != 32); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, sg_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_raid_path_request) != PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, nexus_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, buffer_length) != 16); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, data_encryption_key_index) != 22); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, encrypt_tweak_lower) != 24); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, encrypt_tweak_upper) != 28); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, cdb) != 32); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, error_index) != 48); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, num_sg_descriptors) != 50); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, cdb_length) != 51); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, lun_number) != 52); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, sg_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_aio_path_request) != PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); BUILD_BUG_ON(offsetof(struct pqi_io_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_io_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_io_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_io_response, error_index) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.report_event_configuration.buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.global_event_oq_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.sg_descriptors) != 16); BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor, max_inbound_iu_length) != 6); BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor, max_outbound_iu_length) != 14); BUILD_BUG_ON(sizeof(struct pqi_iu_layer_descriptor) != 16); BUILD_BUG_ON(offsetof(struct pqi_device_capability, data_length) != 0); BUILD_BUG_ON(offsetof(struct pqi_device_capability, iq_arbitration_priority_support_bitmask) != 8); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_a) != 9); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_b) != 10); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_c) != 11); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_inbound_queues) != 16); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_elements_per_iq) != 18); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_iq_element_length) != 24); BUILD_BUG_ON(offsetof(struct pqi_device_capability, min_iq_element_length) != 26); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_outbound_queues) != 30); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_elements_per_oq) != 32); BUILD_BUG_ON(offsetof(struct pqi_device_capability, intr_coalescing_time_granularity) != 34); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_oq_element_length) != 36); BUILD_BUG_ON(offsetof(struct pqi_device_capability, min_oq_element_length) != 38); BUILD_BUG_ON(offsetof(struct pqi_device_capability, iu_layer_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_device_capability) != 576); BUILD_BUG_ON(offsetof(struct pqi_event_descriptor, event_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_descriptor, oq_id) != 2); BUILD_BUG_ON(sizeof(struct pqi_event_descriptor) != 4); BUILD_BUG_ON(offsetof(struct pqi_event_config, num_event_descriptors) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_config, descriptors) != 4); BUILD_BUG_ON(offsetof(struct pqi_event_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_response, event_type) != 8); BUILD_BUG_ON(offsetof(struct pqi_event_response, event_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_event_response, additional_event_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_event_response, data) != 16); BUILD_BUG_ON(sizeof(struct pqi_event_response) != 32); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, event_type) != 8); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, event_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, additional_event_id) != 12); BUILD_BUG_ON(sizeof(struct pqi_event_acknowledge_request) != 16); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, lun_number) != 16); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, protocol_specific) != 24); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, outbound_queue_id_to_manage) != 26); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, request_id_to_manage) != 28); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, task_management_function) != 30); BUILD_BUG_ON(sizeof(struct pqi_task_management_request) != 32); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, additional_response_info) != 12); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, response_code) != 15); BUILD_BUG_ON(sizeof(struct pqi_task_management_response) != 16); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, configured_logical_drive_count) != 0); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, configuration_signature) != 1); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, firmware_version) != 5); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, extended_logical_unit_count) != 154); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, firmware_build_number) != 190); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, controller_mode) != 292); BUILD_BUG_ON(PQI_ADMIN_IQ_NUM_ELEMENTS > 255); BUILD_BUG_ON(PQI_ADMIN_OQ_NUM_ELEMENTS > 255); BUILD_BUG_ON(PQI_ADMIN_IQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_ADMIN_OQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH > 1048560); BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH > 1048560); BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_RESERVED_IO_SLOTS >= PQI_MAX_OUTSTANDING_REQUESTS); }