/* * core.c -- Voltage/Current Regulator framework. * * Copyright 2007, 2008 Wolfson Microelectronics PLC. * Copyright 2008 SlimLogic Ltd. * * Author: Liam Girdwood * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "dummy.h" #include "internal.h" #define rdev_crit(rdev, fmt, ...) \ pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) #define rdev_err(rdev, fmt, ...) \ pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) #define rdev_warn(rdev, fmt, ...) \ pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) #define rdev_info(rdev, fmt, ...) \ pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) #define rdev_dbg(rdev, fmt, ...) \ pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) static DEFINE_MUTEX(regulator_list_mutex); static LIST_HEAD(regulator_list); static LIST_HEAD(regulator_map_list); static LIST_HEAD(regulator_ena_gpio_list); static LIST_HEAD(regulator_supply_alias_list); static bool has_full_constraints; static struct dentry *debugfs_root; /* * struct regulator_map * * Used to provide symbolic supply names to devices. */ struct regulator_map { struct list_head list; const char *dev_name; /* The dev_name() for the consumer */ const char *supply; struct regulator_dev *regulator; }; /* * struct regulator_enable_gpio * * Management for shared enable GPIO pin */ struct regulator_enable_gpio { struct list_head list; struct gpio_desc *gpiod; u32 enable_count; /* a number of enabled shared GPIO */ u32 request_count; /* a number of requested shared GPIO */ unsigned int ena_gpio_invert:1; }; /* * struct regulator_supply_alias * * Used to map lookups for a supply onto an alternative device. */ struct regulator_supply_alias { struct list_head list; struct device *src_dev; const char *src_supply; struct device *alias_dev; const char *alias_supply; }; static int _regulator_is_enabled(struct regulator_dev *rdev); static int _regulator_disable(struct regulator_dev *rdev); static int _regulator_get_voltage(struct regulator_dev *rdev); static int _regulator_get_current_limit(struct regulator_dev *rdev); static unsigned int _regulator_get_mode(struct regulator_dev *rdev); static int _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data); static int _regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV); static struct regulator *create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name); static const char *rdev_get_name(struct regulator_dev *rdev) { if (rdev->constraints && rdev->constraints->name) return rdev->constraints->name; else if (rdev->desc->name) return rdev->desc->name; else return ""; } static bool have_full_constraints(void) { return has_full_constraints || of_have_populated_dt(); } /** * of_get_regulator - get a regulator device node based on supply name * @dev: Device pointer for the consumer (of regulator) device * @supply: regulator supply name * * Extract the regulator device node corresponding to the supply name. * returns the device node corresponding to the regulator if found, else * returns NULL. */ static struct device_node *of_get_regulator(struct device *dev, const char *supply) { struct device_node *regnode = NULL; char prop_name[32]; /* 32 is max size of property name */ dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); snprintf(prop_name, 32, "%s-supply", supply); regnode = of_parse_phandle(dev->of_node, prop_name, 0); if (!regnode) { dev_dbg(dev, "Looking up %s property in node %s failed", prop_name, dev->of_node->full_name); return NULL; } return regnode; } static int _regulator_can_change_status(struct regulator_dev *rdev) { if (!rdev->constraints) return 0; if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) return 1; else return 0; } /* Platform voltage constraint check */ static int regulator_check_voltage(struct regulator_dev *rdev, int *min_uV, int *max_uV) { BUG_ON(*min_uV > *max_uV); if (!rdev->constraints) { rdev_err(rdev, "no constraints\n"); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { rdev_err(rdev, "operation not allowed\n"); return -EPERM; } if (*max_uV > rdev->constraints->max_uV) *max_uV = rdev->constraints->max_uV; if (*min_uV < rdev->constraints->min_uV) *min_uV = rdev->constraints->min_uV; if (*min_uV > *max_uV) { rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", *min_uV, *max_uV); return -EINVAL; } return 0; } /* Make sure we select a voltage that suits the needs of all * regulator consumers */ static int regulator_check_consumers(struct regulator_dev *rdev, int *min_uV, int *max_uV) { struct regulator *regulator; list_for_each_entry(regulator, &rdev->consumer_list, list) { /* * Assume consumers that didn't say anything are OK * with anything in the constraint range. */ if (!regulator->min_uV && !regulator->max_uV) continue; if (*max_uV > regulator->max_uV) *max_uV = regulator->max_uV; if (*min_uV < regulator->min_uV) *min_uV = regulator->min_uV; } if (*min_uV > *max_uV) { rdev_err(rdev, "Restricting voltage, %u-%uuV\n", *min_uV, *max_uV); return -EINVAL; } return 0; } /* current constraint check */ static int regulator_check_current_limit(struct regulator_dev *rdev, int *min_uA, int *max_uA) { BUG_ON(*min_uA > *max_uA); if (!rdev->constraints) { rdev_err(rdev, "no constraints\n"); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { rdev_err(rdev, "operation not allowed\n"); return -EPERM; } if (*max_uA > rdev->constraints->max_uA) *max_uA = rdev->constraints->max_uA; if (*min_uA < rdev->constraints->min_uA) *min_uA = rdev->constraints->min_uA; if (*min_uA > *max_uA) { rdev_err(rdev, "unsupportable current range: %d-%duA\n", *min_uA, *max_uA); return -EINVAL; } return 0; } /* operating mode constraint check */ static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) { switch (*mode) { case REGULATOR_MODE_FAST: case REGULATOR_MODE_NORMAL: case REGULATOR_MODE_IDLE: case REGULATOR_MODE_STANDBY: break; default: