/* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2003-2012 LSI Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * FILE: megaraid_sas_base.c * Version : 06.805.06.00-rc1 * * Authors: LSI Corporation * Sreenivas Bagalkote * Sumant Patro * Bo Yang * Adam Radford * * Send feedback to: * * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 * ATTN: Linuxraid */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "megaraid_sas_fusion.h" #include "megaraid_sas.h" /* * Number of sectors per IO command * Will be set in megasas_init_mfi if user does not provide */ static unsigned int max_sectors; module_param_named(max_sectors, max_sectors, int, 0); MODULE_PARM_DESC(max_sectors, "Maximum number of sectors per IO command"); static int msix_disable; module_param(msix_disable, int, S_IRUGO); MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); static unsigned int msix_vectors; module_param(msix_vectors, int, S_IRUGO); MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); static int allow_vf_ioctls; module_param(allow_vf_ioctls, int, S_IRUGO); MODULE_PARM_DESC(allow_vf_ioctls, "Allow ioctls in SR-IOV VF mode. Default: 0"); static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; module_param(throttlequeuedepth, int, S_IRUGO); MODULE_PARM_DESC(throttlequeuedepth, "Adapter queue depth when throttled due to I/O timeout. Default: 16"); int resetwaittime = MEGASAS_RESET_WAIT_TIME; module_param(resetwaittime, int, S_IRUGO); MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout " "before resetting adapter. Default: 180"); int smp_affinity_enable = 1; module_param(smp_affinity_enable, int, S_IRUGO); MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)"); MODULE_LICENSE("GPL"); MODULE_VERSION(MEGASAS_VERSION); MODULE_AUTHOR("megaraidlinux@lsi.com"); MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); static int megasas_get_pd_list(struct megasas_instance *instance); static int megasas_ld_list_query(struct megasas_instance *instance, u8 query_type); static int megasas_issue_init_mfi(struct megasas_instance *instance); static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word); /* * PCI ID table for all supported controllers */ static struct pci_device_id megasas_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, /* xscale IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, /* xscale IOP, vega */ {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, /* xscale IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, /* Fusion */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_PLASMA)}, /* Plasma */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, /* Invader */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, /* Fury */ {} }; MODULE_DEVICE_TABLE(pci, megasas_pci_table); static int megasas_mgmt_majorno; struct megasas_mgmt_info megasas_mgmt_info; static struct fasync_struct *megasas_async_queue; static DEFINE_MUTEX(megasas_async_queue_mutex); static int megasas_poll_wait_aen; static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); static u32 support_poll_for_event; u32 megasas_dbg_lvl; static u32 support_device_change; /* define lock for aen poll */ spinlock_t poll_aen_lock; void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status); static u32 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs); static int megasas_adp_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *reg_set); static irqreturn_t megasas_isr(int irq, void *devp); static u32 megasas_init_adapter_mfi(struct megasas_instance *instance); u32 megasas_build_and_issue_cmd(struct megasas_instance *instance, struct scsi_cmnd *scmd); static void megasas_complete_cmd_dpc(unsigned long instance_addr); void megasas_release_fusion(struct megasas_instance *instance); int megasas_ioc_init_fusion(struct megasas_instance *instance); void megasas_free_cmds_fusion(struct megasas_instance *instance); u8 megasas_get_map_info(struct megasas_instance *instance); int megasas_sync_map_info(struct megasas_instance *instance); int wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd, int seconds); void megasas_reset_reply_desc(struct megasas_instance *instance); int megasas_reset_fusion(struct Scsi_Host *shost, int iotimeout); void megasas_fusion_ocr_wq(struct work_struct *work); static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance, int initial); int megasas_check_mpio_paths(struct megasas_instance *instance, struct scsi_cmnd *scmd); void megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); } /** * megasas_get_cmd - Get a command from the free pool * @instance: Adapter soft state * * Returns a free command from the pool */ struct megasas_cmd *megasas_get_cmd(struct megasas_instance *instance) { unsigned long flags; struct megasas_cmd *cmd = NULL; spin_lock_irqsave(&instance->mfi_pool_lock, flags); if (!list_empty(&instance->cmd_pool)) { cmd = list_entry((&instance->cmd_pool)->next, struct megasas_cmd, list); list_del_init(&cmd->list); atomic_set(&cmd->mfi_mpt_pthr, MFI_MPT_DETACHED); } else { printk(KERN_ERR "megasas: Command pool empty!\n"); } spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); return cmd; } /** * __megasas_return_cmd - Return a cmd to free command pool * @instance: Adapter soft state * @cmd: Command packet to be returned to free command pool */ inline void __megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { /* * Don't go ahead and free the MFI frame, if corresponding * MPT frame is not freed(valid for only fusion adapters). * In case of MFI adapters, anyways for any allocated MFI * frame will have cmd->mfi_mpt_mpthr set to MFI_MPT_DETACHED */ if (atomic_read(&cmd->mfi_mpt_pthr) != MFI_MPT_DETACHED) return; cmd->scmd = NULL; cmd->frame_count = 0; cmd->is_wait_event = 0; cmd->mpt_pthr_cmd_blocked = NULL; if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && (reset_devices)) cmd->frame->hdr.cmd = MFI_CMD_INVALID; atomic_set(&cmd->mfi_mpt_pthr, MFI_LIST_ADDED); list_add(&cmd->list, (&instance->cmd_pool)->next); } /** * megasas_return_cmd - Return a cmd to free command pool * @instance: Adapter soft state * @cmd: Command packet to be returned to free command pool */ inline void megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&instance->mfi_pool_lock, flags); __megasas_return_cmd(instance, cmd); spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); } /** * The following functions are defined for xscale * (deviceid : 1064R, PERC5) controllers */ /** * megasas_enable_intr_xscale - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_xscale(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_xscale -Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_xscale(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0x1f; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_xscale - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) { return readl(&(regs)->outbound_msg_0); } /** * megasas_clear_interrupt_xscale - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) { u32 status; u32 mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_OB_INTR_STATUS_MASK) mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_intr_status); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_xscale - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_xscale(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr >> 3)|(frame_count), &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_xscale - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { u32 i; u32 pcidata; writel(MFI_ADP_RESET, ®s->inbound_doorbell); for (i = 0; i < 3; i++) msleep(1000); /* sleep for 3 secs */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); printk(KERN_NOTICE "pcidata = %x\n", pcidata); if (pcidata & 0x2) { printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); pcidata &= ~0x2; pci_write_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, pcidata); for (i = 0; i < 2; i++) msleep(1000); /* need to wait 2 secs again */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); pcidata = 0; pci_write_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); } } return 0; } /** * megasas_check_reset_xscale - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && (le32_to_cpu(*instance->consumer) == MEGASAS_ADPRESET_INPROG_SIGN)) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_xscale = { .fire_cmd = megasas_fire_cmd_xscale, .enable_intr = megasas_enable_intr_xscale, .disable_intr = megasas_disable_intr_xscale, .clear_intr = megasas_clear_intr_xscale, .read_fw_status_reg = megasas_read_fw_status_reg_xscale, .adp_reset = megasas_adp_reset_xscale, .check_reset = megasas_check_reset_xscale, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /** * This is the end of set of functions & definitions specific * to xscale (deviceid : 1064R, PERC5) controllers */ /** * The following functions are defined for ppc (deviceid : 0x60) * controllers */ /** * megasas_enable_intr_ppc - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_ppc(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); writel(~0x80000000, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_ppc - Disable interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_ppc(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_ppc - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_ppc - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) { u32 status, mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_doorbell_clear); return mfiStatus; } /** * megasas_fire_cmd_ppc - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_ppc(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_check_reset_ppc - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_ppc(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_ppc = { .fire_cmd = megasas_fire_cmd_ppc, .enable_intr = megasas_enable_intr_ppc, .disable_intr = megasas_disable_intr_ppc, .clear_intr = megasas_clear_intr_ppc, .read_fw_status_reg = megasas_read_fw_status_reg_ppc, .adp_reset = megasas_adp_reset_xscale, .check_reset = megasas_check_reset_ppc, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /** * megasas_enable_intr_skinny - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_skinny(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_skinny - Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_skinny(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_skinny - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_skinny - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) { u32 status; u32 mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { return 0; } /* * Check if it is our interrupt */ if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) == MFI_STATE_FAULT) { mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; } else mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_intr_status); /* * dummy read to flush PCI */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_skinny - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_skinny(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel(upper_32_bits(frame_phys_addr), &(regs)->inbound_high_queue_port); writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1, &(regs)->inbound_low_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_check_reset_skinny - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_skinny(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_skinny = { .fire_cmd = megasas_fire_cmd_skinny, .enable_intr = megasas_enable_intr_skinny, .disable_intr = megasas_disable_intr_skinny, .clear_intr = megasas_clear_intr_skinny, .read_fw_status_reg = megasas_read_fw_status_reg_skinny, .adp_reset = megasas_adp_reset_gen2, .check_reset = megasas_check_reset_skinny, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /** * The following functions are defined for gen2 (deviceid : 0x78 0x79) * controllers */ /** * megasas_enable_intr_gen2 - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_gen2(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); /* write ~0x00000005 (4 & 1) to the intr mask*/ writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_gen2 - Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_gen2(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_gen2 - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_gen2 - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) { u32 status; u32 mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; } if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; } /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_gen2 - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_gen2(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_gen2 - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *reg_set) { u32 retry = 0 ; u32 HostDiag; u32 *seq_offset = ®_set->seq_offset; u32 *hostdiag_offset = ®_set->host_diag; if (instance->instancet == &megasas_instance_template_skinny) { seq_offset = ®_set->fusion_seq_offset; hostdiag_offset = ®_set->fusion_host_diag; } writel(0, seq_offset); writel(4, seq_offset); writel(0xb, seq_offset); writel(2, seq_offset); writel(7, seq_offset); writel(0xd, seq_offset); msleep(1000); HostDiag = (u32)readl(hostdiag_offset); while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { msleep(100); HostDiag = (u32)readl(hostdiag_offset); printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 100) return 1; } printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); ssleep(10); HostDiag = (u32)readl(hostdiag_offset); while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { msleep(100); HostDiag = (u32)readl(hostdiag_offset); printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 1000) return 1; } return 0; } /** * megasas_check_reset_gen2 - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { return 1; } return 0; } static struct megasas_instance_template megasas_instance_template_gen2 = { .fire_cmd = megasas_fire_cmd_gen2, .enable_intr = megasas_enable_intr_gen2, .disable_intr = megasas_disable_intr_gen2, .clear_intr = megasas_clear_intr_gen2, .read_fw_status_reg = megasas_read_fw_status_reg_gen2, .adp_reset = megasas_adp_reset_gen2, .check_reset = megasas_check_reset_gen2, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /** * This is the end of set of functions & definitions * specific to gen2 (deviceid : 0x78, 0x79) controllers */ /* * Template added for TB (Fusion) */ extern struct megasas_instance_template megasas_instance_template_fusion; /** * megasas_issue_polled - Issues a polling command * @instance: Adapter soft state * @cmd: Command packet to be issued * * For polling, MFI requires the cmd_status to be set to 0xFF before posting. */ int megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) { int seconds; struct megasas_header *frame_hdr = &cmd->frame->hdr; frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE; frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); /* * Issue the frame using inbound queue port */ instance->instancet->issue_dcmd(instance, cmd); /* * Wait for cmd_status to change */ if (instance->requestorId) seconds = MEGASAS_ROUTINE_WAIT_TIME_VF; else seconds = MFI_POLL_TIMEOUT_SECS; return wait_and_poll(instance, cmd, seconds); } /** * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds * @instance: Adapter soft state * @cmd: Command to be issued * @timeout: Timeout in seconds * * This function waits on an event for the command to be returned from ISR. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs * Used to issue ioctl commands. */ int megasas_issue_blocked_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, int timeout) { int ret = 0; cmd->cmd_status = ENODATA; cmd->is_wait_event = 1; instance->instancet->issue_dcmd(instance, cmd); if (timeout) { ret = wait_event_timeout(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA, timeout * HZ); if (!ret) return 1; } else wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); return 0; } /** * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd * @instance: Adapter soft state * @cmd_to_abort: Previously issued cmd to be aborted * @timeout: Timeout in seconds * * MFI firmware can abort previously issued AEN comamnd (automatic event * notification). The megasas_issue_blocked_abort_cmd() issues such abort * cmd and waits for return status. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs */ static int megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd_to_abort, int timeout) { struct megasas_cmd *cmd; struct megasas_abort_frame *abort_fr; int ret = 0; cmd = megasas_get_cmd(instance); if (!cmd) return -1; abort_fr = &cmd->frame->abort; /* * Prepare and issue the abort frame */ abort_fr->cmd = MFI_CMD_ABORT; abort_fr->cmd_status = 0xFF; abort_fr->flags = cpu_to_le16(0); abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index); abort_fr->abort_mfi_phys_addr_lo = cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr)); abort_fr->abort_mfi_phys_addr_hi = cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr)); cmd->sync_cmd = 1; cmd->cmd_status = 0xFF; instance->instancet->issue_dcmd(instance, cmd); if (timeout) { ret = wait_event_timeout(instance->abort_cmd_wait_q, cmd->cmd_status != ENODATA, timeout * HZ); if (!ret) { dev_err(&instance->pdev->dev, "Command timedout" "from %s\n", __func__); return 1; } } else wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != ENODATA); cmd->sync_cmd = 0; megasas_return_cmd(instance, cmd); return 0; } /** * megasas_make_sgl32 - Prepares 32-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl)); } } return sge_count; } /** * megasas_make_sgl64 - Prepares 64-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); } } return sge_count; } /** * megasas_make_sgl_skinny - Prepares IEEE SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl_skinny(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge_skinny[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge_skinny[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0); } } return sge_count; } /** * megasas_get_frame_count - Computes the number of frames * @frame_type : type of frame- io or pthru frame * @sge_count : number of sg elements * * Returns the number of frames required for numnber of sge's (sge_count) */ static u32 megasas_get_frame_count(struct megasas_instance *instance, u8 sge_count, u8 frame_type) { int num_cnt; int sge_bytes; u32 sge_sz; u32 frame_count=0; sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : sizeof(struct megasas_sge32); if (instance->flag_ieee) { sge_sz = sizeof(struct megasas_sge_skinny); } /* * Main frame can contain 2 SGEs for 64-bit SGLs and * 3 SGEs for 32-bit SGLs for ldio & * 1 SGEs for 64-bit SGLs and * 2 SGEs for 32-bit SGLs for pthru frame */ if (unlikely(frame_type == PTHRU_FRAME)) { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 1; else num_cnt = sge_count - 2; } else { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 2; else num_cnt = sge_count - 3; } if(num_cnt>0){ sge_bytes = sge_sz * num_cnt; frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; } /* Main frame */ frame_count +=1; if (frame_count > 7) frame_count = 8; return frame_count; } /** * megasas_build_dcdb - Prepares a direct cdb (DCDB) command * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared in * * This function prepares CDB commands. These are typcially pass-through * commands to the devices. */ static int megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 is_logical; u32 device_id; u16 flags = 0; struct megasas_pthru_frame *pthru; is_logical = MEGASAS_IS_LOGICAL(scp); device_id = MEGASAS_DEV_INDEX(instance, scp); pthru = (struct megasas_pthru_frame *)cmd->frame; if (scp->sc_data_direction == PCI_DMA_TODEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) flags = MFI_FRAME_DIR_READ; else if (scp->sc_data_direction == PCI_DMA_NONE) flags = MFI_FRAME_DIR_NONE; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the DCDB frame */ pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; pthru->cmd_status = 0x0; pthru->scsi_status = 0x0; pthru->target_id = device_id; pthru->lun = scp->device->lun; pthru->cdb_len = scp->cmd_len; pthru->timeout = 0; pthru->pad_0 = 0; pthru->flags = cpu_to_le16(flags); pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp)); memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); /* * If the command is for the tape device, set the * pthru timeout to the os layer timeout value. */ if (scp->device->type == TYPE_TAPE) { if ((scp->request->timeout / HZ) > 0xFFFF) pthru->timeout = 0xFFFF; else pthru->timeout = cpu_to_le16(scp->request->timeout / HZ); } /* * Construct SGL */ if (instance->flag_ieee == 1) { pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); pthru->sge_count = megasas_make_sgl_skinny(instance, scp, &pthru->sgl); } else if (IS_DMA64) { pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); pthru->sge_count = megasas_make_sgl64(instance, scp, &pthru->sgl); } else pthru->sge_count = megasas_make_sgl32(instance, scp, &pthru->sgl); if (pthru->sge_count > instance->max_num_sge) { printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", pthru->sge_count); return 0; } /* * Sense info specific */ pthru->sense_len = SCSI_SENSE_BUFFERSIZE; pthru->sense_buf_phys_addr_hi = cpu_to_le32(upper_32_bits(cmd->sense_phys_addr)); pthru->sense_buf_phys_addr_lo = cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, PTHRU_FRAME); return cmd->frame_count; } /** * megasas_build_ldio - Prepares IOs to logical devices * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared * * Frames (and accompanying SGLs) for regular SCSI IOs use this function. */ static int megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 device_id; u8 sc = scp->cmnd[0]; u16 flags = 0; struct megasas_io_frame *ldio; device_id = MEGASAS_DEV_INDEX(instance, scp); ldio = (struct megasas_io_frame *)cmd->frame; if (scp->sc_data_direction == PCI_DMA_TODEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) flags = MFI_FRAME_DIR_READ; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the Logical IO frame: 2nd bit is zero for all read cmds */ ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; ldio->cmd_status = 0x0; ldio->scsi_status = 0x0; ldio->target_id = device_id; ldio->timeout = 0; ldio->reserved_0 = 0; ldio->pad_0 = 0; ldio->flags = cpu_to_le16(flags); ldio->start_lba_hi = 0; ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if (scp->cmd_len == 6) { ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) | ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3]); ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF); } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ else if (scp->cmd_len == 10) { ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] | ((u32) scp->cmnd[7] << 8)); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ else if (scp->cmd_len == 12) { ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * 16-byte READ(0x88) or WRITE(0x8A) cdb */ else if (scp->cmd_len == 16) { ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) | ((u32) scp->cmnd[11] << 16) | ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]); ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * Construct SGL */ if (instance->flag_ieee) { ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); ldio->sge_count = megasas_make_sgl_skinny(instance, scp, &ldio->sgl); } else if (IS_DMA64) { ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); } else ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); if (ldio->sge_count > instance->max_num_sge) { printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", ldio->sge_count); return 0; } /* * Sense info specific */ ldio->sense_len = SCSI_SENSE_BUFFERSIZE; ldio->sense_buf_phys_addr_hi = 0; ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr); /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, ldio->sge_count, IO_FRAME); return cmd->frame_count; } /** * megasas_is_ldio - Checks if the cmd is for logical drive * @scmd: SCSI command * * Called by megasas_queue_command to find out if the command to be queued * is a logical drive command */ inline int megasas_is_ldio(struct scsi_cmnd *cmd) { if (!MEGASAS_IS_LOGICAL(cmd)) return 0; switch (cmd->cmnd[0]) { case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_6: case WRITE_6: case READ_16: case WRITE_16: return 1; default: return 0; } } /** * megasas_dump_pending_frames - Dumps the frame address of all pending cmds * in FW * @instance: Adapter soft state */ static inline void megasas_dump_pending_frames(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i,n; union megasas_sgl *mfi_sgl; struct megasas_io_frame *ldio; struct megasas_pthru_frame *pthru; u32 sgcount; u32 max_cmd = instance->max_fw_cmds; printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); if (IS_DMA64) printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); else printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if(!cmd->scmd) continue; printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); if (megasas_is_ldio(cmd->scmd)){ ldio = (struct megasas_io_frame *)cmd->frame; mfi_sgl = &ldio->sgl; sgcount = ldio->sge_count; printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x," " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id, le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi), le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount); } else { pthru = (struct megasas_pthru_frame *) cmd->frame; mfi_sgl = &pthru->sgl; sgcount = pthru->sge_count; printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, " "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id, pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len), le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount); } if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ for (n = 0; n < sgcount; n++){ if (IS_DMA64) printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ", le32_to_cpu(mfi_sgl->sge64[n].length), le64_to_cpu(mfi_sgl->sge64[n].phys_addr)); else printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ", le32_to_cpu(mfi_sgl->sge32[n].length), le32_to_cpu(mfi_sgl->sge32[n].phys_addr)); } } printk(KERN_ERR "\n"); } /*for max_cmd*/ printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if(cmd->sync_cmd == 1){ printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); } } printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); } u32 megasas_build_and_issue_cmd(struct megasas_instance *instance, struct scsi_cmnd *scmd) { struct megasas_cmd *cmd; u32 frame_count; cmd = megasas_get_cmd(instance); if (!cmd) return SCSI_MLQUEUE_HOST_BUSY; /* * Logical drive command */ if (megasas_is_ldio(scmd)) frame_count = megasas_build_ldio(instance, scmd, cmd); else frame_count = megasas_build_dcdb(instance, scmd, cmd); if (!frame_count) goto out_return_cmd; cmd->scmd = scmd; scmd->SCp.ptr = (char *)cmd; /* * Issue the command to the FW */ atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); return 0; out_return_cmd: megasas_return_cmd(instance, cmd); return 1; } /** * megasas_queue_command - Queue entry point * @scmd: SCSI command to be queued * @done: Callback entry point */ static int megasas_queue_command(struct Scsi_Host *shost, struct scsi_cmnd *scmd) { struct megasas_instance *instance; unsigned long flags; instance = (struct megasas_instance *) scmd->device->host->hostdata; if (instance->issuepend_done == 0) return SCSI_MLQUEUE_HOST_BUSY; spin_lock_irqsave(&instance->hba_lock, flags); /* Check for an mpio path and adjust behavior */ if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { if (megasas_check_mpio_paths(instance, scmd) == (DID_RESET << 16)) { spin_unlock_irqrestore(&instance->hba_lock, flags); return SCSI_MLQUEUE_HOST_BUSY; } else { spin_unlock_irqrestore(&instance->hba_lock, flags); scmd->result = DID_NO_CONNECT << 16; scmd->scsi_done(scmd); return 0; } } if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { spin_unlock_irqrestore(&instance->hba_lock, flags); scmd->result = DID_NO_CONNECT << 16; scmd->scsi_done(scmd); return 0; } if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); return SCSI_MLQUEUE_HOST_BUSY; } spin_unlock_irqrestore(&instance->hba_lock, flags); scmd->result = 0; if (MEGASAS_IS_LOGICAL(scmd) && (scmd->device->id >= instance->fw_supported_vd_count || scmd->device->lun)) { scmd->result = DID_BAD_TARGET << 16; goto out_done; } switch (scmd->cmnd[0]) { case SYNCHRONIZE_CACHE: /* * FW takes care of flush cache on its own * No need to send it down */ scmd->result = DID_OK << 16; goto out_done; default: break; } if (instance->instancet->build_and_issue_cmd(instance, scmd)) { printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n"); return SCSI_MLQUEUE_HOST_BUSY; } return 0; out_done: scmd->scsi_done(scmd); return 0; } static struct megasas_instance *megasas_lookup_instance(u16 host_no) { int i; for (i = 0; i < megasas_mgmt_info.max_index; i++) { if ((megasas_mgmt_info.instance[i]) && (megasas_mgmt_info.instance[i]->host->host_no == host_no)) return megasas_mgmt_info.instance[i]; } return NULL; } static int megasas_slave_configure(struct scsi_device *sdev) { /* * The RAID firmware may require extended timeouts. */ blk_queue_rq_timeout(sdev->request_queue, MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); return 0; } static int megasas_slave_alloc(struct scsi_device *sdev) { u16 pd_index = 0; struct megasas_instance *instance ; instance = megasas_lookup_instance(sdev->host->host_no); if (sdev->channel < MEGASAS_MAX_PD_CHANNELS) { /* * Open the OS scan to the SYSTEM PD */ pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { return 0; } return -ENXIO; } return 0; } void megaraid_sas_kill_hba(struct megasas_instance *instance) { if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { writel(MFI_STOP_ADP, &instance->reg_set->doorbell); /* Flush */ readl(&instance->reg_set->doorbell); if (instance->mpio && instance->requestorId) memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); } else { writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); } } /** * megasas_check_and_restore_queue_depth - Check if queue depth needs to be * restored to max value * @instance: Adapter soft state * */ void megasas_check_and_restore_queue_depth(struct megasas_instance *instance) { unsigned long flags; if (instance->flag & MEGASAS_FW_BUSY && time_after(jiffies, instance->last_time + 5 * HZ) && atomic_read(&instance->fw_outstanding) < instance->throttlequeuedepth + 1) { spin_lock_irqsave(instance->host->host_lock, flags); instance->flag &= ~MEGASAS_FW_BUSY; if (instance->is_imr) { instance->host->can_queue = instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; } else instance->host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS; spin_unlock_irqrestore(instance->host->host_lock, flags); } } /** * megasas_complete_cmd_dpc - Returns FW's controller structure * @instance_addr: Address of adapter soft state * * Tasklet to complete cmds */ static void megasas_complete_cmd_dpc(unsigned long instance_addr) { u32 producer; u32 consumer; u32 context; struct megasas_cmd *cmd; struct megasas_instance *instance = (struct megasas_instance *)instance_addr; unsigned long flags; /* If we have already declared adapter dead, donot complete cmds */ if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) return; spin_lock_irqsave(&instance->completion_lock, flags); producer = le32_to_cpu(*instance->producer); consumer = le32_to_cpu(*instance->consumer); while (consumer != producer) { context = le32_to_cpu(instance->reply_queue[consumer]); if (context >= instance->max_fw_cmds) { printk(KERN_ERR "Unexpected context value %x\n", context); BUG(); } cmd = instance->cmd_list[context]; megasas_complete_cmd(instance, cmd, DID_OK); consumer++; if (consumer == (instance->max_fw_cmds + 1)) { consumer = 0; } } *instance->consumer = cpu_to_le32(producer); spin_unlock_irqrestore(&instance->completion_lock, flags); /* * Check if we can restore can_queue */ megasas_check_and_restore_queue_depth(instance); } /** * megasas_start_timer - Initializes a timer object * @instance: Adapter soft state * @timer: timer object to be initialized * @fn: timer function * @interval: time interval between timer function call * */ void megasas_start_timer(struct megasas_instance *instance, struct timer_list *timer, void *fn, unsigned long interval) { init_timer(timer); timer->expires = jiffies + interval; timer->data = (unsigned long)instance; timer->function = fn; add_timer(timer); } static void megasas_internal_reset_defer_cmds(struct megasas_instance *instance); static void process_fw_state_change_wq(struct work_struct *work); void megasas_do_ocr(struct megasas_instance *instance) { if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); } instance->instancet->disable_intr(instance); instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; instance->issuepend_done = 0; atomic_set(&instance->fw_outstanding, 0); megasas_internal_reset_defer_cmds(instance); process_fw_state_change_wq(&instance->work_init); } static int megasas_get_ld_vf_affiliation_111(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_VF_AFFILIATION_111 *new_affiliation_111 = NULL; dma_addr_t new_affiliation_111_h; int ld, retval = 0; u8 thisVf; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: megasas_get_ld_vf_affiliation_111:" "Failed to get cmd for scsi%d.\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (!instance->vf_affiliation_111) { printk(KERN_WARNING "megasas: SR-IOV: Couldn't get LD/VF " "affiliation for scsi%d.\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } if (initial) memset(instance->vf_affiliation_111, 0, sizeof(struct MR_LD_VF_AFFILIATION_111)); else { new_affiliation_111 = pci_alloc_consistent(instance->pdev, sizeof(struct MR_LD_VF_AFFILIATION_111), &new_affiliation_111_h); if (!new_affiliation_111) { printk(KERN_DEBUG "megasas: SR-IOV: Couldn't allocate " "memory for new affiliation for scsi%d.\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(new_affiliation_111, 0, sizeof(struct MR_LD_VF_AFFILIATION_111)); } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_BOTH; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = sizeof(struct MR_LD_VF_AFFILIATION_111); dcmd->opcode = MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111; if (initial) dcmd->sgl.sge32[0].phys_addr = instance->vf_affiliation_111_h; else dcmd->sgl.sge32[0].phys_addr = new_affiliation_111_h; dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_VF_AFFILIATION_111); printk(KERN_WARNING "megasas: SR-IOV: Getting LD/VF affiliation for " "scsi%d\n", instance->host->host_no); megasas_issue_blocked_cmd(instance, cmd, 0); if (dcmd->cmd_status) { printk(KERN_WARNING "megasas: SR-IOV: LD/VF affiliation DCMD" " failed with status 0x%x for scsi%d.\n", dcmd->cmd_status, instance->host->host_no); retval = 1; /* Do a scan if we couldn't get affiliation */ goto out; } if (!initial) { thisVf = new_affiliation_111->thisVf; for (ld = 0 ; ld < new_affiliation_111->vdCount; ld++) if (instance->vf_affiliation_111->map[ld].policy[thisVf] != new_affiliation_111->map[ld].policy[thisVf]) { printk(KERN_WARNING "megasas: SR-IOV: " "Got new LD/VF affiliation " "for scsi%d.