// SPDX-License-Identifier: GPL-2.0-only /* * TI K3 Cortex-M4 Remote Processor(s) driver * * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/ * Hari Nagalla */ #include #include #include #include #include #include #include #include #include #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" #define K3_M4_IRAM_DEV_ADDR 0x00000 #define K3_M4_DRAM_DEV_ADDR 0x30000 /** * struct k3_m4_rproc_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from remote processor view * @size: Size of the memory region */ struct k3_m4_rproc_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct k3_m4_rproc_mem_data - memory definitions for a remote processor * @name: name for this memory entry * @dev_addr: device address for the memory entry */ struct k3_m4_rproc_mem_data { const char *name; const u32 dev_addr; }; /** * struct k3_m4_rproc - k3 remote processor driver structure * @dev: cached device pointer * @mem: internal memory regions data * @num_mems: number of internal memory regions * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions * @reset: reset control handle * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel */ struct k3_m4_rproc { struct device *dev; struct k3_m4_rproc_mem *mem; int num_mems; struct k3_m4_rproc_mem *rmem; int num_rmems; struct reset_control *reset; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; struct mbox_chan *mbox; struct mbox_client client; }; /** * k3_m4_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the K3 mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) { struct device *dev = client->dev; struct rproc *rproc = dev_get_drvdata(dev); u32 msg = (u32)(uintptr_t)(data); dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 rproc %s crashed\n", rproc->name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", rproc->name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* * Kick the remote processor to notify about pending unprocessed messages. * The vqid usage is not used and is inconsequential, as the kick is performed * through a simulated GPIO (a bit in an IPC interrupt-triggering register), * the remote processor is expected to process both its Tx and Rx virtqueues. */ static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; u32 msg = (u32)vqid; int ret; /* * Send the index of the triggered virtqueue in the mailbox payload. * NOTE: msg is cast to uintptr_t to prevent compiler warnings when * void* is 64bit. It is safely cast back to u32 in the mailbox driver. */ ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); } static int k3_m4_rproc_ping_mbox(struct k3_m4_rproc *kproc) { struct device *dev = kproc->dev; int ret; /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); return ret; } return 0; } /* * The M4 cores have a local reset that affects only the CPU, and a * generic module reset that powers on the device and allows the internal * memories to be accessed while the local reset is asserted. This function is * used to release the global reset on remote cores to allow loading into the * internal RAMs. The .prepare() ops is invoked by remoteproc core before any * firmware loading, and is followed by the .start() ops after loading to * actually let the remote cores to run. */ static int k3_m4_rproc_prepare(struct rproc *rproc) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; /* If the core is running already no need to deassert the module reset */ if (rproc->state == RPROC_DETACHED) return 0; /* * Ensure the local reset is asserted so the core doesn't * execute bogus code when the module reset is released. */ ret = reset_control_assert(kproc->reset); if (ret) { dev_err(dev, "could not assert local reset\n"); return ret; } ret = reset_control_status(kproc->reset); if (ret <= 0) { dev_err(dev, "local reset still not asserted\n"); return ret; } ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "could not deassert module-reset for internal RAM loading\n"); return ret; } return 0; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * global reset on applicable cores. This completes the second portion of * powering down the remote core. The cores themselves are only halted in the * .stop() callback through the local reset, and the .unprepare() ops is invoked * by the remoteproc core after the remoteproc is stopped to balance the global * reset. */ static int k3_m4_rproc_unprepare(struct rproc *rproc) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; /* If the core is going to be detached do not assert the module reset */ if (rproc->state == RPROC_ATTACHED) return 0; ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "module-reset assert failed\n"); return ret; } return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for a booted remote processor in IPC-only * mode. The remote processor firmwares follow a design-by-contract approach * and are expected to have the resource table at the base of the DDR region * reserved for firmware usage. This provides flexibility for the remote * processor to be booted by different bootloaders that may or may not have the * ability to publish the resource table address and size through a DT * property. */ static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (__force struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Custom function to translate a remote processor device address (internal * RAMs only) to a kernel virtual address. The remote processors can access * their RAMs at either an internal address visible only from a remote * processor, or at the SoC-level bus address. Both these addresses need to be * looked through for translation. The translated addresses can be used either * by the remoteproc core for loading (when using kernel remoteproc loader), or * by any rpmsg bus drivers. */ static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_m4_rproc *kproc = rproc->priv; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; for (i = 0; i < kproc->num_mems; i++) { bus_addr = kproc->mem[i].bus_addr; dev_addr = kproc->mem[i].dev_addr; size = kproc->mem[i].size; /* handle M4-view addresses */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } /* handle SoC-view addresses */ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { offset = da - bus_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, struct k3_m4_rproc *kproc) { static const char * const mem_names[] = { "iram", "dram" }; static const u32 mem_addrs[] = { K3_M4_IRAM_DEV_ADDR, K3_M4_DRAM_DEV_ADDR }; struct device *dev = &pdev->dev; struct resource *res; int num_mems; int i; num_mems = ARRAY_SIZE(mem_names); kproc->mem = devm_kcalloc(kproc->dev, num_mems, sizeof(*kproc->mem), GFP_KERNEL); if (!kproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); if (!res) { dev_err(dev, "found no memory resource for %s\n", mem_names[i]); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", mem_names[i]); return -EBUSY; } kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!kproc->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", mem_names[i]); return -ENOMEM; } kproc->mem[i].bus_addr = res->start; kproc->mem[i].dev_addr = mem_addrs[i]; kproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", mem_names[i], &kproc->mem[i].bus_addr, kproc->mem[i].size, kproc->mem[i].cpu_addr, kproc->mem[i].dev_addr); } kproc->num_mems = num_mems; return 0; } static void k3_m4_rproc_dev_mem_release(void *data) { struct device *dev = data; of_reserved_mem_device_release(dev); } static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev->of_node; struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems < 0) { dev_err(dev, "device does not reserved memory regions (%d)\n", num_rmems); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev); if (ret) return ret; num_rmems--; kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) return -ENOMEM; /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) return -EINVAL; rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); return -EINVAL; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* 64-bit address regions currently not supported */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); return -ENOMEM; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; } static void k3_m4_release_tsp(void *data) { struct ti_sci_proc *tsp = data; ti_sci_proc_release(tsp); } /* * Power up the M4 remote processor. * * This function will be invoked only after the firmware for this rproc * was loaded, parsed successfully, and all of its resource requirements * were met. This callback is invoked only in remoteproc mode. */ static int k3_m4_rproc_start(struct rproc *rproc) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = k3_m4_rproc_ping_mbox(kproc); if (ret) return ret; ret = reset_control_deassert(kproc->reset); if (ret) { dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); return ret; } return 0; } /* * Stop the M4 remote processor. * * This function puts the M4 processor into reset, and finishes processing * of any pending messages. This callback is invoked only in remoteproc mode. */ static int k3_m4_rproc_stop(struct rproc *rproc) { struct k3_m4_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = reset_control_assert(kproc->reset); if (ret) { dev_err(dev, "local-reset assert failed, ret = %d\n", ret); return ret; } return 0; } /* * Attach to a running M4 remote processor (IPC-only mode) * * The remote processor is already booted, so there is no need to issue any * TI-SCI commands to boot the M4 core. This callback is used only in IPC-only * mode. */ static int k3_m4_rproc_attach(struct rproc *rproc) { struct k3_m4_rproc *kproc = rproc->priv; int ret; ret = k3_m4_rproc_ping_mbox(kproc); if (ret) return ret; return 0; } /* * Detach from a running M4 remote processor (IPC-only mode) * * This rproc detach callback performs the opposite operation to attach * callback, the M4 core is not stopped and will be left to continue to * run its booted firmware. This callback is invoked only in IPC-only mode. */ static int k3_m4_rproc_detach(struct rproc *rproc) { return 0; } static const struct rproc_ops k3_m4_rproc_ops = { .prepare = k3_m4_rproc_prepare, .unprepare = k3_m4_rproc_unprepare, .start = k3_m4_rproc_start, .stop = k3_m4_rproc_stop, .attach = k3_m4_rproc_attach, .detach = k3_m4_rproc_detach, .kick = k3_m4_rproc_kick, .da_to_va = k3_m4_rproc_da_to_va, .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, }; static int k3_m4_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct k3_m4_rproc *kproc; struct rproc *rproc; const char *fw_name; bool r_state = false; bool p_state = false; int ret; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret) return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; rproc->recovery_disabled = true; kproc = rproc->priv; kproc->dev = dev; platform_set_drvdata(pdev, rproc); kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(kproc->ti_sci)) return dev_err_probe(dev, PTR_ERR(kproc->ti_sci), "failed to get ti-sci handle\n"); ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", &kproc->ti_sci_id); if (ret) return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); kproc->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(kproc->reset)) return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n"); kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci); if (IS_ERR(kproc->tsp)) return dev_err_probe(dev, PTR_ERR(kproc->tsp), "failed to construct ti-sci proc control\n"); ret = ti_sci_proc_request(kproc->tsp); if (ret < 0) return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp); if (ret) return ret; ret = k3_m4_rproc_of_get_memories(pdev, kproc); if (ret) return ret; ret = k3_m4_reserved_mem_init(kproc); if (ret) return dev_err_probe(dev, ret, "reserved memory init failed\n"); ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, &r_state, &p_state); if (ret) return dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n"); /* configure devices for either remoteproc or IPC-only mode */ if (p_state) { rproc->state = RPROC_DETACHED; dev_info(dev, "configured M4F for IPC-only mode\n"); } else { dev_info(dev, "configured M4F for remoteproc mode\n"); } kproc->client.dev = dev; kproc->client.tx_done = NULL; kproc->client.rx_callback = k3_m4_rproc_mbox_callback; kproc->client.tx_block = false; kproc->client.knows_txdone = false; kproc->mbox = mbox_request_channel(&kproc->client, 0); if (IS_ERR(kproc->mbox)) return dev_err_probe(dev, PTR_ERR(kproc->mbox), "mbox_request_channel failed\n"); ret = devm_rproc_add(dev, rproc); if (ret) return dev_err_probe(dev, ret, "failed to register device with remoteproc core\n"); return 0; } static const struct of_device_id k3_m4_of_match[] = { { .compatible = "ti,am64-m4fss", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_m4_of_match); static struct platform_driver k3_m4_rproc_driver = { .probe = k3_m4_rproc_probe, .driver = { .name = "k3-m4-rproc", .of_match_table = k3_m4_of_match, }, }; module_platform_driver(k3_m4_rproc_driver); MODULE_AUTHOR("Hari Nagalla "); MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); MODULE_LICENSE("GPL");