rdev_err(rdev, "invalid mode %x specified\n", *mode); return -EINVAL; } if (!rdev->constraints) { rdev_err(rdev, "no constraints\n"); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { rdev_err(rdev, "operation not allowed\n"); return -EPERM; } /* The modes are bitmasks, the most power hungry modes having * the lowest values. If the requested mode isn't supported * try higher modes. */ while (*mode) { if (rdev->constraints->valid_modes_mask & *mode) return 0; *mode /= 2; } return -EINVAL; } /* dynamic regulator mode switching constraint check */ static int regulator_check_drms(struct regulator_dev *rdev) { if (!rdev->constraints) { rdev_err(rdev, "no constraints\n"); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { rdev_err(rdev, "operation not allowed\n"); return -EPERM; } return 0; } static ssize_t regulator_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); ssize_t ret; mutex_lock(&rdev->mutex); ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); mutex_unlock(&rdev->mutex); return ret; } static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); static ssize_t regulator_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); } static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%s\n", rdev_get_name(rdev)); } static DEVICE_ATTR_RO(name); static ssize_t regulator_print_opmode(char *buf, int mode) { switch (mode) { case REGULATOR_MODE_FAST: return sprintf(buf, "fast\n"); case REGULATOR_MODE_NORMAL: return sprintf(buf, "normal\n"); case REGULATOR_MODE_IDLE: return sprintf(buf, "idle\n"); case REGULATOR_MODE_STANDBY: return sprintf(buf, "standby\n"); } return sprintf(buf, "unknown\n"); } static ssize_t regulator_opmode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, _regulator_get_mode(rdev)); } static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); static ssize_t regulator_print_state(char *buf, int state) { if (state > 0) return sprintf(buf, "enabled\n"); else if (state == 0) return sprintf(buf, "disabled\n"); else return sprintf(buf, "unknown\n"); } static ssize_t regulator_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); ssize_t ret; mutex_lock(&rdev->mutex); ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); mutex_unlock(&rdev->mutex); return ret; } static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); static ssize_t regulator_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); int status; char *label; status = rdev->desc->ops->get_status(rdev); if (status < 0) return status; switch (status) { case REGULATOR_STATUS_OFF: label = "off"; break; case REGULATOR_STATUS_ON: label = "on"; break; case REGULATOR_STATUS_ERROR: label = "error"; break; case REGULATOR_STATUS_FAST: label = "fast"; break; case REGULATOR_STATUS_NORMAL: label = "normal"; break; case REGULATOR_STATUS_IDLE: label = "idle"; break; case REGULATOR_STATUS_STANDBY: label = "standby"; break; case REGULATOR_STATUS_BYPASS: label = "bypass"; break; case REGULATOR_STATUS_UNDEFINED: label = "undefined"; break; default: return -ERANGE; } return sprintf(buf, "%s\n", label); } static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); static ssize_t regulator_min_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->min_uA); } static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); static ssize_t regulator_max_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->max_uA); } static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); static ssize_t regulator_min_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->min_uV); } static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); static ssize_t regulator_max_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->max_uV); } static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); static ssize_t regulator_total_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); struct regulator *regulator; int uA = 0; mutex_lock(&rdev->mutex); list_for_each_entry(regulator, &rdev->consumer_list, list) uA += regulator->uA_load; mutex_unlock(&rdev->mutex); return sprintf(buf, "%d\n", uA); } static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->use_count); } static DEVICE_ATTR_RO(num_users); static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); switch (rdev->desc->type) { case REGULATOR_VOLTAGE: return sprintf(buf, "voltage\n"); case REGULATOR_CURRENT: return sprintf(buf, "current\n"); } return sprintf(buf, "unknown\n"); } static DEVICE_ATTR_RO(type); static ssize_t regulator_suspend_mem_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); } static DEVICE_ATTR(suspend_mem_microvolts, 0444, regulator_suspend_mem_uV_show, NULL); static ssize_t regulator_suspend_disk_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); } static DEVICE_ATTR(suspend_disk_microvolts, 0444, regulator_suspend_disk_uV_show, NULL); static ssize_t regulator_suspend_standby_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); } static DEVICE_ATTR(suspend_standby_microvolts, 0444, regulator_suspend_standby_uV_show, NULL); static ssize_t regulator_suspend_mem_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_mem.mode); } static DEVICE_ATTR(suspend_mem_mode, 0444, regulator_suspend_mem_mode_show, NULL); static ssize_t regulator_suspend_disk_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_disk.mode); } static DEVICE_ATTR(suspend_disk_mode, 0444, regulator_suspend_disk_mode_show, NULL); static ssize_t regulator_suspend_standby_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_standby.mode); } static DEVICE_ATTR(suspend_standby_mode, 0444, regulator_suspend_standby_mode_show, NULL); static ssize_t regulator_suspend_mem_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_mem.enabled); } static DEVICE_ATTR(suspend_mem_state, 0444, regulator_suspend_mem_state_show, NULL); static ssize_t regulator_suspend_disk_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_disk.enabled); } static