\n", instance->host->host_no); memcpy(instance->vf_affiliation_111, new_affiliation_111, sizeof(struct MR_LD_VF_AFFILIATION_111)); retval = 1; goto out; } } out: if (new_affiliation_111) { pci_free_consistent(instance->pdev, sizeof(struct MR_LD_VF_AFFILIATION_111), new_affiliation_111, new_affiliation_111_h); } if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return retval; } static int megasas_get_ld_vf_affiliation_12(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_VF_AFFILIATION *new_affiliation = NULL; struct MR_LD_VF_MAP *newmap = NULL, *savedmap = NULL; dma_addr_t new_affiliation_h; int i, j, retval = 0, found = 0, doscan = 0; u8 thisVf; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: megasas_get_ld_vf_affiliation12: " "Failed to get cmd for scsi%d.\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (!instance->vf_affiliation) { printk(KERN_WARNING "megasas: SR-IOV: Couldn't get LD/VF " "affiliation for scsi%d.\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } if (initial) memset(instance->vf_affiliation, 0, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION)); else { new_affiliation = pci_alloc_consistent(instance->pdev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), &new_affiliation_h); if (!new_affiliation) { printk(KERN_DEBUG "megasas: SR-IOV: Couldn't allocate " "memory for new affiliation for scsi%d.\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(new_affiliation, 0, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION)); } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_BOTH; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION); dcmd->opcode = MR_DCMD_LD_VF_MAP_GET_ALL_LDS; if (initial) dcmd->sgl.sge32[0].phys_addr = instance->vf_affiliation_h; else dcmd->sgl.sge32[0].phys_addr = new_affiliation_h; dcmd->sgl.sge32[0].length = (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION); printk(KERN_WARNING "megasas: SR-IOV: Getting LD/VF affiliation for " "scsi%d\n", instance->host->host_no); megasas_issue_blocked_cmd(instance, cmd, 0); if (dcmd->cmd_status) { printk(KERN_WARNING "megasas: SR-IOV: LD/VF affiliation DCMD" " failed with status 0x%x for scsi%d.\n", dcmd->cmd_status, instance->host->host_no); retval = 1; /* Do a scan if we couldn't get affiliation */ goto out; } if (!initial) { if (!new_affiliation->ldCount) { printk(KERN_WARNING "megasas: SR-IOV: Got new LD/VF " "affiliation for passive path for scsi%d.\n", instance->host->host_no); retval = 1; goto out; } newmap = new_affiliation->map; savedmap = instance->vf_affiliation->map; thisVf = new_affiliation->thisVf; for (i = 0 ; i < new_affiliation->ldCount; i++) { found = 0; for (j = 0; j < instance->vf_affiliation->ldCount; j++) { if (newmap->ref.targetId == savedmap->ref.targetId) { found = 1; if (newmap->policy[thisVf] != savedmap->policy[thisVf]) { doscan = 1; goto out; } } savedmap = (struct MR_LD_VF_MAP *) ((unsigned char *)savedmap + savedmap->size); } if (!found && newmap->policy[thisVf] != MR_LD_ACCESS_HIDDEN) { doscan = 1; goto out; } newmap = (struct MR_LD_VF_MAP *) ((unsigned char *)newmap + newmap->size); } newmap = new_affiliation->map; savedmap = instance->vf_affiliation->map; for (i = 0 ; i < instance->vf_affiliation->ldCount; i++) { found = 0; for (j = 0 ; j < new_affiliation->ldCount; j++) { if (savedmap->ref.targetId == newmap->ref.targetId) { found = 1; if (savedmap->policy[thisVf] != newmap->policy[thisVf]) { doscan = 1; goto out; } } newmap = (struct MR_LD_VF_MAP *) ((unsigned char *)newmap + newmap->size); } if (!found && savedmap->policy[thisVf] != MR_LD_ACCESS_HIDDEN) { doscan = 1; goto out; } savedmap = (struct MR_LD_VF_MAP *) ((unsigned char *)savedmap + savedmap->size); } } out: if (doscan) { printk(KERN_WARNING "megasas: SR-IOV: Got new LD/VF " "affiliation for scsi%d.\n", instance->host->host_no); memcpy(instance->vf_affiliation, new_affiliation, new_affiliation->size); retval = 1; } if (new_affiliation) pci_free_consistent(instance->pdev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), new_affiliation, new_affiliation_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return retval; } /* This function will get the current SR-IOV LD/VF affiliation */ static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance, int initial) { int retval; if (instance->PlasmaFW111) retval = megasas_get_ld_vf_affiliation_111(instance, initial); else retval = megasas_get_ld_vf_affiliation_12(instance, initial); return retval; } /* This function will tell FW to start the SR-IOV heartbeat */ int megasas_sriov_start_heartbeat(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; int retval = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: megasas_sriov_start_heartbeat: " "Failed to get cmd for scsi%d.\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (initial) { instance->hb_host_mem = pci_zalloc_consistent(instance->pdev, sizeof(struct MR_CTRL_HB_HOST_MEM), &instance->hb_host_mem_h); if (!instance->hb_host_mem) { printk(KERN_DEBUG "megasas: SR-IOV: Couldn't allocate" " memory for heartbeat host memory for " "scsi%d.\n", instance->host->host_no); retval = -ENOMEM; goto out; } } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.s[0] = sizeof(struct MR_CTRL_HB_HOST_MEM); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_BOTH; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = sizeof(struct MR_CTRL_HB_HOST_MEM); dcmd->opcode = MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC; dcmd->sgl.sge32[0].phys_addr = instance->hb_host_mem_h; dcmd->sgl.sge32[0].length = sizeof(struct MR_CTRL_HB_HOST_MEM); printk(KERN_WARNING "megasas: SR-IOV: Starting heartbeat for scsi%d\n", instance->host->host_no); if (!megasas_issue_polled(instance, cmd)) { retval = 0; } else { printk(KERN_WARNING "megasas: SR-IOV: MR_DCMD_CTRL_SHARED_HOST" "_MEM_ALLOC DCMD timed out for scsi%d\n", instance->host->host_no); retval = 1; goto out; } if (dcmd->cmd_status) { printk(KERN_WARNING "megasas: SR-IOV: MR_DCMD_CTRL_SHARED_HOST" "_MEM_ALLOC DCMD failed with status 0x%x for scsi%d\n", dcmd->cmd_status, instance->host->host_no); retval = 1; goto out; } out: megasas_return_cmd(instance, cmd); return retval; } /* Handler for SR-IOV heartbeat */ void megasas_sriov_heartbeat_handler(unsigned long instance_addr) { struct megasas_instance *instance = (struct megasas_instance *)instance_addr; if (instance->hb_host_mem->HB.fwCounter != instance->hb_host_mem->HB.driverCounter) { instance->hb_host_mem->HB.driverCounter = instance->hb_host_mem->HB.fwCounter; mod_timer(&instance->sriov_heartbeat_timer, jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF); } else { printk(KERN_WARNING "megasas: SR-IOV: Heartbeat never " "completed for scsi%d\n", instance->host->host_no); schedule_work(&instance->work_init); } } /** * megasas_wait_for_outstanding - Wait for all outstanding cmds * @instance: Adapter soft state * * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to * complete all its outstanding commands. Returns error if one or more IOs * are pending after this time period. It also marks the controller dead. */ static int megasas_wait_for_outstanding(struct megasas_instance *instance) { int i; u32 reset_index; u32 wait_time = MEGASAS_RESET_WAIT_TIME; u8 adprecovery; unsigned long flags; struct list_head clist_local; struct megasas_cmd *reset_cmd; u32 fw_state; u8 kill_adapter_flag; spin_lock_irqsave(&instance->hba_lock, flags); adprecovery = instance->adprecovery; spin_unlock_irqrestore(&instance->hba_lock, flags); if (adprecovery != MEGASAS_HBA_OPERATIONAL) { INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); for (i = 0; i < wait_time; i++) { msleep(1000); spin_lock_irqsave(&instance->hba_lock, flags); adprecovery = instance->adprecovery; spin_unlock_irqrestore(&instance->hba_lock, flags); if (adprecovery == MEGASAS_HBA_OPERATIONAL) break; } if (adprecovery != MEGASAS_HBA_OPERATIONAL) { printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; spin_unlock_irqrestore(&instance->hba_lock, flags); return FAILED; } reset_index = 0; while (!list_empty(&clist_local)) { reset_cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&reset_cmd->list); if (reset_cmd->scmd) { reset_cmd->scmd->result = DID_RESET << 16; printk(KERN_NOTICE "%d:%p reset [%02x]\n", reset_index, reset_cmd, reset_cmd->scmd->cmnd[0]); reset_cmd->scmd->scsi_done(reset_cmd->scmd); megasas_return_cmd(instance, reset_cmd); } else if (reset_cmd->sync_cmd) { printk(KERN_NOTICE "megasas:%p synch cmds" "reset queue\n", reset_cmd); reset_cmd->cmd_status = ENODATA; instance->instancet->fire_cmd(instance, reset_cmd->frame_phys_addr, 0, instance->reg_set); } else { printk(KERN_NOTICE "megasas: %p unexpected" "cmds lst\n", reset_cmd); } reset_index++; } return SUCCESS; } for (i = 0; i < resetwaittime; i++) { int outstanding = atomic_read(&instance->fw_outstanding); if (!outstanding) break; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: [%2d]waiting for %d " "commands to complete\n",i,outstanding); /* * Call cmd completion routine. Cmd to be * be completed directly without depending on isr. */ megasas_complete_cmd_dpc((unsigned long)instance); } msleep(1000); } i = 0; kill_adapter_flag = 0; do { fw_state = instance->instancet->read_fw_status_reg( instance->reg_set) & MFI_STATE_MASK; if ((fw_state == MFI_STATE_FAULT) && (instance->disableOnlineCtrlReset == 0)) { if (i == 3) { kill_adapter_flag = 2; break; } megasas_do_ocr(instance); kill_adapter_flag = 1; /* wait for 1 secs to let FW finish the pending cmds */ msleep(1000); } i++; } while (i <= 3); if (atomic_read(&instance->fw_outstanding) && !kill_adapter_flag) { if (instance->disableOnlineCtrlReset == 0) { megasas_do_ocr(instance); /* wait for 5 secs to let FW finish the pending cmds */ for (i = 0; i < wait_time; i++) { int outstanding = atomic_read(&instance->fw_outstanding); if (!outstanding) return SUCCESS; msleep(1000); } } } if (atomic_read(&instance->fw_outstanding) || (kill_adapter_flag == 2)) { printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); /* * Send signal to FW to stop processing any pending cmds. * The controller will be taken offline by the OS now. */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel(MFI_STOP_ADP, &instance->reg_set->doorbell); } else { writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); } megasas_dump_pending_frames(instance); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; spin_unlock_irqrestore(&instance->hba_lock, flags); return FAILED; } printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); return SUCCESS; } /** * megasas_generic_reset - Generic reset routine * @scmd: Mid-layer SCSI command * * This routine implements a generic reset handler for device, bus and host * reset requests. Device, bus and host specific reset handlers can use this * function after they do their specific tasks. */ static int megasas_generic_reset(struct scsi_cmnd *scmd) { int ret_val; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", scmd->cmnd[0], scmd->retries); if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { printk(KERN_ERR "megasas: cannot recover from previous reset " "failures\n"); return FAILED; } ret_val = megasas_wait_for_outstanding(instance); if (ret_val == SUCCESS) printk(KERN_NOTICE "megasas: reset successful \n"); else printk(KERN_ERR "megasas: failed to do reset\n"); return ret_val; } /** * megasas_reset_timer - quiesce the adapter if required * @scmd: scsi cmnd * * Sets the FW busy flag and reduces the host->can_queue if the * cmd has not been completed within the timeout period. */ static enum blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) { struct megasas_instance *instance; unsigned long flags; if (time_after(jiffies, scmd->jiffies_at_alloc + (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { return BLK_EH_NOT_HANDLED; } instance = (struct megasas_instance *)scmd->device->host->hostdata; if (!(instance->flag & MEGASAS_FW_BUSY)) { /* FW is busy, throttle IO */ spin_lock_irqsave(instance->host->host_lock, flags); instance->host->can_queue = instance->throttlequeuedepth; instance->last_time = jiffies; instance->flag |= MEGASAS_FW_BUSY; spin_unlock_irqrestore(instance->host->host_lock, flags); } return BLK_EH_RESET_TIMER; } /** * megasas_reset_device - Device reset handler entry point */ static int megasas_reset_device(struct scsi_cmnd *scmd) { int ret; /* * First wait for all commands to complete */ ret = megasas_generic_reset(scmd); return ret; } /** * megasas_reset_bus_host - Bus & host reset handler entry point */ static int megasas_reset_bus_host(struct scsi_cmnd *scmd) { int ret; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; /* * First wait for all commands to complete */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) ret = megasas_reset_fusion(scmd->device->host, 1); else ret = megasas_generic_reset(scmd); return ret; } /** * megasas_bios_param - Returns disk geometry for a disk * @sdev: device handle * @bdev: block device * @capacity: drive capacity * @geom: geometry parameters */ static int megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { int heads; int sectors; sector_t cylinders; unsigned long tmp; /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; tmp = heads * sectors; cylinders = capacity; sector_div(cylinders, tmp); /* * Handle extended translation size for logical drives > 1Gb */ if (capacity >= 0x200000) { heads = 255; sectors = 63; tmp = heads*sectors; cylinders = capacity; sector_div(cylinders, tmp); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return 0; } static void megasas_aen_polling(struct work_struct *work); /** * megasas_service_aen - Processes an event notification * @instance: Adapter soft state * @cmd: AEN command completed by the ISR * * For AEN, driver sends a command down to FW that is held by the FW till an * event occurs. When an event of interest occurs, FW completes the command * that it was previously holding. * * This routines sends SIGIO signal to processes that have registered with the * driver for AEN. */ static void megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; /* * Don't signal app if it is just an aborted previously registered aen */ if ((!cmd->abort_aen) && (instance->unload == 0)) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 1; spin_unlock_irqrestore(&poll_aen_lock, flags); wake_up(&megasas_poll_wait); kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); } else cmd->abort_aen = 0; instance->aen_cmd = NULL; if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); if ((instance->unload == 0) && ((instance->issuepend_done == 1))) { struct megasas_aen_event *ev; ev = kzalloc(sizeof(*ev), GFP_ATOMIC); if (!ev) { printk(KERN_ERR "megasas_service_aen: out of memory\n"); } else { ev->instance = instance; instance->ev = ev; INIT_DELAYED_WORK(&ev->hotplug_work, megasas_aen_polling); schedule_delayed_work(&ev->hotplug_work, 0); } } } static int megasas_change_queue_depth(struct scsi_device *sdev, int queue_depth, int reason) { if (reason != SCSI_QDEPTH_DEFAULT) return -EOPNOTSUPP; if (queue_depth > sdev->host->can_queue) queue_depth = sdev->host->can_queue; scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), queue_depth); return queue_depth; } static ssize_t megasas_fw_crash_buffer_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; int val = 0; unsigned long flags; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; spin_lock_irqsave(&instance->crashdump_lock, flags); instance->fw_crash_buffer_offset = val; spin_unlock_irqrestore(&instance->crashdump_lock, flags); return strlen(buf); } static ssize_t megasas_fw_crash_buffer_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; u32 size; unsigned long buff_addr; unsigned long dmachunk = CRASH_DMA_BUF_SIZE; unsigned long src_addr; unsigned long flags; u32 buff_offset; spin_lock_irqsave(&instance->crashdump_lock, flags); buff_offset = instance->fw_crash_buffer_offset; if (!instance->crash_dump_buf && !