/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/module.h> #include <linux/init.h> #include <linux/rtc.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/mfd/pm8xxx/core.h> #include <linux/mfd/pm8xxx/rtc.h> /* RTC Register offsets from RTC CTRL REG */ #define PM8XXX_ALARM_CTRL_OFFSET 0x01 #define PM8XXX_RTC_WRITE_OFFSET 0x02 #define PM8XXX_RTC_READ_OFFSET 0x06 #define PM8XXX_ALARM_RW_OFFSET 0x0A /* RTC_CTRL register bit fields */ #define PM8xxx_RTC_ENABLE BIT(7) #define PM8xxx_RTC_ALARM_ENABLE BIT(1) #define PM8xxx_RTC_ALARM_CLEAR BIT(0) #define NUM_8_BIT_RTC_REGS 0x4 /** * struct pm8xxx_rtc - rtc driver internal structure * @rtc: rtc device for this driver. * @rtc_alarm_irq: rtc alarm irq number. * @rtc_base: address of rtc control register. * @rtc_read_base: base address of read registers. * @rtc_write_base: base address of write registers. * @alarm_rw_base: base address of alarm registers. * @ctrl_reg: rtc control register. * @rtc_dev: device structure. * @ctrl_reg_lock: spinlock protecting access to ctrl_reg. */ struct pm8xxx_rtc { struct rtc_device *rtc; int rtc_alarm_irq; int rtc_base; int rtc_read_base; int rtc_write_base; int alarm_rw_base; u8 ctrl_reg; struct device *rtc_dev; spinlock_t ctrl_reg_lock; }; /* * The RTC registers need to be read/written one byte at a time. This is a * hardware limitation. */ static int pm8xxx_read_wrapper(struct pm8xxx_rtc *rtc_dd, u8 *rtc_val, int base, int count) { int i, rc; struct device *parent = rtc_dd->rtc_dev->parent; for (i = 0; i < count; i++) { rc = pm8xxx_readb(parent, base + i, &rtc_val[i]); if (rc < 0) { dev_err(rtc_dd->rtc_dev, "PMIC read failed\n"); return rc; } } return 0; } static int pm8xxx_write_wrapper(struct pm8xxx_rtc *rtc_dd, u8 *rtc_val, int base, int count) { int i, rc; struct device *parent = rtc_dd->rtc_dev->parent; for (i = 0; i < count; i++) { rc = pm8xxx_writeb(parent, base + i, rtc_val[i]); if (rc < 0) { dev_err(rtc_dd->rtc_dev, "PMIC write failed\n"); return rc; } } return 0; } /* * Steps to write the RTC registers. * 1. Disable alarm if enabled. * 2. Write 0x00 to LSB. * 3. Write Byte[1], Byte[2], Byte[3] then Byte[0]. * 4. Enable alarm if disabled in step 1. */ static int pm8xxx_rtc_set_time(struct device *dev, struct rtc_time *tm) { int rc, i; unsigned long secs, irq_flags; u8 value[NUM_8_BIT_RTC_REGS], reg = 0, alarm_enabled = 0, ctrl_reg; struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); rtc_tm_to_time(tm, &secs); for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) { value[i] = secs & 0xFF; secs >>= 8; } dev_dbg(dev, "Seconds value to be written to RTC = %lu\n", secs); spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags); ctrl_reg = rtc_dd->ctrl_reg; if (ctrl_reg & PM8xxx_RTC_ALARM_ENABLE) { alarm_enabled = 1; ctrl_reg &= ~PM8xxx_RTC_ALARM_ENABLE; rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC control register " "failed\n"); goto rtc_rw_fail; } rtc_dd->ctrl_reg = ctrl_reg; } else spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); /* Write 0 to Byte[0] */ reg = 0; rc = pm8xxx_write_wrapper(rtc_dd, ®, rtc_dd->rtc_write_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC write data register failed\n"); goto rtc_rw_fail; } /* Write