DEVICE_ATTR(suspend_disk_state, 0444, regulator_suspend_disk_state_show, NULL); static ssize_t regulator_suspend_standby_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_standby.enabled); } static DEVICE_ATTR(suspend_standby_state, 0444, regulator_suspend_standby_state_show, NULL); static ssize_t regulator_bypass_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); const char *report; bool bypass; int ret; ret = rdev->desc->ops->get_bypass(rdev, &bypass); if (ret != 0) report = "unknown"; else if (bypass) report = "enabled"; else report = "disabled"; return sprintf(buf, "%s\n", report); } static DEVICE_ATTR(bypass, 0444, regulator_bypass_show, NULL); /* Calculate the new optimum regulator operating mode based on the new total * consumer load. All locks held by caller */ static int drms_uA_update(struct regulator_dev *rdev) { struct regulator *sibling; int current_uA = 0, output_uV, input_uV, err; unsigned int mode; /* * first check to see if we can set modes at all, otherwise just * tell the consumer everything is OK. */ err = regulator_check_drms(rdev); if (err < 0) return 0; if (!rdev->desc->ops->get_optimum_mode && !rdev->desc->ops->set_load) return 0; if (!rdev->desc->ops->set_mode && !rdev->desc->ops->set_load) return -EINVAL; /* get output voltage */ output_uV = _regulator_get_voltage(rdev); if (output_uV <= 0) { rdev_err(rdev, "invalid output voltage found\n"); return -EINVAL; } /* get input voltage */ input_uV = 0; if (rdev->supply) input_uV = regulator_get_voltage(rdev->supply); if (input_uV <= 0) input_uV = rdev->constraints->input_uV; if (input_uV <= 0) { rdev_err(rdev, "invalid input voltage found\n"); return -EINVAL; } /* calc total requested load */ list_for_each_entry(sibling, &rdev->consumer_list, list) current_uA += sibling->uA_load; current_uA += rdev->constraints->system_load; if (rdev->desc->ops->set_load) { /* set the optimum mode for our new total regulator load */ err = rdev->desc->ops->set_load(rdev, current_uA); if (err < 0) rdev_err(rdev, "failed to set load %d\n", current_uA); } else { /* now get the optimum mode for our new total regulator load */ mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, output_uV, current_uA); /* check the new mode is allowed */ err = regulator_mode_constrain(rdev, &mode); if (err < 0) { rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", current_uA, input_uV, output_uV); return err; } err = rdev->desc->ops->set_mode(rdev, mode); if (err < 0) rdev_err(rdev, "failed to set optimum mode %x\n", mode); } return err; } static int suspend_set_state(struct regulator_dev *rdev, struct regulator_state *rstate) { int ret = 0; /* If we have no suspend mode configration don't set anything; * only warn if the driver implements set_suspend_voltage or * set_suspend_mode callback. */ if (!rstate->enabled && !rstate->disabled) { if (rdev->desc->ops->set_suspend_voltage || rdev->desc->ops->set_suspend_mode) rdev_warn(rdev, "No configuration\n"); return 0; } if (rstate->enabled && rstate->disabled) { rdev_err(rdev, "invalid configuration\n"); return -EINVAL; } if (rstate->enabled && rdev->desc->ops->set_suspend_enable) ret = rdev->desc->ops->set_suspend_enable(rdev); else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) ret = rdev->desc->ops->set_suspend_disable(rdev); else /* OK if set_suspend_enable or set_suspend_disable is NULL */ ret = 0; if (ret < 0) { rdev_err(rdev, "failed to enabled/disable\n"); return ret; } if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); if (ret < 0) { rdev_err(rdev, "failed to set voltage\n"); return ret; } } if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); if (ret < 0) { rdev_err(rdev, "failed to set mode\n"); return ret; } } return ret; } /* locks held by caller */ static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) { if (!rdev->constraints) return -EINVAL; switch (state) { case PM_SUSPEND_STANDBY: return suspend_set_state(rdev, &rdev->constraints->state_standby); case PM_SUSPEND_MEM: return suspend_set_state(rdev, &rdev->constraints->state_mem); case PM_SUSPEND_MAX: return suspend_set_state(rdev, &rdev->constraints->state_disk); default: return -EINVAL; } } static void print_constraints(struct regulator_dev *rdev) { struct regulation_constraints *constraints = rdev->constraints; char buf[80] = ""; int count = 0; int ret; if (constraints->min_uV && constraints->max_uV) { if (constraints->min_uV == constraints->max_uV) count += sprintf(buf + count, "%d mV ", constraints->min_uV / 1000); else count += sprintf(buf + count, "%d <--> %d mV ", constraints->min_uV / 1000, constraints->max_uV / 1000); } if (!constraints->min_uV || constraints->min_uV != constraints->max_uV) { ret = _regulator_get_voltage(rdev); if (ret > 0) count += sprintf(buf + count, "at %d mV ", ret / 1000); } if (constraints->uV_offset) count += sprintf(buf, "%dmV offset ", constraints->uV_offset / 1000); if (constraints->min_uA && constraints->max_uA) { if (constraints->min_uA == constraints->max_uA) count += sprintf(buf + count, "%d mA ", constraints->min_uA / 1000); else count += sprintf(buf + count, "%d <--> %d mA ", constraints->min_uA / 1000, constraints->max_uA / 1000); } if (!constraints->min_uA || constraints->min_uA != constraints->max_uA) { ret = _regulator_get_current_limit(rdev); if (ret > 0) count += sprintf(buf + count, "at %d mA ", ret / 1000); } if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) count += sprintf(buf + count, "fast "); if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) count += sprintf(buf + count, "normal "); if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) count += sprintf(buf + count, "idle "); if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) count += sprintf(buf + count, "standby"); if (!count) sprintf(buf, "no parameters"); rdev_dbg(rdev, "%s\n", buf); if ((constraints->min_uV != constraints->max_uV) && !