((instance->fw_crash_state == AVAILABLE) || (instance->fw_crash_state == COPYING))) { dev_err(&instance->pdev->dev, "Firmware crash dump is not available\n"); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return -EINVAL; } buff_addr = (unsigned long) buf; if (buff_offset > (instance->fw_crash_buffer_size * dmachunk)) { dev_err(&instance->pdev->dev, "Firmware crash dump offset is out of range\n"); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return 0; } size = (instance->fw_crash_buffer_size * dmachunk) - buff_offset; size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; src_addr = (unsigned long)instance->crash_buf[buff_offset / dmachunk] + (buff_offset % dmachunk); memcpy(buf, (void *)src_addr, size); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return size; } static ssize_t megasas_fw_crash_buffer_size_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long) ((instance->fw_crash_buffer_size) * 1024 * 1024)/PAGE_SIZE); } static ssize_t megasas_fw_crash_state_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; int val = 0; unsigned long flags; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; if ((val <= AVAILABLE || val > COPY_ERROR)) { dev_err(&instance->pdev->dev, "application updates invalid " "firmware crash state\n"); return -EINVAL; } instance->fw_crash_state = val; if ((val == COPIED) || (val == COPY_ERROR)) { spin_lock_irqsave(&instance->crashdump_lock, flags); megasas_free_host_crash_buffer(instance); spin_unlock_irqrestore(&instance->crashdump_lock, flags); if (val == COPY_ERROR) dev_info(&instance->pdev->dev, "application failed to " "copy Firmware crash dump\n"); else dev_info(&instance->pdev->dev, "Firmware crash dump " "copied successfully\n"); } return strlen(buf); } static ssize_t megasas_fw_crash_state_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", instance->fw_crash_state); } static ssize_t megasas_page_size_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long)PAGE_SIZE - 1); } static DEVICE_ATTR(fw_crash_buffer, S_IRUGO | S_IWUSR, megasas_fw_crash_buffer_show, megasas_fw_crash_buffer_store); static DEVICE_ATTR(fw_crash_buffer_size, S_IRUGO, megasas_fw_crash_buffer_size_show, NULL); static DEVICE_ATTR(fw_crash_state, S_IRUGO | S_IWUSR, megasas_fw_crash_state_show, megasas_fw_crash_state_store); static DEVICE_ATTR(page_size, S_IRUGO, megasas_page_size_show, NULL); struct device_attribute *megaraid_host_attrs[] = { &dev_attr_fw_crash_buffer_size, &dev_attr_fw_crash_buffer, &dev_attr_fw_crash_state, &dev_attr_page_size, NULL, }; /* * Scsi host template for megaraid_sas driver */ static struct scsi_host_template megasas_template = { .module = THIS_MODULE, .name = "LSI SAS based MegaRAID driver", .proc_name = "megaraid_sas", .slave_configure = megasas_slave_configure, .slave_alloc = megasas_slave_alloc, .queuecommand = megasas_queue_command, .eh_device_reset_handler = megasas_reset_device, .eh_bus_reset_handler = megasas_reset_bus_host, .eh_host_reset_handler = megasas_reset_bus_host, .eh_timed_out = megasas_reset_timer, .shost_attrs = megaraid_host_attrs, .bios_param = megasas_bios_param, .use_clustering = ENABLE_CLUSTERING, .change_queue_depth = megasas_change_queue_depth, .no_write_same = 1, }; /** * megasas_complete_int_cmd - Completes an internal command * @instance: Adapter soft state * @cmd: Command to be completed * * The megasas_issue_blocked_cmd() function waits for a command to complete * after it issues a command. This function wakes up that waiting routine by * calling wake_up() on the wait queue. */ static void megasas_complete_int_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { cmd->cmd_status = cmd->frame->io.cmd_status; if (cmd->cmd_status == ENODATA) { cmd->cmd_status = 0; } wake_up(&instance->int_cmd_wait_q); } /** * megasas_complete_abort - Completes aborting a command * @instance: Adapter soft state * @cmd: Cmd that was issued to abort another cmd * * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q * after it issues an abort on a previously issued command. This function * wakes up all functions waiting on the same wait queue. */ static void megasas_complete_abort(struct megasas_instance *instance, struct megasas_cmd *cmd) { if (cmd->sync_cmd) { cmd->sync_cmd = 0; cmd->cmd_status = 0; wake_up(&instance->abort_cmd_wait_q); } return; } /** * megasas_complete_cmd - Completes a command * @instance: Adapter soft state * @cmd: Command to be completed * @alt_status: If non-zero, use this value as status to * SCSI mid-layer instead of the value returned * by the FW. This should be used if caller wants * an alternate status (as in the case of aborted * commands) */ void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status) { int exception = 0; struct megasas_header *hdr = &cmd->frame->hdr; unsigned long flags; struct fusion_context *fusion = instance->ctrl_context; u32 opcode; /* flag for the retry reset */ cmd->retry_for_fw_reset = 0; if (cmd->scmd) cmd->scmd->SCp.ptr = NULL; switch (hdr->cmd) { case MFI_CMD_INVALID: /* Some older 1068 controller FW may keep a pended MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel when booting the kdump kernel. Ignore this command to prevent a kernel panic on shutdown of the kdump kernel. */ printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command " "completed.\n"); printk(KERN_WARNING "megaraid_sas: If you have a controller " "other than PERC5, please upgrade your firmware.\n"); break; case MFI_CMD_PD_SCSI_IO: case MFI_CMD_LD_SCSI_IO: /* * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been * issued either through an IO path or an IOCTL path. If it * was via IOCTL, we will send it to internal completion. */ if (cmd->sync_cmd) { cmd->sync_cmd = 0; megasas_complete_int_cmd(instance, cmd); break; } case MFI_CMD_LD_READ: case MFI_CMD_LD_WRITE: if (alt_status) { cmd->scmd->result = alt_status << 16; exception = 1; } if (exception) { atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); cmd->scmd->scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; } switch (hdr->cmd_status) { case MFI_STAT_OK: cmd->scmd->result = DID_OK << 16; break; case MFI_STAT_SCSI_IO_FAILED: case MFI_STAT_LD_INIT_IN_PROGRESS: cmd->scmd->result = (DID_ERROR << 16) | hdr->scsi_status; break; case MFI_STAT_SCSI_DONE_WITH_ERROR: cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { memset(cmd->scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(cmd->scmd->sense_buffer, cmd->sense, hdr->sense_len); cmd->scmd->result |= DRIVER_SENSE << 24; } break; case MFI_STAT_LD_OFFLINE: case MFI_STAT_DEVICE_NOT_FOUND: cmd->scmd->result = DID_BAD_TARGET << 16; break; default: printk(KERN_DEBUG "megasas: MFI FW status %#x\n", hdr->cmd_status); cmd->scmd->result = DID_ERROR << 16; break; } atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); cmd->scmd->scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; case MFI_CMD_SMP: case MFI_CMD_STP: case MFI_CMD_DCMD: opcode = le32_to_cpu(cmd->frame->dcmd.opcode); /* Check for LD map update */ if ((opcode == MR_DCMD_LD_MAP_GET_INFO) && (cmd->frame->dcmd.mbox.b[1] == 1)) { fusion->fast_path_io = 0; spin_lock_irqsave(instance->host->host_lock, flags); if (cmd->frame->hdr.cmd_status != 0) { if (cmd->frame->hdr.cmd_status != MFI_STAT_NOT_FOUND) printk(KERN_WARNING "megasas: map sync" "failed, status = 0x%x.\n", cmd->frame->hdr.cmd_status); else { megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); spin_unlock_irqrestore( instance->host->host_lock, flags); break; } } else instance->map_id++; megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); /* * Set fast path IO to ZERO. * Validate Map will set proper value. * Meanwhile all IOs will go as LD IO. */ if (MR_ValidateMapInfo(instance)) fusion->fast_path_io = 1; else fusion->fast_path_io = 0; megasas_sync_map_info(instance); spin_unlock_irqrestore(instance->host->host_lock, flags); break; } if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO || opcode == MR_DCMD_CTRL_EVENT_GET) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); } /* * See if got an event notification */ if (opcode == MR_DCMD_CTRL_EVENT_WAIT) megasas_service_aen(instance, cmd); else megasas_complete_int_cmd(instance, cmd); break; case MFI_CMD_ABORT: /* * Cmd issued to abort another cmd returned */ megasas_complete_abort(instance, cmd); break; default: printk("megasas: Unknown command completed! [0x%X]\n", hdr->cmd); break; } } /** * megasas_issue_pending_cmds_again - issue all pending cmds * in FW again because of the fw reset * @instance: Adapter soft state */ static inline void megasas_issue_pending_cmds_again(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct list_head clist_local; union megasas_evt_class_locale class_locale; unsigned long flags; u32 seq_num; INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); while (!list_empty(&clist_local)) { cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&cmd->list); if (cmd->sync_cmd || cmd->scmd) { printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" "detected to be pending while HBA reset.\n", cmd, cmd->scmd, cmd->sync_cmd); cmd->retry_for_fw_reset++; if (cmd->retry_for_fw_reset == 3) { printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" "was tried multiple times during reset." "Shutting down the HBA\n", cmd, cmd->scmd, cmd->sync_cmd); megaraid_sas_kill_hba(instance); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; return; } } if (cmd->sync_cmd == 1) { if (cmd->scmd) { printk(KERN_NOTICE "megaraid_sas: unexpected" "cmd attached to internal command!\n"); } printk(KERN_NOTICE "megasas: %p synchronous cmd" "on the internal reset queue," "issue it again.\n", cmd); cmd->cmd_status = ENODATA; instance->instancet->fire_cmd(instance, cmd->frame_phys_addr , 0, instance->reg_set); } else if (cmd->scmd) { printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]" "detected on the internal queue, issue again.\n", cmd, cmd->scmd->cmnd[0]); atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); } else { printk(KERN_NOTICE "megasas: %p unexpected cmd on the" "internal reset defer list while re-issue!!\n", cmd); } } if (instance->aen_cmd) { printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); megasas_return_cmd(instance, instance->aen_cmd); instance->aen_cmd = NULL; } /* * Initiate AEN (Asynchronous Event Notification) */ seq_num = instance->last_seq_num; class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; megasas_register_aen(instance, seq_num, class_locale.word); } /** * Move the internal reset pending commands to a deferred queue. * * We move the commands pending at internal reset time to a * pending queue. This queue would be flushed after successful * completion of the internal reset sequence. if the internal reset * did not complete in time, the kernel reset handler would flush * these commands. **/ static void megasas_internal_reset_defer_cmds(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i; u32 max_cmd = instance->max_fw_cmds; u32 defer_index; unsigned long flags; defer_index = 0; spin_lock_irqsave(&instance->mfi_pool_lock, flags); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->sync_cmd == 1 || cmd->scmd) { printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" "on the defer queue as internal\n", defer_index, cmd, cmd->sync_cmd, cmd->scmd); if (!list_empty(&cmd->list)) { printk(KERN_NOTICE "megaraid_sas: ERROR while" " moving this cmd:%p, %d %p, it was" "discovered on some list?\n", cmd, cmd->sync_cmd, cmd->scmd); list_del_init(&cmd->list); } defer_index++; list_add_tail(&cmd->list, &instance->internal_reset_pending_q); } } spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); } static void process_fw_state_change_wq(struct work_struct *work) { struct megasas_instance *instance = container_of(work, struct megasas_instance, work_init); u32 wait; unsigned long flags; if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", instance->adprecovery); return ; } if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" "state, restarting it...\n"); instance->instancet->disable_intr(instance); atomic_set(&instance->fw_outstanding, 0); atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset(instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0 ); printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," "initiating next stage...\n"); printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," "state 2 starting...\n"); /*waitting for about 20 second before start the second init*/ for (wait = 0; wait < 30; wait++) { msleep(1000); } if (megasas_transition_to_ready(instance, 1)) { printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); megaraid_sas_kill_hba(instance); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; return ; } if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) ) { *instance->consumer = *instance->producer; } else { *instance->consumer = 0; *instance->producer = 0; } megasas_issue_init_mfi(instance); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HBA_OPERATIONAL; spin_unlock_irqrestore(&instance->hba_lock, flags); instance->instancet->enable_intr(instance); megasas_issue_pending_cmds_again(instance); instance->issuepend_done = 1; } return ; } /** * megasas_deplete_reply_queue - Processes all completed commands * @instance: Adapter soft state * @alt_status: Alternate status to be returned to * SCSI mid-layer instead of the status * returned by the FW * Note: this must be called with hba lock held */ static int megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status) { u32 mfiStatus; u32 fw_state; if ((mfiStatus = instance->instancet->check_reset(instance, instance->reg_set)) == 1) { return IRQ_HANDLED; } if ((mfiStatus = instance->instancet->clear_intr( instance->reg_set) ) == 0) { /* Hardware may not set outbound_intr_status in MSI-X mode */ if (!instance->msix_vectors) return IRQ_NONE; } instance->mfiStatus = mfiStatus; if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { fw_state = instance->instancet->read_fw_status_reg( instance->reg_set) & MFI_STATE_MASK; if (fw_state != MFI_STATE_FAULT) { printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", fw_state); } if ((fw_state == MFI_STATE_FAULT) && (instance->disableOnlineCtrlReset == 0)) { printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); } instance->instancet->disable_intr(instance); instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; instance->issuepend_done = 0; atomic_set(&instance->fw_outstanding, 0); megasas_internal_reset_defer_cmds(instance); printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", fw_state, instance->adprecovery); schedule_work(&instance->work_init); return IRQ_HANDLED; } else { printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", fw_state, instance->disableOnlineCtrlReset); } } tasklet_schedule(&instance->isr_tasklet); return IRQ_HANDLED; } /** * megasas_isr - isr entry point */ static irqreturn_t megasas_isr(int irq, void *devp) { struct megasas_irq_context *irq_context = devp; struct megasas_instance *instance = irq_context->instance; unsigned long flags; irqreturn_t rc; if (atomic_read(&instance->fw_reset_no_pci_access)) return IRQ_HANDLED; spin_lock_irqsave(&instance->hba_lock, flags); rc = megasas_deplete_reply_queue(instance, DID_OK); spin_unlock_irqrestore(&instance->hba_lock, flags); return rc; } /** * megasas_transition_to_ready - Move the FW to READY state * @instance: Adapter soft state * * During the initialization, FW passes can potentially be in any one of * several possible states. If the FW in operational, waiting-for-handshake * states, driver must take steps to bring it to ready state. Otherwise, it * has to wait for the ready state. */ int megasas_transition_to_ready(struct megasas_instance *instance, int ocr) { int i; u8 max_wait; u32 fw_state; u32 cur_state; u32 abs_state, curr_abs_state; abs_state = instance->instancet->read_fw_status_reg(instance->reg_set); fw_state = abs_state & MFI_STATE_MASK; if (fw_state != MFI_STATE_READY) printk(KERN_INFO "megasas: Waiting for FW to come to ready" " state\n"); while (fw_state != MFI_STATE_READY) { switch (fw_state) { case MFI_STATE_FAULT: printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); if (ocr) { max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FAULT; break; } else return -ENODEV; case MFI_STATE_WAIT_HANDSHAKE: /* * Set the CLR bit in inbound doorbell */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->doorbell); } else { writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); } max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_WAIT_HANDSHAKE; break; case MFI_STATE_BOOT_MESSAGE_PENDING: if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { writel(MFI_INIT_HOTPLUG, &instance->reg_set->doorbell); } else writel(MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; break; case MFI_STATE_OPERATIONAL: /* * Bring it to READY state; assuming max wait 10 secs */ instance->instancet->disable_intr(instance); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { writel(MFI_RESET_FLAGS, &instance->reg_set->doorbell); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { for (i = 0; i < (10 * 1000); i += 20) { if (readl( &instance-> reg_set-> doorbell) & 1) msleep(20); else break; } } } else writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_OPERATIONAL; break; case MFI_STATE_UNDEFINED: /* * This state should not last for more than 2 seconds */ max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_UNDEFINED; break; case MFI_STATE_BB_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_BB_INIT; break; case MFI_STATE_FW_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FW_INIT; break; case MFI_STATE_FW_INIT_2: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FW_INIT_2; break; case MFI_STATE_DEVICE_SCAN: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_DEVICE_SCAN; break; case MFI_STATE_FLUSH_CACHE: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FLUSH_CACHE; break; default: printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", fw_state); return -ENODEV; } /* * The cur_state should not last for more than max_wait secs */ for (i = 0; i < (max_wait * 1000); i++) { curr_abs_state = instance->instancet-> read_fw_status_reg(instance->reg_set); if (abs_state == curr_abs_state) { msleep(1); } else break; } /* * Return error if fw_state hasn't changed after max_wait */ if (curr_abs_state == abs_state) { printk(KERN_DEBUG "FW state [%d] hasn't changed " "in %d secs\n", fw_state, max_wait); return -ENODEV; } abs_state = curr_abs_state; fw_state = curr_abs_state & MFI_STATE_MASK; } printk(KERN_INFO "megasas: FW now in Ready state\n"); return 0; } /** * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool * @instance: Adapter soft state */ static void megasas_teardown_frame_pool(struct megasas_instance *instance) { int i; u32 max_cmd = instance->max_mfi_cmds; struct megasas_cmd *cmd; if (!instance->frame_dma_pool) return; /* * Return all frames to pool */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->frame) pci_pool_free(instance->frame_dma_pool, cmd->frame, cmd->frame_phys_addr); if (cmd->sense) pci_pool_free(instance->sense_dma_pool, cmd->sense, cmd->sense_phys_addr); } /* * Now destroy the pool itself */ pci_pool_destroy(instance->frame_dma_pool); pci_pool_destroy(instance->sense_dma_pool); instance->frame_dma_pool = NULL; instance->sense_dma_pool = NULL; } /** * megasas_create_frame_pool - Creates DMA pool for cmd frames * @instance: Adapter soft state * * Each