Byte[1], Byte[2], Byte[3] */ rc = pm8xxx_write_wrapper(rtc_dd, value + 1, rtc_dd->rtc_write_base + 1, 3); if (rc < 0) { dev_err(dev, "Write to RTC write data register failed\n"); goto rtc_rw_fail; } /* Write Byte[0] */ rc = pm8xxx_write_wrapper(rtc_dd, value, rtc_dd->rtc_write_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC write data register failed\n"); goto rtc_rw_fail; } if (alarm_enabled) { ctrl_reg |= PM8xxx_RTC_ALARM_ENABLE; rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC control register " "failed\n"); goto rtc_rw_fail; } rtc_dd->ctrl_reg = ctrl_reg; } rtc_rw_fail: if (alarm_enabled) spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); return rc; } static int pm8xxx_rtc_read_time(struct device *dev, struct rtc_time *tm) { int rc; u8 value[NUM_8_BIT_RTC_REGS], reg; unsigned long secs; struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); rc = pm8xxx_read_wrapper(rtc_dd, value, rtc_dd->rtc_read_base, NUM_8_BIT_RTC_REGS); if (rc < 0) { dev_err(dev, "RTC read data register failed\n"); return rc; } /* * Read the LSB again and check if there has been a carry over. * If there is, redo the read operation. */ rc = pm8xxx_read_wrapper(rtc_dd, ®, rtc_dd->rtc_read_base, 1); if (rc < 0) { dev_err(dev, "RTC read data register failed\n"); return rc; } if (unlikely(reg < value[0])) { rc = pm8xxx_read_wrapper(rtc_dd, value, rtc_dd->rtc_read_base, NUM_8_BIT_RTC_REGS); if (rc < 0) { dev_err(dev, "RTC read data register failed\n"); return rc; } } secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24); rtc_time_to_tm(secs, tm); rc = rtc_valid_tm(tm); if (rc < 0) { dev_err(dev, "Invalid time read from RTC\n"); return rc; } dev_dbg(dev, "secs = %lu, h:m:s == %d:%d:%d, d/m/y = %d/%d/%d\n", secs, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_mday, tm->tm_mon, tm->tm_year); return 0; } static int pm8xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) { int rc, i; u8 value[NUM_8_BIT_RTC_REGS], ctrl_reg; unsigned long secs, irq_flags; struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); rtc_tm_to_time(&alarm->time, &secs); for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) { value[i] = secs & 0xFF; secs >>= 8; } spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags); rc = pm8xxx_write_wrapper(rtc_dd, value, rtc_dd->alarm_rw_base, NUM_8_BIT_RTC_REGS); if (rc < 0) { dev_err(dev, "Write to RTC ALARM register failed\n"); goto rtc_rw_fail; } ctrl_reg = rtc_dd->ctrl_reg; ctrl_reg = alarm->enabled ? (ctrl_reg | PM8xxx_RTC_ALARM_ENABLE) : (ctrl_reg & ~PM8xxx_RTC_ALARM_ENABLE); rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC control register failed\n"); goto rtc_rw_fail; } rtc_dd->ctrl_reg = ctrl_reg; dev_dbg(dev, "Alarm Set for h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n", alarm->time.tm_hour, alarm->time.tm_min, alarm->time.tm_sec, alarm->time.tm_mday, alarm->time.tm_mon, alarm->time.tm_year); rtc_rw_fail: spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); return rc; } static int pm8xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) { int rc; u8 value[NUM_8_BIT_RTC_REGS]; unsigned long secs; struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); rc = pm8xxx_read_wrapper(rtc_dd, value, rtc_dd->alarm_rw_base, NUM_8_BIT_RTC_REGS); if (rc < 0) { dev_err(dev, "RTC alarm time read failed\n"); return rc; } secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24); rtc_time_to_tm(secs, &alarm->time); rc = rtc_valid_tm(&alarm->time); if (rc < 0) { dev_err(dev, "Invalid alarm time read from RTC\n"); return rc; } dev_dbg(dev, "Alarm set for - h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n", alarm->time.tm_hour, alarm->time.tm_min, alarm->time.tm_sec, alarm->time.tm_mday, alarm->time.tm_mon, alarm->time.tm_year); return 0; } static int pm8xxx_rtc_alarm_irq_enable(struct device *dev, unsigned int enable) { int rc; unsigned long irq_flags; struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); u8 ctrl_reg; spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags); ctrl_reg = rtc_dd->ctrl_reg; ctrl_reg = (enable) ? (ctrl_reg | PM8xxx_RTC_ALARM_ENABLE) : (ctrl_reg & ~PM8xxx_RTC_ALARM_ENABLE); rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(dev, "Write to RTC control register failed\n"); goto rtc_rw_fail; } rtc_dd->ctrl_reg = ctrl_reg; rtc_rw_fail: spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); return rc; } static struct rtc_class_ops pm8xxx_rtc_ops = { .read_time = pm8xxx_rtc_read_time, .set_alarm = pm8xxx_rtc_set_alarm, .read_alarm = pm8xxx_rtc_read_alarm, .alarm_irq_enable = pm8xxx_rtc_alarm_irq_enable, }; static irqreturn_t pm8xxx_alarm_trigger(int irq, void *dev_id) { struct pm8xxx_rtc *rtc_dd = dev_id; u8 ctrl_reg; int rc; unsigned long irq_flags; rtc_update_irq(rtc_dd->rtc, 1, RTC_IRQF | RTC_AF); spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags); /* Clear the alarm enable bit */ ctrl_reg = rtc_dd->ctrl_reg; ctrl_reg &= ~PM8xxx_RTC_ALARM_ENABLE; rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); dev_err(rtc_dd->rtc_dev, "Write to RTC control register " "failed\n"); goto rtc_alarm_handled; } rtc_dd->ctrl_reg = ctrl_reg; spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags); /* Clear RTC alarm register */ rc = pm8xxx_read_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base + PM8XXX_ALARM_CTRL_OFFSET, 1); if (rc < 0) { dev_err(rtc_dd->rtc_dev, "RTC Alarm control register read " "failed\n"); goto rtc_alarm_handled; } ctrl_reg &= ~PM8xxx_RTC_ALARM_CLEAR; rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base + PM8XXX_ALARM_CTRL_OFFSET, 1); if (rc < 0) dev_err(rtc_dd->rtc_dev, "Write to RTC Alarm control register" " failed\n"); rtc_alarm_handled: return IRQ_HANDLED; } static int __devinit pm8xxx_rtc_probe(struct platform_device *pdev) { int rc; u8 ctrl_reg; bool rtc_write_enable = false; struct pm8xxx_rtc *rtc_dd; struct resource *rtc_resource; const struct pm8xxx_rtc_platform_data *pdata = dev_get_platdata(&pdev->dev); if (pdata != NULL) rtc_write_enable = pdata->rtc_write_enable; rtc_dd = kzalloc(sizeof(*rtc_dd), GFP_KERNEL); if (rtc_dd == NULL) { dev_err(&pdev->dev, "Unable to allocate memory!\n"); return -ENOMEM; } /* Initialise spinlock to protect RTC control register */ spin_lock_init(&rtc_dd->ctrl_reg_lock); rtc_dd->rtc_alarm_irq = platform_get_irq(pdev, 0); if (rtc_dd->rtc_alarm_irq < 0) { dev_err(&pdev->dev, "Alarm IRQ resource absent!