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) rdev_warn(rdev, "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); } static int machine_constraints_voltage(struct regulator_dev *rdev, struct regulation_constraints *constraints) { const struct regulator_ops *ops = rdev->desc->ops; int ret; /* do we need to apply the constraint voltage */ if (rdev->constraints->apply_uV && rdev->constraints->min_uV == rdev->constraints->max_uV) { int current_uV = _regulator_get_voltage(rdev); if (current_uV < 0) { rdev_err(rdev, "failed to get the current voltage(%d)\n", current_uV); return current_uV; } if (current_uV < rdev->constraints->min_uV || current_uV > rdev->constraints->max_uV) { ret = _regulator_do_set_voltage( rdev, rdev->constraints->min_uV, rdev->constraints->max_uV); if (ret < 0) { rdev_err(rdev, "failed to apply %duV constraint(%d)\n", rdev->constraints->min_uV, ret); return ret; } } } /* constrain machine-level voltage specs to fit * the actual range supported by this regulator. */ if (ops->list_voltage && rdev->desc->n_voltages) { int count = rdev->desc->n_voltages; int i; int min_uV = INT_MAX; int max_uV = INT_MIN; int cmin = constraints->min_uV; int cmax = constraints->max_uV; /* it's safe to autoconfigure fixed-voltage supplies and the constraints are used by list_voltage. */ if (count == 1 && !cmin) { cmin = 1; cmax = INT_MAX; constraints->min_uV = cmin; constraints->max_uV = cmax; } /* voltage constraints are optional */ if ((cmin == 0) && (cmax == 0)) return 0; /* else require explicit machine-level constraints */ if (cmin <= 0 || cmax <= 0 || cmax < cmin) { rdev_err(rdev, "invalid voltage constraints\n"); return -EINVAL; } /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ for (i = 0; i < count; i++) { int value; value = ops->list_voltage(rdev, i); if (value <= 0) continue; /* maybe adjust [min_uV..max_uV] */ if (value >= cmin && value < min_uV) min_uV = value; if (value <= cmax && value > max_uV) max_uV = value; } /* final: [min_uV..max_uV] valid iff constraints valid */ if (max_uV < min_uV) { rdev_err(rdev, "unsupportable voltage constraints %u-%uuV\n", min_uV, max_uV); return -EINVAL; } /* use regulator's subset of machine constraints */ if (constraints->min_uV < min_uV) { rdev_dbg(rdev, "override min_uV, %d -> %d\n", constraints->min_uV, min_uV); constraints->min_uV = min_uV; } if (constraints->max_uV > max_uV) { rdev_dbg(rdev, "override max_uV, %d -> %d\n", constraints->max_uV, max_uV); constraints->max_uV = max_uV; } } return 0; } static int machine_constraints_current(struct regulator_dev *rdev, struct regulation_constraints *constraints) { const struct regulator_ops *ops = rdev->desc->ops; int ret; if (!constraints->min_uA && !constraints->max_uA) return 0; if (constraints->min_uA > constraints->max_uA) { rdev_err(rdev, "Invalid current constraints\n"); return -EINVAL; } if (!ops->set_current_limit || !ops->get_current_limit) { rdev_warn(rdev, "Operation of current configuration missing\n"); return 0; } /* Set regulator current in constraints range */ ret = ops->set_current_limit(rdev, constraints->min_uA, constraints->max_uA); if (ret < 0) { rdev_err(rdev, "Failed to set current constraint, %d\n", ret); return ret; } return 0; } static int _regulator_do_enable(struct regulator_dev *rdev); /** * set_machine_constraints - sets regulator constraints * @rdev: regulator source * @constraints: constraints to apply * * Allows platform initialisation code to define and constrain * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: * Constraints *must* be set by platform code in order for some * regulator operations to proceed i.e. set_voltage, set_current_limit, * set_mode. */ static int set_machine_constraints(struct regulator_dev *rdev, const struct regulation_constraints *constraints) { int ret = 0; const struct regulator_ops *ops = rdev->desc->ops; if (constraints) rdev->constraints = kmemdup(constraints, sizeof(*constraints), GFP_KERNEL); else rdev->constraints = kzalloc(sizeof(*constraints), GFP_KERNEL); if (!rdev->constraints) return -ENOMEM; ret = machine_constraints_voltage(rdev, rdev->constraints); if (ret != 0) goto out; ret = machine_constraints_current(rdev, rdev->constraints); if (ret != 0) goto out; if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { ret = ops->set_input_current_limit(rdev, rdev->constraints->ilim_uA); if (ret < 0) { rdev_err(rdev, "failed to set input limit\n"); goto out; } } /* do we need to setup our suspend state */ if (rdev->constraints->initial_state) { ret = suspend_prepare(rdev, rdev->constraints->initial_state); if (ret < 0) { rdev_err(rdev, "failed to set suspend state\n"); goto out; } } if (rdev->constraints->initial_mode) { if (!ops->set_mode) { rdev_err(rdev, "no set_mode operation\n"); ret = -EINVAL; goto out; } ret = ops->set_mode(rdev, rdev->constraints->initial_mode); if (ret < 0) { rdev_err(rdev, "failed to set initial mode: %d\n", ret); goto out; } } /* If the constraints say the regulator should be on at this point * and we have control then make sure it is enabled. */ if (rdev->constraints->always_on || rdev->constraints->boot_on) { ret = _regulator_do_enable(rdev); if (ret < 0 && ret != -EINVAL) { rdev_err(rdev, "failed to enable\n"); goto out; } } if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) && ops->set_ramp_delay) { ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); if (ret < 0) { rdev_err(rdev, "failed to set ramp_delay\n"); goto out; } } if (rdev->constraints->pull_down && ops->set_pull_down) { ret = ops->set_pull_down(rdev); if (ret < 0) { rdev_err(rdev, "failed to set pull down\n"); goto out; } } if (rdev->constraints->soft_start && ops->set_soft_start) { ret = ops->set_soft_start(rdev); if (ret < 0) { rdev_err(rdev, "failed to set