command packet has an embedded DMA memory buffer that is used for * filling MFI frame and the SG list that immediately follows the frame. This * function creates those DMA memory buffers for each command packet by using * PCI pool facility. */ static int megasas_create_frame_pool(struct megasas_instance *instance) { int i; u32 max_cmd; u32 sge_sz; u32 sgl_sz; u32 total_sz; u32 frame_count; struct megasas_cmd *cmd; max_cmd = instance->max_mfi_cmds; /* * Size of our frame is 64 bytes for MFI frame, followed by max SG * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer */ sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : sizeof(struct megasas_sge32); if (instance->flag_ieee) { sge_sz = sizeof(struct megasas_sge_skinny); } /* * Calculated the number of 64byte frames required for SGL */ sgl_sz = sge_sz * instance->max_num_sge; frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; frame_count = 15; /* * We need one extra frame for the MFI command */ frame_count++; total_sz = MEGAMFI_FRAME_SIZE * frame_count; /* * Use DMA pool facility provided by PCI layer */ instance->frame_dma_pool = pci_pool_create("megasas frame pool", instance->pdev, total_sz, 64, 0); if (!instance->frame_dma_pool) { printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); return -ENOMEM; } instance->sense_dma_pool = pci_pool_create("megasas sense pool", instance->pdev, 128, 4, 0); if (!instance->sense_dma_pool) { printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); pci_pool_destroy(instance->frame_dma_pool); instance->frame_dma_pool = NULL; return -ENOMEM; } /* * Allocate and attach a frame to each of the commands in cmd_list. * By making cmd->index as the context instead of the &cmd, we can * always use 32bit context regardless of the architecture */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; cmd->frame = pci_pool_alloc(instance->frame_dma_pool, GFP_KERNEL, &cmd->frame_phys_addr); cmd->sense = pci_pool_alloc(instance->sense_dma_pool, GFP_KERNEL, &cmd->sense_phys_addr); /* * megasas_teardown_frame_pool() takes care of freeing * whatever has been allocated */ if (!cmd->frame || !cmd->sense) { printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); megasas_teardown_frame_pool(instance); return -ENOMEM; } memset(cmd->frame, 0, total_sz); cmd->frame->io.context = cpu_to_le32(cmd->index); cmd->frame->io.pad_0 = 0; if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) && (instance->pdev->device != PCI_DEVICE_ID_LSI_PLASMA) && (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) && (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) && (reset_devices)) cmd->frame->hdr.cmd = MFI_CMD_INVALID; } return 0; } /** * megasas_free_cmds - Free all the cmds in the free cmd pool * @instance: Adapter soft state */ void megasas_free_cmds(struct megasas_instance *instance) { int i; /* First free the MFI frame pool */ megasas_teardown_frame_pool(instance); /* Free all the commands in the cmd_list */ for (i = 0; i < instance->max_mfi_cmds; i++) kfree(instance->cmd_list[i]); /* Free the cmd_list buffer itself */ kfree(instance->cmd_list); instance->cmd_list = NULL; INIT_LIST_HEAD(&instance->cmd_pool); } /** * megasas_alloc_cmds - Allocates the command packets * @instance: Adapter soft state * * Each command that is issued to the FW, whether IO commands from the OS or * internal commands like IOCTLs, are wrapped in local data structure called * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to * the FW. * * Each frame has a 32-bit field called context (tag). This context is used * to get back the megasas_cmd from the frame when a frame gets completed in * the ISR. Typically the address of the megasas_cmd itself would be used as * the context. But we wanted to keep the differences between 32 and 64 bit * systems to the mininum. We always use 32 bit integers for the context. In * this driver, the 32 bit values are the indices into an array cmd_list. * This array is used only to look up the megasas_cmd given the context. The * free commands themselves are maintained in a linked list called cmd_pool. */ int megasas_alloc_cmds(struct megasas_instance *instance) { int i; int j; u32 max_cmd; struct megasas_cmd *cmd; struct fusion_context *fusion; fusion = instance->ctrl_context; max_cmd = instance->max_mfi_cmds; /* * instance->cmd_list is an array of struct megasas_cmd pointers. * Allocate the dynamic array first and then allocate individual * commands. */ instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); if (!instance->cmd_list) { printk(KERN_DEBUG "megasas: out of memory\n"); return -ENOMEM; } memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd); for (i = 0; i < max_cmd; i++) { instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), GFP_KERNEL); if (!instance->cmd_list[i]) { for (j = 0; j < i; j++) kfree(instance->cmd_list[j]); kfree(instance->cmd_list); instance->cmd_list = NULL; return -ENOMEM; } } for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; memset(cmd, 0, sizeof(struct megasas_cmd)); cmd->index = i; atomic_set(&cmd->mfi_mpt_pthr, MFI_LIST_ADDED); cmd->scmd = NULL; cmd->instance = instance; list_add_tail(&cmd->list, &instance->cmd_pool); } /* * Create a frame pool and assign one frame to each cmd */ if (megasas_create_frame_pool(instance)) { printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); megasas_free_cmds(instance); } return 0; } /* * megasas_get_pd_list_info - Returns FW's pd_list structure * @instance: Adapter soft state * @pd_list: pd_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_pd_list(struct megasas_instance *instance) { int ret = 0, pd_index = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_PD_LIST *ci; struct MR_PD_ADDRESS *pd_addr; dma_addr_t ci_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; dcmd->mbox.b[1] = 0; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); if (instance->ctrl_context && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_BLOCKED_CMD_TIMEOUT); else ret = megasas_issue_polled(instance, cmd); /* * the following function will get the instance PD LIST. */ pd_addr = ci->addr; if ( ret == 0 && (le32_to_cpu(ci->count) < (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { memset(instance->local_pd_list, 0, MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) { instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid = le16_to_cpu(pd_addr->deviceId); instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType = pd_addr->scsiDevType; instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState = MR_PD_STATE_SYSTEM; pd_addr++; } memcpy(instance->pd_list, instance->local_pd_list, sizeof(instance->pd_list)); } pci_free_consistent(instance->pdev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), ci, ci_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return ret; } /* * megasas_get_ld_list_info - Returns FW's ld_list structure * @instance: Adapter soft state * @ld_list: ld_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_ld_list(struct megasas_instance *instance) { int ret = 0, ld_index = 0, ids = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_LIST *ci; dma_addr_t ci_h = 0; u32 ld_count; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, sizeof(struct MR_LD_LIST), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); if (instance->supportmax256vd) dcmd->mbox.b[0] = 1; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST)); dcmd->pad_0 = 0; if (instance->ctrl_context && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_BLOCKED_CMD_TIMEOUT); else ret = megasas_issue_polled(instance, cmd); ld_count = le32_to_cpu(ci->ldCount); /* the following function will get the instance PD LIST */ if ((ret == 0) && (ld_count <= instance->fw_supported_vd_count)) { memset(instance->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT); for (ld_index = 0; ld_index < ld_count; ld_index++) { if (ci->ldList[ld_index].state != 0) { ids = ci->ldList[ld_index].ref.targetId; instance->ld_ids[ids] = ci->ldList[ld_index].ref.targetId; } } } pci_free_consistent(instance->pdev, sizeof(struct MR_LD_LIST), ci, ci_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return ret; } /** * megasas_ld_list_query - Returns FW's ld_list structure * @instance: Adapter soft state * @ld_list: ld_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_ld_list_query(struct megasas_instance *instance, u8 query_type) { int ret = 0, ld_index = 0, ids = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_TARGETID_LIST *ci; dma_addr_t ci_h = 0; u32 tgtid_count; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_WARNING "megasas:(megasas_ld_list_query): Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST), &ci_h); if (!ci) { printk(KERN_WARNING "megasas: Failed to alloc mem for ld_list_query\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = query_type; if (instance->supportmax256vd) dcmd->mbox.b[2] = 1; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); dcmd->pad_0 = 0; if (instance->ctrl_context && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_BLOCKED_CMD_TIMEOUT); else ret = megasas_issue_polled(instance, cmd); tgtid_count = le32_to_cpu(ci->count); if ((ret == 0) && (tgtid_count <= (instance->fw_supported_vd_count))) { memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); for (ld_index = 0; ld_index < tgtid_count; ld_index++) { ids = ci->targetId[ld_index]; instance->ld_ids[ids] = ci->targetId[ld_index]; } } pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST), ci, ci_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return ret; } /** * megasas_get_controller_info - Returns FW's controller structure * @instance: Adapter soft state * @ctrl_info: Controller information structure * * Issues an internal command (DCMD) to get the FW's controller structure. * This information is mainly used to find out the maximum IO transfer per * command supported by the FW. */ int megasas_get_ctrl_info(struct megasas_instance *instance, struct megasas_ctrl_info *ctrl_info) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_ctrl_info *ci; dma_addr_t ci_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h); dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info)); dcmd->mbox.b[0] = 1; if (instance->ctrl_context && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_BLOCKED_CMD_TIMEOUT); else ret = megasas_issue_polled(instance, cmd); if (!ret) memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), ci, ci_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return ret; } /* * megasas_set_crash_dump_params - Sends address of crash dump DMA buffer * to firmware * * @instance: Adapter soft state * @crash_buf_state - tell FW to turn ON/OFF crash dump feature MR_CRASH_BUF_TURN_OFF = 0 MR_CRASH_BUF_TURN_ON = 1 * @return 0 on success non-zero on failure. * Issues an internal command (DCMD) to set parameters for crash dump feature. * Driver will send address of crash dump DMA buffer and set mbox to tell FW * that driver supports crash dump feature. This DCMD will be sent only if * crash dump feature is supported by the FW. * */ int megasas_set_crash_dump_params(struct megasas_instance *instance, u8 crash_buf_state) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; cmd = megasas_get_cmd(instance); if (!cmd) { dev_err(&instance->pdev->dev, "Failed to get a free cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = crash_buf_state; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(CRASH_DMA_BUF_SIZE); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SET_CRASH_DUMP_PARAMS); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->crash_dump_h); dcmd->sgl.sge32[0].length = cpu_to_le32(CRASH_DMA_BUF_SIZE); if (instance->ctrl_context && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_BLOCKED_CMD_TIMEOUT); else ret = megasas_issue_polled(instance, cmd); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return ret; } /** * megasas_issue_init_mfi - Initializes the FW * @instance: Adapter soft state * * Issues the INIT MFI cmd */ static int megasas_issue_init_mfi(struct megasas_instance *instance) { u32 context; struct megasas_cmd *cmd; struct megasas_init_frame *init_frame; struct megasas_init_queue_info *initq_info; dma_addr_t init_frame_h; dma_addr_t initq_info_h; /* * Prepare a init frame. Note the init frame points to queue info * structure. Each frame has SGL allocated after first 64 bytes. For * this frame - since we don't need any SGL - we use SGL's space as * queue info structure * * We will not get a NULL command below. We just created the pool. */ cmd = megasas_get_cmd(instance); init_frame = (struct megasas_init_frame *)cmd->frame; initq_info = (struct megasas_init_queue_info *) ((unsigned long)init_frame + 64); init_frame_h = cmd->frame_phys_addr; initq_info_h = init_frame_h + 64; context = init_frame->context; memset(init_frame, 0, MEGAMFI_FRAME_SIZE); memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); init_frame->context = context; initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1); initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h); initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h); initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h); init_frame->cmd = MFI_CMD_INIT; init_frame->cmd_status = 0xFF; init_frame->queue_info_new_phys_addr_lo = cpu_to_le32(lower_32_bits(initq_info_h)); init_frame->queue_info_new_phys_addr_hi = cpu_to_le32(upper_32_bits(initq_info_h)); init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info)); /* * disable the intr before firing the init frame to FW */ instance->instancet->disable_intr(instance); /* * Issue the init frame in polled mode */ if (megasas_issue_polled(instance, cmd)) { printk(KERN_ERR "megasas: Failed to init firmware\n"); megasas_return_cmd(instance, cmd); goto fail_fw_init; } megasas_return_cmd(instance, cmd); return 0; fail_fw_init: return -EINVAL; } static u32 megasas_init_adapter_mfi(struct megasas_instance *instance) { struct megasas_register_set __iomem *reg_set; u32 context_sz; u32 reply_q_sz; reg_set = instance->reg_set; /* * Get various operational parameters from status register */ instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; /* * Reduce the max supported cmds by 1. This is to ensure that the * reply_q_sz (1 more than the max cmd that driver may send) * does not exceed max cmds that the FW can support */ instance->max_fw_cmds = instance->max_fw_cmds-1; instance->max_mfi_cmds = instance->max_fw_cmds; instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 0x10; /* * Create a pool of commands */ if (megasas_alloc_cmds(instance)) goto fail_alloc_cmds; /* * Allocate memory for reply queue. Length of reply queue should * be _one_ more than the maximum commands handled by the firmware. * * Note: When FW completes commands, it places corresponding contex * values in this circular reply queue. This circular queue is a fairly * typical producer-consumer queue. FW is the producer (of completed * commands) and the driver is the consumer. */ context_sz = sizeof(u32); reply_q_sz = context_sz * (instance->max_fw_cmds + 1); instance->reply_queue = pci_alloc_consistent(instance->pdev, reply_q_sz, &instance->reply_queue_h); if (!instance->reply_queue) { printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); goto fail_reply_queue; } if (megasas_issue_init_mfi(instance)) goto fail_fw_init; if (megasas_get_ctrl_info(instance, instance->ctrl_info)) { dev_err(&instance->pdev->dev, "(%d): Could get controller info " "Fail from %s %d\n", instance->unique_id, __func__, __LINE__); goto fail_fw_init; } instance->fw_support_ieee = 0; instance->fw_support_ieee = (instance->instancet->read_fw_status_reg(reg_set) & 0x04000000); printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", instance->fw_support_ieee); if (instance->fw_support_ieee) instance->flag_ieee = 1; return 0; fail_fw_init: pci_free_consistent(instance->pdev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); fail_reply_queue: megasas_free_cmds(instance); fail_alloc_cmds: return 1; } /** * megasas_init_fw - Initializes the FW * @instance: Adapter soft state * * This is the main function for initializing firmware */ static int megasas_init_fw(struct megasas_instance *instance) { u32 max_sectors_1; u32 max_sectors_2; u32 tmp_sectors, msix_enable, scratch_pad_2; resource_size_t base_addr; struct megasas_register_set __iomem *reg_set; struct megasas_ctrl_info *ctrl_info = NULL; unsigned long bar_list; int i, loop, fw_msix_count = 0; struct IOV_111 *iovPtr; /* Find first memory bar */ bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); instance->bar = find_first_bit(&bar_list, sizeof(unsigned long)); if (pci_request_selected_regions(instance->pdev, instance->bar, "megasas: LSI")) { printk(KERN_DEBUG "megasas: IO memory region busy!\n"); return -EBUSY; } base_addr = pci_resource_start(instance->pdev, instance->bar); instance->reg_set = ioremap_nocache(base_addr, 8192); if (!instance->reg_set) { printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); goto fail_ioremap; } reg_set = instance->reg_set; switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_FUSION: case PCI_DEVICE_ID_LSI_PLASMA: case PCI_DEVICE_ID_LSI_INVADER: case PCI_DEVICE_ID_LSI_FURY: instance->instancet = &megasas_instance_template_fusion; break; case PCI_DEVICE_ID_LSI_SAS1078R: case PCI_DEVICE_ID_LSI_SAS1078DE: instance->instancet = &megasas_instance_template_ppc; break; case PCI_DEVICE_ID_LSI_SAS1078GEN2: case PCI_DEVICE_ID_LSI_SAS0079GEN2: instance->instancet = &megasas_instance_template_gen2; break; case PCI_DEVICE_ID_LSI_SAS0073SKINNY: case PCI_DEVICE_ID_LSI_SAS0071SKINNY: instance->instancet = &megasas_instance_template_skinny; break; case PCI_DEVICE_ID_LSI_SAS1064R: case PCI_DEVICE_ID_DELL_PERC5: default: instance->instancet = &megasas_instance_template_xscale; break; } if (megasas_transition_to_ready(instance, 0)) { atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset (instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0); dev_info(&instance->pdev->dev, "megasas: FW restarted successfully from %s!