\n"); rc = -ENXIO; goto fail_rtc_enable; } rtc_resource = platform_get_resource_byname(pdev, IORESOURCE_IO, "pmic_rtc_base"); if (!(rtc_resource && rtc_resource->start)) { dev_err(&pdev->dev, "RTC IO resource absent!\n"); rc = -ENXIO; goto fail_rtc_enable; } rtc_dd->rtc_base = rtc_resource->start; /* Setup RTC register addresses */ rtc_dd->rtc_write_base = rtc_dd->rtc_base + PM8XXX_RTC_WRITE_OFFSET; rtc_dd->rtc_read_base = rtc_dd->rtc_base + PM8XXX_RTC_READ_OFFSET; rtc_dd->alarm_rw_base = rtc_dd->rtc_base + PM8XXX_ALARM_RW_OFFSET; rtc_dd->rtc_dev = &pdev->dev; /* Check if the RTC is on, else turn it on */ rc = pm8xxx_read_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(&pdev->dev, "RTC control register read failed!\n"); goto fail_rtc_enable; } if (!(ctrl_reg & PM8xxx_RTC_ENABLE)) { ctrl_reg |= PM8xxx_RTC_ENABLE; rc = pm8xxx_write_wrapper(rtc_dd, &ctrl_reg, rtc_dd->rtc_base, 1); if (rc < 0) { dev_err(&pdev->dev, "Write to RTC control register " "failed\n"); goto fail_rtc_enable; } } rtc_dd->ctrl_reg = ctrl_reg; if (rtc_write_enable == true) pm8xxx_rtc_ops.set_time = pm8xxx_rtc_set_time; platform_set_drvdata(pdev, rtc_dd); /* Register the RTC device */ rtc_dd->rtc = rtc_device_register("pm8xxx_rtc", &pdev->dev, &pm8xxx_rtc_ops, THIS_MODULE); if (IS_ERR(rtc_dd->rtc)) { dev_err(&pdev->dev, "%s: RTC registration failed (%ld)\n", __func__, PTR_ERR(rtc_dd->rtc)); rc = PTR_ERR(rtc_dd->rtc); goto fail_rtc_enable; } /* Request the alarm IRQ */ rc = request_any_context_irq(rtc_dd->rtc_alarm_irq, pm8xxx_alarm_trigger, IRQF_TRIGGER_RISING, "pm8xxx_rtc_alarm", rtc_dd); if (rc < 0) { dev_err(&pdev->dev, "Request IRQ failed (%d)\n", rc); goto fail_req_irq; } device_init_wakeup(&pdev->dev, 1); dev_dbg(&pdev->dev, "Probe success !!\n"); return 0; fail_req_irq: rtc_device_unregister(rtc_dd->rtc); fail_rtc_enable: platform_set_drvdata(pdev, NULL); kfree(rtc_dd); return rc; } static int __devexit pm8xxx_rtc_remove(struct platform_device *pdev) { struct pm8xxx_rtc *rtc_dd = platform_get_drvdata(pdev); device_init_wakeup(&pdev->dev, 0); free_irq(rtc_dd->rtc_alarm_irq, rtc_dd); rtc_device_unregister(rtc_dd->rtc); platform_set_drvdata(pdev, NULL); kfree(rtc_dd); return 0; } #ifdef CONFIG_PM_SLEEP static int pm8xxx_rtc_resume(struct device *dev) { struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(rtc_dd->rtc_alarm_irq); return 0; } static int pm8xxx_rtc_suspend(struct device *dev) { struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(rtc_dd->rtc_alarm_irq); return 0; } #endif SIMPLE_DEV_PM_OPS(pm8xxx_rtc_pm_ops, pm8xxx_rtc_suspend, pm8xxx_rtc_resume); static struct platform_driver pm8xxx_rtc_driver = { .probe = pm8xxx_rtc_probe, .remove = __devexit_p(pm8xxx_rtc_remove), .driver = { .name = PM8XXX_RTC_DEV_NAME, .owner = THIS_MODULE, .pm = &pm8xxx_rtc_pm_ops, }, }; static int __init pm8xxx_rtc_init(void) { return platform_driver_register(&pm8xxx_rtc_driver); } module_init(pm8xxx_rtc_init); static void __exit pm8xxx_rtc_exit(void) { platform_driver_unregister(&pm8xxx_rtc_driver); } module_exit(pm8xxx_rtc_exit); MODULE_ALIAS("platform:rtc-pm8xxx"); MODULE_DESCRIPTION("PMIC8xxx RTC driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Anirudh Ghayal <aghayal@codeaurora.org>");