soft start\n"); goto out; } } print_constraints(rdev); return 0; out: kfree(rdev->constraints); rdev->constraints = NULL; return ret; } /** * set_supply - set regulator supply regulator * @rdev: regulator name * @supply_rdev: supply regulator name * * Called by platform initialisation code to set the supply regulator for this * regulator. This ensures that a regulators supply will also be enabled by the * core if it's child is enabled. */ static int set_supply(struct regulator_dev *rdev, struct regulator_dev *supply_rdev) { int err; rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); if (rdev->supply == NULL) { err = -ENOMEM; return err; } supply_rdev->open_count++; return 0; } /** * set_consumer_device_supply - Bind a regulator to a symbolic supply * @rdev: regulator source * @consumer_dev_name: dev_name() string for device supply applies to * @supply: symbolic name for supply * * Allows platform initialisation code to map physical regulator * sources to symbolic names for supplies for use by devices. Devices * should use these symbolic names to request regulators, avoiding the * need to provide board-specific regulator names as platform data. */ static int set_consumer_device_supply(struct regulator_dev *rdev, const char *consumer_dev_name, const char *supply) { struct regulator_map *node; int has_dev; if (supply == NULL) return -EINVAL; if (consumer_dev_name != NULL) has_dev = 1; else has_dev = 0; list_for_each_entry(node, ®ulator_map_list, list) { if (node->dev_name && consumer_dev_name) { if (strcmp(node->dev_name, consumer_dev_name) != 0) continue; } else if (node->dev_name || consumer_dev_name) { continue; } if (strcmp(node->supply, supply) != 0) continue; pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", consumer_dev_name, dev_name(&node->regulator->dev), node->regulator->desc->name, supply, dev_name(&rdev->dev), rdev_get_name(rdev)); return -EBUSY; } node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); if (node == NULL) return -ENOMEM; node->regulator = rdev; node->supply = supply; if (has_dev) { node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); if (node->dev_name == NULL) { kfree(node); return -ENOMEM; } } list_add(&node->list, ®ulator_map_list); return 0; } static void unset_regulator_supplies(struct regulator_dev *rdev) { struct regulator_map *node, *n; list_for_each_entry_safe(node, n, ®ulator_map_list, list) { if (rdev == node->regulator) { list_del(&node->list); kfree(node->dev_name); kfree(node); } } } #define REG_STR_SIZE 64 static struct regulator *create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name) { struct regulator *regulator; char buf[REG_STR_SIZE]; int err, size; regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); if (regulator == NULL) return NULL; mutex_lock(&rdev->mutex); regulator->rdev = rdev; list_add(®ulator->list, &rdev->consumer_list); if (dev) { regulator->dev = dev; /* Add a link to the device sysfs entry */ size = scnprintf(buf, REG_STR_SIZE, "%s-%s", dev->kobj.name, supply_name); if (size >= REG_STR_SIZE) goto overflow_err; regulator->supply_name = kstrdup(buf, GFP_KERNEL); if (regulator->supply_name == NULL) goto overflow_err; err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, buf); if (err) { rdev_warn(rdev, "could not add device link %s err %d\n", dev->kobj.name, err); /* non-fatal */ } } else { regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); if (regulator->supply_name == NULL) goto overflow_err; } regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs); if (!regulator->debugfs) { rdev_warn(rdev, "Failed to create debugfs directory\n"); } else { debugfs_create_u32("uA_load", 0444, regulator->debugfs, ®ulator->uA_load); debugfs_create_u32("min_uV", 0444, regulator->debugfs, ®ulator->min_uV); debugfs_create_u32("max_uV", 0444, regulator->debugfs, ®ulator->max_uV); } /* * Check now if the regulator is an always on regulator - if * it is then we don't need to do nearly so much work for * enable/disable calls. */ if (!_regulator_can_change_status(rdev) && _regulator_is_enabled(rdev)) regulator->always_on = true; mutex_unlock(&rdev->mutex); return regulator; overflow_err: list_del(®ulator->list); kfree(regulator); mutex_unlock(&rdev->mutex); return NULL; } static int _regulator_get_enable_time(struct regulator_dev *rdev) { if (rdev->constraints && rdev->constraints->enable_time) return rdev->constraints->enable_time; if (!rdev->desc->ops->enable_time) return rdev->desc->enable_time; return rdev->desc->ops->enable_time(rdev); } static struct regulator_supply_alias *regulator_find_supply_alias( struct device *dev, const char *supply) { struct regulator_supply_alias *map; list_for_each_entry(map, ®ulator_supply_alias_list, list) if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) return map; return NULL; } static void regulator_supply_alias(struct device **dev, const char **supply) { struct regulator_supply_alias *map; map = regulator_find_supply_alias(*dev, *supply); if (map) { dev_dbg(*dev, "Mapping supply %s to %s,%s\n", *supply, map->alias_supply, dev_name(map->alias_dev)); *dev = map->alias_dev; *supply = map->alias_supply; } } static struct regulator_dev *regulator_dev_lookup(struct device *dev, const char *supply, int *ret) { struct regulator_dev *r; struct device_node *node; struct regulator_map *map; const char *devname = NULL; regulator_supply_alias(&dev, &supply); /* first do a dt based lookup */ if (dev && dev->of_node) { node = of_get_regulator(dev, supply); if (node) { list_for_each_entry(r, ®ulator_list, list) if (r->dev.parent && node == r->dev.of_node) return r; *ret = -EPROBE_DEFER; return NULL; } else { /* * If we couldn't even get the node then it's * not just that the device didn't register * yet, there's no node and we'll never * succeed. */ *ret = -ENODEV; } } /* if not found, try doing it