\n", __func__); /*waitting for about 30 second before retry*/ ssleep(30); if (megasas_transition_to_ready(instance, 0)) goto fail_ready_state; } /* * MSI-X host index 0 is common for all adapter. * It is used for all MPT based Adapters. */ instance->reply_post_host_index_addr[0] = (u32 *)((u8 *)instance->reg_set + MPI2_REPLY_POST_HOST_INDEX_OFFSET); /* Check if MSI-X is supported while in ready state */ msix_enable = (instance->instancet->read_fw_status_reg(reg_set) & 0x4000000) >> 0x1a; if (msix_enable && !msix_disable) { scratch_pad_2 = readl (&instance->reg_set->outbound_scratch_pad_2); /* Check max MSI-X vectors */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA)) { instance->msix_vectors = (scratch_pad_2 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; fw_msix_count = instance->msix_vectors; if (msix_vectors) instance->msix_vectors = min(msix_vectors, instance->msix_vectors); } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { /* Invader/Fury supports more than 8 MSI-X */ instance->msix_vectors = ((scratch_pad_2 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; fw_msix_count = instance->msix_vectors; /* Save 1-15 reply post index address to local memory * Index 0 is already saved from reg offset * MPI2_REPLY_POST_HOST_INDEX_OFFSET */ for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { instance->reply_post_host_index_addr[loop] = (u32 *)((u8 *)instance->reg_set + MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET + (loop * 0x10)); } if (msix_vectors) instance->msix_vectors = min(msix_vectors, instance->msix_vectors); } else instance->msix_vectors = 1; /* Don't bother allocating more MSI-X vectors than cpus */ instance->msix_vectors = min(instance->msix_vectors, (unsigned int)num_online_cpus()); for (i = 0; i < instance->msix_vectors; i++) instance->msixentry[i].entry = i; i = pci_enable_msix_range(instance->pdev, instance->msixentry, 1, instance->msix_vectors); if (i) instance->msix_vectors = i; else instance->msix_vectors = 0; dev_info(&instance->pdev->dev, "[scsi%d]: FW supports" "<%d> MSIX vector,Online CPUs: <%d>," "Current MSIX <%d>\n", instance->host->host_no, fw_msix_count, (unsigned int)num_online_cpus(), instance->msix_vectors); } instance->ctrl_info = kzalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); if (instance->ctrl_info == NULL) goto fail_init_adapter; /* * Below are default value for legacy Firmware. * non-fusion based controllers */ instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES; instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES; /* Get operational params, sge flags, send init cmd to controller */ if (instance->instancet->init_adapter(instance)) goto fail_init_adapter; printk(KERN_ERR "megasas: INIT adapter done\n"); /** for passthrough * the following function will get the PD LIST. */ memset(instance->pd_list, 0 , (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); if (megasas_get_pd_list(instance) < 0) { printk(KERN_ERR "megasas: failed to get PD list\n"); goto fail_init_adapter; } memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); if (megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) megasas_get_ld_list(instance); /* * Compute the max allowed sectors per IO: The controller info has two * limits on max sectors. Driver should use the minimum of these two. * * 1 << stripe_sz_ops.min = max sectors per strip * * Note that older firmwares ( < FW ver 30) didn't report information * to calculate max_sectors_1. So the number ended up as zero always. */ tmp_sectors = 0; ctrl_info = instance->ctrl_info; max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * le16_to_cpu(ctrl_info->max_strips_per_io); max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size); tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); /*Check whether controller is iMR or MR */ if (ctrl_info->memory_size) { instance->is_imr = 0; dev_info(&instance->pdev->dev, "Controller type: MR," "Memory size is: %dMB\n", le16_to_cpu(ctrl_info->memory_size)); } else { instance->is_imr = 1; dev_info(&instance->pdev->dev, "Controller type: iMR\n"); } /* OnOffProperties are converted into CPU arch*/ le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties); instance->disableOnlineCtrlReset = ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; /* adapterOperations2 are converted into CPU arch*/ le32_to_cpus((u32 *)&ctrl_info->adapterOperations2); instance->mpio = ctrl_info->adapterOperations2.mpio; instance->UnevenSpanSupport = ctrl_info->adapterOperations2.supportUnevenSpans; if (instance->UnevenSpanSupport) { struct fusion_context *fusion = instance->ctrl_context; dev_info(&instance->pdev->dev, "FW supports: " "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport); if (MR_ValidateMapInfo(instance)) fusion->fast_path_io = 1; else fusion->fast_path_io = 0; } if (ctrl_info->host_interface.SRIOV) { if (!ctrl_info->adapterOperations2.activePassive) instance->PlasmaFW111 = 1; if (!instance->PlasmaFW111) instance->requestorId = ctrl_info->iov.requestorId; else { iovPtr = (struct IOV_111 *)((unsigned char *)ctrl_info + IOV_111_OFFSET); instance->requestorId = iovPtr->requestorId; } dev_warn(&instance->pdev->dev, "I am VF " "requestorId %d\n", instance->requestorId); } le32_to_cpus((u32 *)&ctrl_info->adapterOperations3); instance->crash_dump_fw_support = ctrl_info->adapterOperations3.supportCrashDump; instance->crash_dump_drv_support = (instance->crash_dump_fw_support && instance->crash_dump_buf); if (instance->crash_dump_drv_support) { dev_info(&instance->pdev->dev, "Firmware Crash dump " "feature is supported\n"); megasas_set_crash_dump_params(instance, MR_CRASH_BUF_TURN_OFF); } else { if (instance->crash_dump_buf) pci_free_consistent(instance->pdev, CRASH_DMA_BUF_SIZE, instance->crash_dump_buf, instance->crash_dump_h); instance->crash_dump_buf = NULL; } instance->max_sectors_per_req = instance->max_num_sge * PAGE_SIZE / 512; if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) instance->max_sectors_per_req = tmp_sectors; kfree(ctrl_info); /* Check for valid throttlequeuedepth module parameter */ if (instance->is_imr) { if (throttlequeuedepth > (instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS)) instance->throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; else instance->throttlequeuedepth = throttlequeuedepth; } else { if (throttlequeuedepth > (instance->max_fw_cmds - MEGASAS_INT_CMDS)) instance->throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; else instance->throttlequeuedepth = throttlequeuedepth; } /* * Setup tasklet for cmd completion */ tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, (unsigned long)instance); /* Launch SR-IOV heartbeat timer */ if (instance->requestorId) { if (!megasas_sriov_start_heartbeat(instance, 1)) megasas_start_timer(instance, &instance->sriov_heartbeat_timer, megasas_sriov_heartbeat_handler, MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF); else instance->skip_heartbeat_timer_del = 1; } return 0; fail_init_adapter: fail_ready_state: kfree(instance->ctrl_info); instance->ctrl_info = NULL; iounmap(instance->reg_set); fail_ioremap: pci_release_selected_regions(instance->pdev, instance->bar); return -EINVAL; } /** * megasas_release_mfi - Reverses the FW initialization * @intance: Adapter soft state */ static void megasas_release_mfi(struct megasas_instance *instance) { u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); if (instance->reply_queue) pci_free_consistent(instance->pdev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); megasas_free_cmds(instance); iounmap(instance->reg_set); pci_release_selected_regions(instance->pdev, instance->bar); } /** * megasas_get_seq_num - Gets latest event sequence numbers * @instance: Adapter soft state * @eli: FW event log sequence numbers information * * FW maintains a log of all events in a non-volatile area. Upper layers would * usually find out the latest sequence number of the events, the seq number at * the boot etc. They would "read" all the events below the latest seq number * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq * number), they would subsribe to AEN (asynchronous event notification) and * wait for the events to happen. */ static int megasas_get_seq_num(struct megasas_instance *instance, struct megasas_evt_log_info *eli) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_evt_log_info *el_info; dma_addr_t el_info_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { return -ENOMEM; } dcmd = &cmd->frame->dcmd; el_info = pci_alloc_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), &el_info_h); if (!el_info) { megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(el_info, 0, sizeof(*el_info)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h); dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info)); if (megasas_issue_blocked_cmd(instance, cmd, 30)) dev_err(&instance->pdev->dev, "Command timedout" "from %s\n", __func__); else { /* * Copy the data back into callers buffer */ eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num); eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num); eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num); eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num); eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num); } pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), el_info, el_info_h); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return 0; } /** * megasas_register_aen - Registers for asynchronous event notification * @instance: Adapter soft state * @seq_num: The starting sequence number * @class_locale: Class of the event * * This function subscribes for AEN for events beyond the @seq_num. It requests * to be notified if and only if the event is of type @class_locale */ static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word) { int ret_val; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; union megasas_evt_class_locale curr_aen; union megasas_evt_class_locale prev_aen; /* * If there an AEN pending already (aen_cmd), check if the * class_locale of that pending AEN is inclusive of the new * AEN request we currently have. If it is, then we don't have * to do anything. In other words, whichever events the current * AEN request is subscribing to, have already been subscribed * to. * * If the old_cmd is _not_ inclusive, then we have to abort * that command, form a class_locale that is superset of both * old and current and re-issue to the FW */ curr_aen.word = class_locale_word; if (instance->aen_cmd) { prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale); /* * A class whose enum value is smaller is inclusive of all * higher values. If a PROGRESS (= -1) was previously * registered, then a new registration requests for higher * classes need not be sent to FW. They are automatically * included. * * Locale numbers don't have such hierarchy. They are bitmap * values */ if ((prev_aen.members.class <= curr_aen.members.class) && !((prev_aen.members.locale & curr_aen.members.locale) ^ curr_aen.members.locale)) { /* * Previously issued event registration includes * current request. Nothing to do. */ return 0; } else { curr_aen.members.locale |= prev_aen.members.locale; if (prev_aen.members.class < curr_aen.members.class) curr_aen.members.class = prev_aen.members.class; instance->aen_cmd->abort_aen = 1; ret_val = megasas_issue_blocked_abort_cmd(instance, instance-> aen_cmd, 30); if (ret_val) { printk(KERN_DEBUG "megasas: Failed to abort " "previous AEN command\n"); return ret_val; } } } cmd = megasas_get_cmd(instance); if (!cmd) return -ENOMEM; dcmd = &cmd->frame->dcmd; memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); /* * Prepare DCMD for aen registration */ memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT); dcmd->mbox.w[0] = cpu_to_le32(seq_num); instance->last_seq_num = seq_num; dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word); dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h); dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail)); if (instance->aen_cmd != NULL) { megasas_return_cmd(instance, cmd); return 0; } /* * Store reference to the cmd used to register for AEN. When an * application wants us to register for AEN, we have to abort this * cmd and re-register with a new EVENT LOCALE supplied by that app */ instance->aen_cmd = cmd; /* * Issue the aen registration frame */ instance->instancet->issue_dcmd(instance, cmd); return 0; } /** * megasas_start_aen - Subscribes to AEN during driver load time * @instance: Adapter soft state */ static int megasas_start_aen(struct megasas_instance *instance) { struct megasas_evt_log_info eli; union megasas_evt_class_locale class_locale; /* * Get the latest sequence number from FW */ memset(&eli, 0, sizeof(eli)); if (megasas_get_seq_num(instance, &eli)) return -1; /* * Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; return megasas_register_aen(instance, eli.newest_seq_num + 1, class_locale.word); } /** * megasas_io_attach - Attaches this driver to SCSI mid-layer * @instance: Adapter soft state */ static int megasas_io_attach(struct megasas_instance *instance) { struct Scsi_Host *host = instance->host; /* * Export parameters required by SCSI mid-layer */ host->irq = instance->pdev->irq; host->unique_id = instance->unique_id; if (instance->is_imr) { host->can_queue = instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; } else host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS; host->this_id = instance->init_id; host->sg_tablesize = instance->max_num_sge; if (instance->fw_support_ieee) instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; /* * Check if the module parameter value for max_sectors can be used */ if (max_sectors && max_sectors < instance->max_sectors_per_req) instance->max_sectors_per_req = max_sectors; else { if (max_sectors) { if (((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) && (max_sectors <= MEGASAS_MAX_SECTORS)) { instance->max_sectors_per_req = max_sectors; } else { printk(KERN_INFO "megasas: max_sectors should be > 0" "and <= %d (or < 1MB for GEN2 controller)\n", instance->max_sectors_per_req); } } } host->max_sectors = instance->max_sectors_per_req; host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; host->max_channel = MEGASAS_MAX_CHANNELS - 1; host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; host->max_lun = MEGASAS_MAX_LUN; host->max_cmd_len = 16; /* Fusion only supports host reset */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { host->hostt->eh_device_reset_handler = NULL; host->hostt->eh_bus_reset_handler = NULL; } /* * Notify the mid-layer about the new controller */ if (scsi_add_host(host, &instance->pdev->dev)) { printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); return -ENODEV; } /* * Trigger SCSI to scan our drives */ scsi_scan_host(host); return 0; } static int megasas_set_dma_mask(struct pci_dev *pdev) { /* * All our contollers are capable of performing 64-bit DMA */ if (IS_DMA64) { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) goto fail_set_dma_mask; } } else { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) goto fail_set_dma_mask; } /* * Ensure that all data structures are allocated in 32-bit * memory. */ if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) { /* Try 32bit DMA mask and 32 bit Consistent dma mask */ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) dev_info(&pdev->dev, "set 32bit DMA mask" "and 32 bit consistent mask\n"); else goto fail_set_dma_mask; } return 0; fail_set_dma_mask: return 1; } /** * megasas_probe_one - PCI hotplug entry point * @pdev: PCI device structure * @id: PCI ids of supported hotplugged adapter */ static int megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rval, pos, i, j, cpu; struct Scsi_Host *host; struct megasas_instance *instance; u16 control = 0; struct fusion_context *fusion = NULL; /* Reset MSI-X in the kdump kernel */ if (reset_devices) { pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (pos) { pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &control); if (control & PCI_MSIX_FLAGS_ENABLE) { dev_info(&pdev->dev, "resetting MSI-X\n"); pci_write_config_word(pdev, pos + PCI_MSIX_FLAGS, control & ~PCI_MSIX_FLAGS_ENABLE); } } } /* * Announce PCI information */ printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); printk("bus %d:slot %d:func %d\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); /* * PCI prepping: enable device set bus mastering and dma mask */ rval = pci_enable_device_mem(pdev); if (rval) { return rval; } pci_set_master(pdev); if (megasas_set_dma_mask(pdev)) goto fail_set_dma_mask; host = scsi_host_alloc(&megasas_template, sizeof(struct megasas_instance)); if (!host) { printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); goto fail_alloc_instance; } instance = (struct megasas_instance *)host->hostdata; memset(instance, 0, sizeof(*instance)); atomic_set( &instance->fw_reset_no_pci_access, 0 ); instance->pdev = pdev; switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_FUSION: case PCI_DEVICE_ID_LSI_PLASMA: case PCI_DEVICE_ID_LSI_INVADER: case PCI_DEVICE_ID_LSI_FURY: { instance->ctrl_context_pages = get_order(sizeof(struct fusion_context)); instance->ctrl_context = (void *)__get_free_pages(GFP_KERNEL, instance->ctrl_context_pages); if (!instance->ctrl_context) { printk(KERN_DEBUG "megasas: Failed to allocate " "memory for Fusion context info\n"); goto fail_alloc_dma_buf; } fusion = instance->ctrl_context; INIT_LIST_HEAD(&fusion->cmd_pool); spin_lock_init(&fusion->mpt_pool_lock); memset(fusion->load_balance_info, 0, sizeof(struct LD_LOAD_BALANCE_INFO) * MAX_LOGICAL_DRIVES_EXT); } break; default: /* For all other supported controllers */ instance->producer = pci_alloc_consistent(pdev, sizeof(u32), &instance->producer_h); instance->consumer = pci_alloc_consistent(pdev, sizeof(u32), &instance->consumer_h); if (!instance->producer || !instance->consumer) { printk(KERN_DEBUG "megasas: Failed to allocate" "memory for producer, consumer\n"); goto fail_alloc_dma_buf; } *instance->producer = 0; *instance->consumer = 0; break; } /* Crash dump feature related initialisation*/ instance->drv_buf_index = 0; instance->drv_buf_alloc = 0; instance->crash_dump_fw_support = 0; instance->crash_dump_app_support = 0; instance->fw_crash_state = UNAVAILABLE; spin_lock_init(&instance->crashdump_lock); instance->crash_dump_buf = NULL; if (!reset_devices) instance->crash_dump_buf = pci_alloc_consistent(pdev, CRASH_DMA_BUF_SIZE, &instance->crash_dump_h); if (!instance->crash_dump_buf) dev_err(&instance->pdev->dev, "Can't allocate Firmware " "crash dump DMA buffer\n"); megasas_poll_wait_aen = 0; instance->flag_ieee = 0; instance->ev = NULL; instance->issuepend_done = 1; instance->adprecovery = MEGASAS_HBA_OPERATIONAL; instance->is_imr = 0; instance->evt_detail = pci_alloc_consistent(pdev, sizeof(struct megasas_evt_detail), &instance->evt_detail_h); if (!instance->evt_detail) { printk(KERN_DEBUG "megasas: Failed to allocate memory for " "event detail structure\n"); goto fail_alloc_dma_buf; } /* * Initialize locks and queues */ INIT_LIST_HEAD(&instance->cmd_pool); INIT_LIST_HEAD(&instance->internal_reset_pending_q); atomic_set(&instance->fw_outstanding,0); init_waitqueue_head(&instance->int_cmd_wait_q); init_waitqueue_head(&instance->abort_cmd_wait_q); spin_lock_init(&instance->mfi_pool_lock); spin_lock_init(&instance->hba_lock); spin_lock_init(&instance->completion_lock); mutex_init(&instance->aen_mutex); mutex_init(&instance->reset_mutex); /* * Initialize PCI related and misc parameters */ instance->host = host; instance->unique_id = pdev->bus->number << 8 | pdev->devfn; instance->init_id = MEGASAS_DEFAULT_INIT_ID; instance->ctrl_info = NULL; if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { instance->flag_ieee = 1; sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); } else sema_init(&instance->ioctl_sem, (MEGASAS_INT_CMDS - 5)); megasas_dbg_lvl = 0; instance->flag = 0; instance->unload = 1; instance->last_time = 0; instance->disableOnlineCtrlReset = 1; instance->UnevenSpanSupport = 0; if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) { INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); INIT_WORK(&instance->crash_init, megasas_fusion_crash_dump_wq); } else INIT_WORK(&instance->work_init, process_fw_state_change_wq); /* * Initialize MFI Firmware */ if (megasas_init_fw(instance)) goto fail_init_mfi; if (instance->requestorId) { if (instance->PlasmaFW111) { instance->vf_affiliation_111 = pci_alloc_consistent(pdev, sizeof(struct MR_LD_VF_AFFILIATION_111), &instance->vf_affiliation_111_h); if (!instance->vf_affiliation_111) printk(KERN_WARNING "megasas: Can't allocate " "memory for VF affiliation buffer\n"); } else { instance->vf_affiliation = pci_alloc_consistent(pdev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), &instance->vf_affiliation_h); if (!instance->vf_affiliation) printk(KERN_WARNING "megasas: Can't allocate " "memory for VF affiliation buffer\n"); } } retry_irq_register: /* * Register IRQ */ if (instance->msix_vectors) { cpu = cpumask_first(cpu_online_mask); for (i = 0; i < instance->msix_vectors; i++) { instance->irq_context[i].instance = instance; instance->irq_context[i].MSIxIndex = i; if (request_irq(instance->msixentry[i].vector, instance->instancet->service_isr, 0, "megasas", &instance->irq_context[i])) { printk(KERN_DEBUG "megasas: Failed to " "register IRQ for vector %d.\n", i); for (j = 0; j < i; j++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[j].vector, NULL); free_irq( instance->msixentry[j].vector, &instance->irq_context[j]); } /* Retry irq register for IO_APIC */ instance->msix_vectors = 0; goto retry_irq_register; } if (smp_affinity_enable) { if (irq_set_affinity_hint(instance->msixentry[i].vector, get_cpu_mask(cpu))) dev_err(&instance->pdev->dev, "Error setting affinity hint " "for cpu %d\n", cpu); cpu = cpumask_next(cpu, cpu_online_mask); } } } else { instance->irq_context[0].instance = instance; instance->irq_context[0].MSIxIndex = 0; if (request_irq(pdev->irq, instance->instancet->service_isr, IRQF_SHARED, "megasas", &instance->irq_context[0])) { printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); goto fail_irq; } } instance->instancet->enable_intr(instance); /* * Store instance in PCI softstate */ pci_set_drvdata(pdev, instance); /* * Add this controller to megasas_mgmt_info structure so that it * can be exported to management applications */ megasas_mgmt_info.count++; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; megasas_mgmt_info.max_index++; /* * Register with SCSI mid-layer */ if (megasas_io_attach(instance)) goto fail_io_attach; instance->unload = 0; /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) { printk(KERN_DEBUG "megasas: start aen failed\n"); goto fail_start_aen; } /* Get current SR-IOV LD/VF affiliation */ if (instance->requestorId) megasas_get_ld_vf_affiliation(instance, 1); return 0; fail_start_aen: fail_io_attach: megasas_mgmt_info.count--; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; megasas_mgmt_info.max_index--; instance->instancet->disable_intr(instance); if (instance->msix_vectors) for (i = 0; i < instance->msix_vectors; i++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[i].vector, NULL); free_irq(instance->msixentry[i].vector, &instance->irq_context[i]); } else free_irq(instance->pdev->irq, &instance->irq_context[0]); fail_irq: if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) || (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) || (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) megasas_release_fusion(instance); else megasas_release_mfi(instance); fail_init_mfi: if (instance->msix_vectors) pci_disable_msix(instance->pdev); fail_alloc_dma_buf: if (instance->evt_detail) pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (instance->producer) pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); if (instance->consumer) pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); scsi_host_put(host); fail_alloc_instance: fail_set_dma_mask: pci_disable_device(pdev); return -ENODEV; } /** * megasas_flush_cache - Requests FW to flush all its caches * @instance: Adapter soft state */ static void megasas_flush_cache(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH); dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; if (megasas_issue_blocked_cmd(instance, cmd, 30)) dev_err(&instance->pdev->dev, "Command timedout" " from %s\n", __func__); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return; } /** * megasas_shutdown_controller - Instructs FW to shutdown the controller * @instance: Adapter soft state * @opcode: Shutdown/Hibernate */ static void megasas_shutdown_controller(struct megasas_instance *instance, u32 opcode) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; if (instance->aen_cmd) megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd, 30); if (instance->map_update_cmd) megasas_issue_blocked_abort_cmd(instance, instance->map_update_cmd, 30); dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = cpu_to_le32(opcode); if (megasas_issue_blocked_cmd(instance, cmd, 30)) dev_err(&instance->pdev->dev, "Command timedout" "from %s\n", __func__); if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return; } #ifdef CONFIG_PM /** * megasas_suspend - driver suspend entry point * @pdev: PCI device structure * @state: PCI power state to suspend routine */ static int megasas_suspend(struct pci_dev *pdev, pm_message_t state) { struct Scsi_Host *host; struct megasas_instance *instance; int i; instance = pci_get_drvdata(pdev); host = instance->host; instance->unload = 1; /* Shutdown SR-IOV heartbeat timer */ if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); /* cancel the delayed work if this work still in queue */ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work_sync(&ev->hotplug_work); instance->ev = NULL; } tasklet_kill(&instance->isr_tasklet); pci_set_drvdata(instance->pdev, instance); instance->instancet->disable_intr(instance); if (instance->msix_vectors) for (i = 0; i < instance->msix_vectors; i++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[i].vector, NULL); free_irq(instance->msixentry[i].vector, &instance->irq_context[i]); } else free_irq(instance->pdev->irq, &instance->irq_context[0]); if (instance->msix_vectors) pci_disable_msix(instance->pdev); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } /** * megasas_resume- driver resume entry point * @pdev: PCI device structure */ static int megasas_resume(struct pci_dev *pdev) { int rval, i, j, cpu; struct Scsi_Host *host; struct megasas_instance *instance; instance = pci_get_drvdata(pdev); host = instance->host; pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); /* * PCI prepping: enable device set bus mastering and dma mask */ rval = pci_enable_device_mem(pdev); if (rval) { printk(KERN_ERR "megasas: Enable device failed\n"); return rval; } pci_set_master(pdev); if (megasas_set_dma_mask(pdev)) goto fail_set_dma_mask; /* * Initialize MFI Firmware */ atomic_set(&instance->fw_outstanding, 0); /* * We expect the FW state to be READY */ if (megasas_transition_to_ready(instance, 0)) goto fail_ready_state; /* Now re-enable MSI-X */ if (instance->msix_vectors && pci_enable_msix_exact(instance->pdev, instance->msixentry, instance->msix_vectors)) goto fail_reenable_msix; switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_FUSION: case PCI_DEVICE_ID_LSI_PLASMA: case PCI_DEVICE_ID_LSI_INVADER: case PCI_DEVICE_ID_LSI_FURY: { megasas_reset_reply_desc(instance); if (megasas_ioc_init_fusion(instance)) { megasas_free_cmds(instance); megasas_free_cmds_fusion(instance); goto fail_init_mfi; } if (!megasas_get_map_info(instance)) megasas_sync_map_info(instance); } break; default: *instance->producer = 0; *instance->consumer = 0; if (megasas_issue_init_mfi(instance)) goto fail_init_mfi; break; } tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, (unsigned long)instance); /* * Register IRQ */ if (instance->msix_vectors) { cpu = cpumask_first(cpu_online_mask); for (i = 0 ; i < instance->msix_vectors; i++) { instance->irq_context[i].instance = instance; instance->irq_context[i].MSIxIndex = i; if (request_irq(instance->msixentry[i].vector, instance->instancet->service_isr, 0, "megasas", &instance->irq_context[i])) { printk(KERN_DEBUG "megasas: Failed to " "register IRQ for vector %d.\n", i); for (j = 0; j < i; j++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[j].vector, NULL); free_irq( instance->msixentry[j].vector, &instance->irq_context[j]); } goto fail_irq; } if (smp_affinity_enable) { if (irq_set_affinity_hint(instance->msixentry[i].vector, get_cpu_mask(cpu))) dev_err(&instance->pdev->dev, "Error " "setting affinity hint for cpu " "%d\n", cpu); cpu = cpumask_next(cpu, cpu_online_mask); } } } else { instance->irq_context[0].instance = instance; instance->irq_context[0].MSIxIndex = 0; if (request_irq(pdev->irq, instance->instancet->service_isr, IRQF_SHARED, "megasas", &instance->irq_context[0])) { printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); goto fail_irq; } } /* Re-launch SR-IOV heartbeat timer */ if (instance->requestorId) { if (!megasas_sriov_start_heartbeat(instance, 0)) megasas_start_timer(instance, &instance->sriov_heartbeat_timer, megasas_sriov_heartbeat_handler, MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF); else instance->skip_heartbeat_timer_del = 1; } instance->instancet->enable_intr(instance); instance->unload = 0; /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) printk(KERN_ERR "megasas: Start AEN failed\n"); return 0; fail_irq: fail_init_mfi: if (instance->evt_detail) pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (instance->producer) pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); if (instance->consumer) pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); scsi_host_put(host); fail_set_dma_mask: fail_ready_state: fail_reenable_msix: pci_disable_device(pdev); return -ENODEV; } #else #define megasas_suspend NULL #define megasas_resume NULL #endif /** * megasas_detach_one - PCI hot"un"plug entry point * @pdev: PCI device structure */ static void megasas_detach_one(struct pci_dev *pdev) { int i; struct Scsi_Host *host; struct megasas_instance *instance; struct fusion_context *fusion; instance = pci_get_drvdata(pdev); instance->unload = 1; host = instance->host; fusion = instance->ctrl_context; /* Shutdown SR-IOV heartbeat timer */ if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); if (instance->fw_crash_state != UNAVAILABLE) megasas_free_host_crash_buffer(instance); scsi_remove_host(instance->host); megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); /* cancel the delayed work if this work still in queue*/ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work_sync(&ev->hotplug_work); instance->ev = NULL; } /* cancel all wait events */ wake_up_all(&instance->int_cmd_wait_q); tasklet_kill(&instance->isr_tasklet); /* * Take the instance off the instance array. Note that we will not * decrement the max_index. We let this array be sparse array */ for (i = 0; i < megasas_mgmt_info.max_index; i++) { if (megasas_mgmt_info.instance[i] == instance) { megasas_mgmt_info.count--; megasas_mgmt_info.instance[i] = NULL; break; } } instance->instancet->disable_intr(instance); if (instance->msix_vectors) for (i = 0; i < instance->msix_vectors; i++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[i].vector, NULL); free_irq(instance->msixentry[i].vector, &instance->irq_context[i]); } else free_irq(instance->pdev->irq, &instance->irq_context[0]); if (instance->msix_vectors) pci_disable_msix(instance->pdev); switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_FUSION: case PCI_DEVICE_ID_LSI_PLASMA: case PCI_DEVICE_ID_LSI_INVADER: case PCI_DEVICE_ID_LSI_FURY: megasas_release_fusion(instance); for (i = 0; i < 2 ; i++) { if (fusion->ld_map[i]) dma_free_coherent(&instance->pdev->dev, fusion->max_map_sz, fusion->ld_map[i], fusion->ld_map_phys[i]); if (fusion->ld_drv_map[i]) free_pages((ulong)fusion->ld_drv_map[i], fusion->drv_map_pages); } free_pages((ulong)instance->ctrl_context, instance->ctrl_context_pages); break; default: megasas_release_mfi(instance); pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); break; } kfree(instance->ctrl_info); if (instance->evt_detail) pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (instance->vf_affiliation) pci_free_consistent(pdev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), instance->vf_affiliation, instance->vf_affiliation_h); if (instance->vf_affiliation_111) pci_free_consistent(pdev, sizeof(struct MR_LD_VF_AFFILIATION_111), instance->vf_affiliation_111, instance->vf_affiliation_111_h); if (instance->hb_host_mem) pci_free_consistent(pdev, sizeof(struct MR_CTRL_HB_HOST_MEM), instance->hb_host_mem, instance->hb_host_mem_h); if (instance->crash_dump_buf) pci_free_consistent(pdev, CRASH_DMA_BUF_SIZE, instance->crash_dump_buf, instance->crash_dump_h); scsi_host_put(host); pci_disable_device(pdev); return; } /** * megasas_shutdown - Shutdown entry point * @device: Generic device structure */ static void megasas_shutdown(struct pci_dev *pdev) { int i; struct megasas_instance *instance = pci_get_drvdata(pdev); instance->unload = 1; megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); instance->instancet->disable_intr(instance); if (instance->msix_vectors) for (i = 0; i < instance->msix_vectors; i++) { if (smp_affinity_enable) irq_set_affinity_hint( instance->msixentry[i].vector, NULL); free_irq(instance->msixentry[i].vector, &instance->irq_context[i]); } else free_irq(instance->pdev->irq, &instance->irq_context[0]); if (instance->msix_vectors) pci_disable_msix(instance->pdev); } /** * megasas_mgmt_open - char node "open" entry point */ static int megasas_mgmt_open(struct inode *inode, struct file *filep) { /* * Allow only those users with admin rights */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return 0; } /** * megasas_mgmt_fasync - Async notifier registration from applications * * This function adds the calling process to a driver global queue. When an * event occurs, SIGIO will be sent to all processes in this queue. */ static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) { int rc; mutex_lock(&megasas_async_queue_mutex); rc = fasync_helper(fd, filep, mode, &megasas_async_queue); mutex_unlock(&megasas_async_queue_mutex); if (rc >= 0) { /* For sanity check when we get ioctl */ filep->private_data = filep; return 0; } printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); return rc; } /** * megasas_mgmt_poll - char node "poll" entry point * */ static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) { unsigned int mask; unsigned long