non-dt way */ if (dev) devname = dev_name(dev); list_for_each_entry(r, ®ulator_list, list) if (strcmp(rdev_get_name(r), supply) == 0) return r; list_for_each_entry(map, ®ulator_map_list, list) { /* If the mapping has a device set up it must match */ if (map->dev_name && (!devname || strcmp(map->dev_name, devname))) continue; if (strcmp(map->supply, supply) == 0) return map->regulator; } return NULL; } static int regulator_resolve_supply(struct regulator_dev *rdev) { struct regulator_dev *r; struct device *dev = rdev->dev.parent; int ret; /* No supply to resovle? */ if (!rdev->supply_name) return 0; /* Supply already resolved? */ if (rdev->supply) return 0; r = regulator_dev_lookup(dev, rdev->supply_name, &ret); if (ret == -ENODEV) { /* * No supply was specified for this regulator and * there will never be one. */ return 0; } if (!r) { dev_err(dev, "Failed to resolve %s-supply for %s\n", rdev->supply_name, rdev->desc->name); return -EPROBE_DEFER; } /* Recursively resolve the supply of the supply */ ret = regulator_resolve_supply(r); if (ret < 0) return ret; ret = set_supply(rdev, r); if (ret < 0) return ret; /* Cascade always-on state to supply */ if (_regulator_is_enabled(rdev)) { ret = regulator_enable(rdev->supply); if (ret < 0) return ret; } return 0; } /* Internal regulator request function */ static struct regulator *_regulator_get(struct device *dev, const char *id, bool exclusive, bool allow_dummy) { struct regulator_dev *rdev; struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); const char *devname = NULL; int ret; if (id == NULL) { pr_err("get() with no identifier\n"); return ERR_PTR(-EINVAL); } if (dev) devname = dev_name(dev); if (have_full_constraints()) ret = -ENODEV; else ret = -EPROBE_DEFER; mutex_lock(®ulator_list_mutex); rdev = regulator_dev_lookup(dev, id, &ret); if (rdev) goto found; regulator = ERR_PTR(ret); /* * If we have return value from dev_lookup fail, we do not expect to * succeed, so, quit with appropriate error value */ if (ret && ret != -ENODEV) goto out; if (!devname) devname = "deviceless"; /* * Assume that a regulator is physically present and enabled * even if it isn't hooked up and just provide a dummy. */ if (have_full_constraints() && allow_dummy) { pr_warn("%s supply %s not found, using dummy regulator\n", devname, id); rdev = dummy_regulator_rdev; goto found; /* Don't log an error when called from regulator_get_optional() */ } else if (!have_full_constraints() || exclusive) { dev_warn(dev, "dummy supplies not allowed\n"); } mutex_unlock(®ulator_list_mutex); return regulator; found: if (rdev->exclusive) { regulator = ERR_PTR(-EPERM); goto out; } if (exclusive && rdev->open_count) { regulator = ERR_PTR(-EBUSY); goto out; } ret = regulator_resolve_supply(rdev); if (ret < 0) { regulator = ERR_PTR(ret); goto out; } if (!try_module_get(rdev->owner)) goto out; regulator = create_regulator(rdev, dev, id); if (regulator == NULL) { regulator = ERR_PTR(-ENOMEM); module_put(rdev->owner); goto out; } rdev->open_count++; if (exclusive) { rdev->exclusive = 1; ret = _regulator_is_enabled(rdev); if (ret > 0) rdev->use_count = 1; else rdev->use_count = 0; } out: mutex_unlock(®ulator_list_mutex); return regulator; } /** * regulator_get - lookup and obtain a reference to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * * Returns a struct regulator corresponding to the regulator producer, * or IS_ERR() condition containing errno. * * Use of supply names configured via regulator_set_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. */ struct regulator *regulator_get(struct device *dev, const char *id) { return _regulator_get(dev, id, false, true); } EXPORT_SYMBOL_GPL(regulator_get); /** * regulator_get_exclusive - obtain exclusive access to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * * Returns a struct regulator corresponding to the regulator producer, * or IS_ERR() condition containing errno. Other consumers will be * unable to obtain this regulator while this reference is held and the * use count for the regulator will be initialised to reflect the current * state of the regulator. * * This is intended for use by consumers which cannot tolerate shared * use of the regulator such as those which need to force the * regulator off for correct operation of the hardware they are * controlling. * * Use of supply names configured via regulator_set_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. */ struct regulator *regulator_get_exclusive(struct device *dev, const char *id) { return _regulator_get(dev, id, true, false); } EXPORT_SYMBOL_GPL(regulator_get_exclusive); /** * regulator_get_optional - obtain optional access to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * * Returns a struct regulator corresponding to the regulator producer, * or IS_ERR() condition containing errno. * * This is intended for use by consumers for devices which can have * some supplies unconnected in normal use, such as some MMC devices. * It can allow the regulator core to provide stub supplies for other * supplies requested using normal regulator_get() calls without * disrupting the operation of drivers that can handle absent * supplies. * * Use of supply names configured via regulator_set_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. */ struct regulator *regulator_get_optional(struct device *dev, const char *id) { return _regulator_get(dev, id, false, false); } EXPORT_SYMBOL_GPL(regulator_get_optional); /* regulator_list_mutex lock held by regulator_put() */ static void _regulator_put(struct regulator *regulator) { struct regulator_dev *rdev; if (regulator == NULL || IS_ERR(regulator)) return; rdev = regulator->rdev; debugfs_remove_recursive(regulator->debugfs); /* remove any sysfs entries */ if (regulator->dev) sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); mutex_lock(&rdev->mutex); kfree(regulator->supply_name); list_del(®ulator->list); kfree(regulator); rdev->open_count--; rdev->exclusive = 0; mutex_unlock(&rdev->mutex); module_put(rdev->owner); } /** * regulator_put - "free" the regulator source * @regulator: regulator source * * Note: drivers must ensure that all regulator_enable calls made on this * regulator source are balanced by regulator_disable calls prior to calling * this function. */ void regulator_put(struct regulator *regulator) { mutex_lock(®ulator_list_mutex); _regulator_put(regulator); mutex_unlock(®ulator_list_mutex); } EXPORT_SYMBOL_GPL(regulator_put); /** * regulator_register_supply_alias - Provide device alias for supply lookup * * @dev: device that will be given as the regulator "consumer" * @id: Supply name or regulator ID * @alias_dev: device that should be used to lookup the supply * @alias_id: Supply name or regulator ID that should be used to lookup the * supply * * All lookups for id on dev will instead be conducted for alias_id on * alias_dev. */ int regulator_register_supply_alias(struct device *dev, const char *id, struct device *alias_dev, const char *alias_id) { struct regulator_supply_alias *map; map = regulator_find_supply_alias(dev, id); if (map) return -EEXIST; map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); if (!map) return -ENOMEM; map->src_dev = dev; map->src_supply = id; map->alias_dev = alias_dev; map->alias_supply = alias_id; list_add(&map->list, ®ulator_supply_alias_list); pr_info("Adding alias for supply %s,%s -> %s,%s\n", id, dev_name(dev), alias_id, dev_name(alias_dev)); return 0; } EXPORT_SYMBOL_GPL(regulator_register_supply_alias); /** * regulator_unregister_supply_alias - Remove device alias * * @dev: device that will be given as the regulator "consumer" * @id: Supply name or regulator ID * * Remove a lookup alias if one exists for id on dev. */ void regulator_unregister_supply_alias(struct device *dev, const char *id) { struct regulator_supply_alias *map; map = regulator_find_supply_alias(dev, id); if (map) { list_del(&map->list); kfree(map); } } EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); /** * regulator_bulk_register_supply_alias - register multiple aliases * * @dev: device that will be given as the regulator "consumer" * @id: List of supply names or regulator IDs * @alias_dev: device that should be used to lookup the supply * @alias_id: List of supply names or regulator IDs that should be used to * lookup the supply * @num_id: Number of aliases to register * * @return 0 on success, an errno on failure. * * This helper function allows drivers to register several supply * aliases in one operation. If any of the aliases cannot be * registered any aliases that were registered will be removed * before returning to the caller. */ int regulator_bulk_register_supply_alias(struct device *dev, const char *const *id, struct device *alias_dev, const char *const *alias_id, int num_id) { int i; int ret; for (i = 0; i < num_id; ++i) { ret = regulator_register_supply_alias(dev, id[i], alias_dev, alias_id[i]); if (ret < 0) goto err; } return 0; err: dev_err(dev, "Failed to create supply alias %s,%s -> %s,%s\n", id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); while (--i >= 0) regulator_unregister_supply_alias(dev, id[i]); return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); /** * regulator_bulk_unregister_supply_alias - unregister multiple aliases * * @dev: device that will be given as the regulator "consumer" * @id: List of supply names or regulator IDs * @num_id: Number of aliases to unregister * * This helper function allows drivers to unregister several supply * aliases in one operation. */ void regulator_bulk_unregister_supply_alias(struct device *dev, const char *const *id, int num_id) { int i; for (i = 0; i < num_id; ++i) regulator_unregister_supply_alias(dev, id[i]); } EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ static int regulator_ena_gpio_request(struct regulator_dev *rdev, const struct regulator_config *config) { struct regulator_enable_gpio *pin; struct gpio_desc *gpiod; int ret; gpiod = gpio_to_desc(config->ena_gpio); list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { if (pin->gpiod == gpiod) { rdev_dbg(rdev, "GPIO %d is already used\n", config->ena_gpio); goto update_ena_gpio_to_rdev; } } ret = gpio_request_one(config->ena_gpio, GPIOF_DIR_OUT | config->ena_gpio_flags, rdev_get_name(rdev)); if (ret) return ret; pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); if (pin == NULL) { gpio_free(config->ena_gpio); return -ENOMEM; } pin->gpiod = gpiod; pin->ena_gpio_invert = config->ena_gpio_invert; list_add(&pin->list, ®ulator_ena_gpio_list); update_ena_gpio_to_rdev: pin->request_count++; rdev->ena_pin = pin; return 0; } static void regulator_ena_gpio_free(struct regulator_dev *rdev) { struct regulator_enable_gpio *pin, *n; if (!rdev->ena_pin) return; /* Free the GPIO only in case of no use */ list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { if (pin->gpiod == rdev->ena_pin->gpiod) { if (pin->request_count <= 1) { pin->request_count = 0; gpiod_put(pin->gpiod); list_del(&pin->list); kfree(pin); rdev->ena_pin = NULL; return; } else { pin->request_count--; } } } } /** * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control * @rdev: regulator_dev structure * @enable: enable GPIO at initial use? * * GPIO is enabled in case of initial use. (enable_count is 0) * GPIO is disabled when it is not shared any more. (enable_count <= 1) */ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) { struct regulator_enable_gpio *pin = rdev->ena_pin; if (!pin) return -EINVAL; if (enable) { /* Enable GPIO at initial use */ if (pin->enable_count == 0) gpiod_set_value_cansleep(pin->gpiod, !pin->ena_gpio_invert); pin->enable_count++; } else { if (pin->enable_count > 