flags; poll_wait(file, &megasas_poll_wait, wait); spin_lock_irqsave(&poll_aen_lock, flags); if (megasas_poll_wait_aen) mask = (POLLIN | POLLRDNORM); else mask = 0; megasas_poll_wait_aen = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); return mask; } /* * megasas_set_crash_dump_params_ioctl: * Send CRASH_DUMP_MODE DCMD to all controllers * @cmd: MFI command frame */ static int megasas_set_crash_dump_params_ioctl( struct megasas_cmd *cmd) { struct megasas_instance *local_instance; int i, error = 0; int crash_support; crash_support = cmd->frame->dcmd.mbox.w[0]; for (i = 0; i < megasas_mgmt_info.max_index; i++) { local_instance = megasas_mgmt_info.instance[i]; if (local_instance && local_instance->crash_dump_drv_support) { if ((local_instance->adprecovery == MEGASAS_HBA_OPERATIONAL) && !megasas_set_crash_dump_params(local_instance, crash_support)) { local_instance->crash_dump_app_support = crash_support; dev_info(&local_instance->pdev->dev, "Application firmware crash " "dump mode set success\n"); error = 0; } else { dev_info(&local_instance->pdev->dev, "Application firmware crash " "dump mode set failed\n"); error = -1; } } } return error; } /** * megasas_mgmt_fw_ioctl - Issues management ioctls to FW * @instance: Adapter soft state * @argp: User's ioctl packet */ static int megasas_mgmt_fw_ioctl(struct megasas_instance *instance, struct megasas_iocpacket __user * user_ioc, struct megasas_iocpacket *ioc) { struct megasas_sge32 *kern_sge32; struct megasas_cmd *cmd; void *kbuff_arr[MAX_IOCTL_SGE]; dma_addr_t buf_handle = 0; int error = 0, i; void *sense = NULL; dma_addr_t sense_handle; unsigned long *sense_ptr; memset(kbuff_arr, 0, sizeof(kbuff_arr)); if (ioc->sge_count > MAX_IOCTL_SGE) { printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", ioc->sge_count, MAX_IOCTL_SGE); return -EINVAL; } cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); return -ENOMEM; } /* * User's IOCTL packet has 2 frames (maximum). Copy those two * frames into our cmd's frames. cmd->frame's context will get * overwritten when we copy from user's frames. So set that value * alone separately */ memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); cmd->frame->hdr.context = cpu_to_le32(cmd->index); cmd->frame->hdr.pad_0 = 0; cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE | MFI_FRAME_SGL64 | MFI_FRAME_SENSE64)); if (cmd->frame->dcmd.opcode == MR_DRIVER_SET_APP_CRASHDUMP_MODE) { error = megasas_set_crash_dump_params_ioctl(cmd); megasas_return_cmd(instance, cmd); return error; } /* * The management interface between applications and the fw uses * MFI frames. E.g, RAID configuration changes, LD property changes * etc are accomplishes through different kinds of MFI frames. The * driver needs to care only about substituting user buffers with * kernel buffers in SGLs. The location of SGL is embedded in the * struct iocpacket itself. */ kern_sge32 = (struct megasas_sge32 *) ((unsigned long)cmd->frame + ioc->sgl_off); /* * For each user buffer, create a mirror buffer and copy in */ for (i = 0; i < ioc->sge_count; i++) { if (!ioc->sgl[i].iov_len) continue; kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, ioc->sgl[i].iov_len, &buf_handle, GFP_KERNEL); if (!kbuff_arr[i]) { printk(KERN_DEBUG "megasas: Failed to alloc " "kernel SGL buffer for IOCTL \n"); error = -ENOMEM; goto out; } /* * We don't change the dma_coherent_mask, so * pci_alloc_consistent only returns 32bit addresses */ kern_sge32[i].phys_addr = cpu_to_le32(buf_handle); kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len); /* * We created a kernel buffer corresponding to the * user buffer. Now copy in from the user buffer */ if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, (u32) (ioc->sgl[i].iov_len))) { error = -EFAULT; goto out; } } if (ioc->sense_len) { sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, &sense_handle, GFP_KERNEL); if (!sense) { error = -ENOMEM; goto out; } sense_ptr = (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); *sense_ptr = cpu_to_le32(sense_handle); } /* * Set the sync_cmd flag so that the ISR knows not to complete this * cmd to the SCSI mid-layer */ cmd->sync_cmd = 1; megasas_issue_blocked_cmd(instance, cmd, 0); cmd->sync_cmd = 0; /* * copy out the kernel buffers to user buffers */ for (i = 0; i < ioc->sge_count; i++) { if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], ioc->sgl[i].iov_len)) { error = -EFAULT; goto out; } } /* * copy out the sense */ if (ioc->sense_len) { /* * sense_ptr points to the location that has the user * sense buffer address */ sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + ioc->sense_off); if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), sense, ioc->sense_len)) { printk(KERN_ERR "megasas: Failed to copy out to user " "sense data\n"); error = -EFAULT; goto out; } } /* * copy the status codes returned by the fw */ if (copy_to_user(&user_ioc->frame.hdr.cmd_status, &cmd->frame->hdr.cmd_status, sizeof(u8))) { printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); error = -EFAULT; } out: if (sense) { dma_free_coherent(&instance->pdev->dev, ioc->sense_len, sense, sense_handle); } for (i = 0; i < ioc->sge_count; i++) { if (kbuff_arr[i]) dma_free_coherent(&instance->pdev->dev, le32_to_cpu(kern_sge32[i].length), kbuff_arr[i], le32_to_cpu(kern_sge32[i].phys_addr)); kbuff_arr[i] = NULL; } if (instance->ctrl_context && cmd->mpt_pthr_cmd_blocked) megasas_return_mfi_mpt_pthr(instance, cmd, cmd->mpt_pthr_cmd_blocked); else megasas_return_cmd(instance, cmd); return error; } static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) { struct megasas_iocpacket __user *user_ioc = (struct megasas_iocpacket __user *)arg; struct megasas_iocpacket *ioc; struct megasas_instance *instance; int error; int i; unsigned long flags; u32 wait_time = MEGASAS_RESET_WAIT_TIME; ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) return -ENOMEM; if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { error = -EFAULT; goto out_kfree_ioc; } instance = megasas_lookup_instance(ioc->host_no); if (!instance) { error = -ENODEV; goto out_kfree_ioc; } /* Adjust ioctl wait time for VF mode */ if (instance->requestorId) wait_time = MEGASAS_ROUTINE_WAIT_TIME_VF; /* Block ioctls in VF mode */ if (instance->requestorId && !allow_vf_ioctls) { error = -ENODEV; goto out_kfree_ioc; } if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { printk(KERN_ERR "Controller in crit error\n"); error = -ENODEV; goto out_kfree_ioc; } if (instance->unload == 1) { error = -ENODEV; goto out_kfree_ioc; } /* * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds */ if (down_interruptible(&instance->ioctl_sem)) { error = -ERESTARTSYS; goto out_kfree_ioc; } for (i = 0; i < wait_time; i++) { spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); break; } spin_unlock_irqrestore(&instance->hba_lock, flags); if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: waiting" "for controller reset to finish\n"); } msleep(1000); } spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_ERR "megaraid_sas: timed out while" "waiting for HBA to recover\n"); error = -ENODEV; goto out_up; } spin_unlock_irqrestore(&instance->hba_lock, flags); error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); out_up: up(&instance->ioctl_sem); out_kfree_ioc: kfree(ioc); return error; } static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) { struct megasas_instance *instance; struct megasas_aen aen; int error; int i; unsigned long flags; u32 wait_time = MEGASAS_RESET_WAIT_TIME; if (file->private_data != file) { printk(KERN_DEBUG "megasas: fasync_helper was not " "called first\n"); return -EINVAL; } if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) return -EFAULT; instance = megasas_lookup_instance(aen.host_no); if (!instance) return -ENODEV; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { return -ENODEV; } if (instance->unload == 1) { return -ENODEV; } for (i = 0; i < wait_time; i++) { spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); break; } spin_unlock_irqrestore(&instance->hba_lock, flags); if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: waiting for" "controller reset to finish\n"); } msleep(1000); } spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_ERR "megaraid_sas: timed out while waiting" "for HBA to recover.\n"); return -ENODEV; } spin_unlock_irqrestore(&instance->hba_lock, flags); mutex_lock(&instance->aen_mutex); error = megasas_register_aen(instance, aen.seq_num, aen.class_locale_word); mutex_unlock(&instance->aen_mutex); return error; } /** * megasas_mgmt_ioctl - char node ioctl entry point */ static long megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE: return megasas_mgmt_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #ifdef CONFIG_COMPAT static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) { struct compat_megasas_iocpacket __user *cioc = (struct compat_megasas_iocpacket __user *)arg; struct megasas_iocpacket __user *ioc = compat_alloc_user_space(sizeof(struct megasas_iocpacket)); int i; int error = 0; compat_uptr_t ptr; if (clear_user(ioc, sizeof(*ioc))) return -EFAULT; if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) return -EFAULT; /* * The sense_ptr is used in megasas_mgmt_fw_ioctl only when * sense_len is not null, so prepare the 64bit value under * the same condition. */ if (ioc->sense_len) { void __user **sense_ioc_ptr = (void __user **)(ioc->frame.raw + ioc->sense_off); compat_uptr_t *sense_cioc_ptr = (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); if (get_user(ptr, sense_cioc_ptr) || put_user(compat_ptr(ptr), sense_ioc_ptr)) return -EFAULT; } for (i = 0; i < MAX_IOCTL_SGE; i++) { if (get_user(ptr, &cioc->sgl[i].iov_base) || put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || copy_in_user(&ioc->sgl[i].iov_len, &cioc->sgl[i].iov_len, sizeof(compat_size_t))) return -EFAULT; } error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); if (copy_in_user(&cioc->frame.hdr.cmd_status, &ioc->frame.hdr.cmd_status, sizeof(u8))) { printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); return -EFAULT; } return error; } static long megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE32: return megasas_mgmt_compat_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #endif /* * File operations structure for management interface */ static const struct file_operations megasas_mgmt_fops = { .owner = THIS_MODULE, .open = megasas_mgmt_open, .fasync = megasas_mgmt_fasync, .unlocked_ioctl = megasas_mgmt_ioctl, .poll = megasas_mgmt_poll, #ifdef CONFIG_COMPAT .compat_ioctl = megasas_mgmt_compat_ioctl, #endif .llseek = noop_llseek, }; /* * PCI hotplug support registration structure */ static struct pci_driver megasas_pci_driver = { .name = "megaraid_sas", .id_table = megasas_pci_table, .probe = megasas_probe_one, .remove = megasas_detach_one, .suspend = megasas_suspend, .resume = megasas_resume, .shutdown = megasas_shutdown, }; /* * Sysfs driver attributes */ static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", MEGASAS_VERSION); } static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); static ssize_t megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", MEGASAS_RELDATE); } static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, NULL); static ssize_t megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_poll_for_event); } static DRIVER_ATTR(support_poll_for_event, S_IRUGO, megasas_sysfs_show_support_poll_for_event, NULL); static ssize_t megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_device_change); } static DRIVER_ATTR(support_device_change, S_IRUGO, megasas_sysfs_show_support_device_change, NULL); static ssize_t megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", megasas_dbg_lvl); } static ssize_t megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) { int retval = count; if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ printk(KERN_ERR "megasas: could not set dbg_lvl\n"); retval = -EINVAL; } return retval; } static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, megasas_sysfs_set_dbg_lvl); static void megasas_aen_polling(struct work_struct *work) { struct megasas_aen_event *ev = container_of(work, struct megasas_aen_event, hotplug_work.work); struct megasas_instance *instance = ev->instance; union megasas_evt_class_locale class_locale; struct Scsi_Host *host; struct scsi_device *sdev1; u16 pd_index = 0; u16 ld_index = 0; int i, j, doscan = 0; u32 seq_num, wait_time = MEGASAS_RESET_WAIT_TIME; int error; if (!instance) { printk(KERN_ERR "invalid instance!\n"); kfree(ev); return; } /* Adjust event workqueue thread wait time for VF mode */ if (instance->requestorId) wait_time = MEGASAS_ROUTINE_WAIT_TIME_VF; /* Don't run the event workqueue thread if OCR is running */ for (i = 0; i < wait_time; i++) { if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) break; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: %s waiting for " "controller reset to finish for scsi%d\n", __func__, instance->host->host_no); } msleep(1000); } instance->ev = NULL; host = instance->host; if (instance->evt_detail) { switch (le32_to_cpu(instance->evt_detail->code)) { case MR_EVT_PD_INSERTED: if (megasas_get_pd_list(instance) == 0) { for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (!sdev1) { scsi_add_device(host, i, j, 0); } if (sdev1) scsi_device_put(sdev1); } } } } doscan = 0; break; case MR_EVT_PD_REMOVED: if (megasas_get_pd_list(instance) == 0) { for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (sdev1) { scsi_device_put(sdev1); } } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } } doscan = 0; break; case MR_EVT_LD_OFFLINE: case MR_EVT_CFG_CLEARED: case MR_EVT_LD_DELETED: if (!instance->requestorId || (instance->requestorId && megasas_get_ld_vf_affiliation(instance, 0))) { if (megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (sdev1) scsi_device_put(sdev1); } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } doscan = 0; } break; case MR_EVT_LD_CREATED: if (!instance->requestorId || (instance->requestorId && megasas_get_ld_vf_affiliation(instance, 0))) { if (megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (!sdev1) scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); } if (sdev1) scsi_device_put(sdev1); } } doscan = 0; } break; case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: case MR_EVT_FOREIGN_CFG_IMPORTED: case MR_EVT_LD_STATE_CHANGE: doscan = 1; break; default: doscan = 0; break; } } else { printk(KERN_ERR "invalid evt_detail!\n"); kfree(ev); return; } if (doscan) { printk(KERN_INFO "megaraid_sas: scanning for scsi%d...\n", instance->host->host_no); if (megasas_get_pd_list(instance) == 0) { for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (!sdev1) { scsi_add_device(host, i, j, 0); } if (sdev1) scsi_device_put(sdev1); } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } } if (!instance->requestorId || (instance->requestorId && megasas_get_ld_vf_affiliation(instance, 0))) { if (megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (!sdev1) scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); else scsi_device_put(sdev1); } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } } } if ( instance->aen_cmd != NULL ) { kfree(ev); return ; } seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1; /* Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; mutex_lock(&instance->aen_mutex); error = megasas_register_aen(instance, seq_num, class_locale.word); mutex_unlock(&instance->aen_mutex); if (error) printk(KERN_ERR "register aen failed error %x\n", error); kfree(ev); } /** * megasas_init - Driver load entry point */ static int __init megasas_init(void) { int rval; /* * Announce driver version and other information */ printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, MEGASAS_EXT_VERSION); spin_lock_init(&poll_aen_lock); support_poll_for_event = 2; support_device_change = 1; memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); /* * Register character device node */ rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); if (rval < 0) { printk(KERN_DEBUG "megasas: failed to open device node\n"); return rval; } megasas_mgmt_majorno = rval; /* * Register ourselves as PCI hotplug module */ rval = pci_register_driver(&megasas_pci_driver); if (rval) { printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); goto err_pcidrv; } rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_version); if (rval) goto err_dcf_attr_ver; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_release_date); if (rval) goto err_dcf_rel_date; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); if (rval) goto err_dcf_support_poll_for_event; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); if (rval) goto err_dcf_dbg_lvl; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); if (rval) goto err_dcf_support_device_change; return rval; err_dcf_support_device_change: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); err_dcf_dbg_lvl: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); err_dcf_support_poll_for_event: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); err_dcf_rel_date: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); err_dcf_attr_ver: pci_unregister_driver(&megasas_pci_driver); err_pcidrv: unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); return rval; } /** * megasas_exit - Driver unload entry point */ static void __exit megasas_exit(void) { driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); pci_unregister_driver(&megasas_pci_driver); unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); } module_init(megasas_init); module_exit(megasas_exit);