1) { pin->enable_count--; return 0; } /* Disable GPIO if not used */ if (pin->enable_count <= 1) { gpiod_set_value_cansleep(pin->gpiod, pin->ena_gpio_invert); pin->enable_count = 0; } } return 0; } /** * _regulator_enable_delay - a delay helper function * @delay: time to delay in microseconds * * Delay for the requested amount of time as per the guidelines in: * * Documentation/timers/timers-howto.txt * * The assumption here is that regulators will never be enabled in * atomic context and therefore sleeping functions can be used. */ static void _regulator_enable_delay(unsigned int delay) { unsigned int ms = delay / 1000; unsigned int us = delay % 1000; if (ms > 0) { /* * For small enough values, handle super-millisecond * delays in the usleep_range() call below. */ if (ms < 20) us += ms * 1000; else msleep(ms); } /* * Give the scheduler some room to coalesce with any other * wakeup sources. For delays shorter than 10 us, don't even * bother setting up high-resolution timers and just busy- * loop. */ if (us >= 10) usleep_range(us, us + 100); else udelay(us); } static int _regulator_do_enable(struct regulator_dev *rdev) { int ret, delay; /* Query before enabling in case configuration dependent. */ ret = _regulator_get_enable_time(rdev); if (ret >= 0) { delay = ret; } else { rdev_warn(rdev, "enable_time() failed: %d\n", ret); delay = 0; } trace_regulator_enable(rdev_get_name(rdev)); if (rdev->desc->off_on_delay) { /* if needed, keep a distance of off_on_delay from last time * this regulator was disabled. */ unsigned long start_jiffy = jiffies; unsigned long intended, max_delay, remaining; max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); intended = rdev->last_off_jiffy + max_delay; if (time_before(start_jiffy, intended)) { /* calc remaining jiffies to deal with one-time * timer wrapping. * in case of multiple timer wrapping, either it can be * detected by out-of-range remaining, or it cannot be * detected and we gets a panelty of * _regulator_enable_delay(). */ remaining = intended - start_jiffy; if (remaining <= max_delay) _regulator_enable_delay( jiffies_to_usecs(remaining)); } } if (rdev->ena_pin) { if (!rdev->ena_gpio_state) { ret = regulator_ena_gpio_ctrl(rdev, true); if (ret < 0) return ret; rdev->ena_gpio_state = 1; } } else if (rdev->desc->ops->enable) { ret = rdev->desc->ops->enable(rdev); if (ret < 0) return ret; } else { return -EINVAL; } /* Allow the regulator to ramp; it would be useful to extend * this for bulk operations so that the regulators can ramp * together. */ trace_regulator_enable_delay(rdev_get_name(rdev)); _regulator_enable_delay(delay); trace_regulator_enable_complete(rdev_get_name(rdev)); return 0; } /* locks held by regulator_enable() */ static int _regulator_enable(struct regulator_dev *rdev) { int ret; /* check voltage and requested load before enabling */ if (rdev->constraints && (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) drms_uA_update(rdev); if (rdev->use_count == 0) { /* The regulator may on if it's not switchable or left on */ ret = _regulator_is_enabled(rdev); if (ret == -EINVAL || ret == 0) { if (!_regulator_can_change_status(rdev)) return -EPERM; ret = _regulator_do_enable(rdev); if (ret < 0) return ret; } else if (ret < 0) { rdev_err(rdev, "is_enabled() failed: %d\n", ret); return ret; } /* Fallthrough on positive return values - already enabled */ } rdev->use_count++; return 0; } /** * regulator_enable - enable regulator output * @regulator: regulator source * * Request that the regulator be enabled with the regulator output at * the predefined voltage or current value. Calls to regulator_enable() * must be balanced with calls to regulator_disable(). * * NOTE: the output value can be set by other drivers, boot loader or may be * hardwired in the regulator. */ int regulator_enable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; if (regulator->always_on) return 0; if (rdev->supply) { ret = regulator_enable(rdev->supply); if (ret != 0) return ret; } mutex_lock(&rdev->mutex); ret = _regulator_enable(rdev); mutex_unlock(&rdev->mutex); if (ret != 0 && rdev->supply) regulator_disable(rdev->supply); return ret; } EXPORT_SYMBOL_GPL(regulator_enable); static int _regulator_do_disable(struct regulator_dev *rdev) { int ret; trace_regulator_disable(rdev_get_name(rdev)); if (rdev->ena_pin) { if (rdev->ena_gpio_state) { ret = regulator_ena_gpio_ctrl(rdev, false); if (ret < 0) return ret; rdev->ena_gpio_state = 0; } } else if (rdev->desc->ops->disable) { ret = rdev->desc->ops->disable(rdev); if (ret != 0) return ret; } /* cares about last_off_jiffy only if off_on_delay is required by * device. */ if (rdev->desc->off_on_delay) rdev->last_off_jiffy = jiffies; trace_regulator_disable_complete(rdev_get_name(rdev)); return 0; } /* locks held by regulator_disable() */ static int _regulator_disable(struct regulator_dev *rdev) { int ret = 0; if (WARN(rdev->use_count <= 0, "unbalanced disables for %s\n", rdev_get_name(rdev))) return -EIO; /* are we the last user and permitted to disable ? */ if (rdev->use_count == 1 && (rdev->constraints && !rdev->constraints->always_on)) { /* we are last user */ if (_regulator_can_change_status(rdev)) { ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_DISABLE, NULL); if (ret & NOTIFY_STOP_MASK) return -EINVAL; ret = _regulator_do_disable(rdev); if (ret < 0) { rdev_err(rdev, "failed to disable\n"); _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_DISABLE, NULL); return ret; } _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, NULL); } rdev->use_count = 0; } else if (rdev->use_count > 1) { if (rdev->constraints && (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) drms_uA_update(rdev); rdev->use_count--; } return ret; } /** * regulator_disable - disable regulator output * @regulator: regulator source * * Disable the regulator output voltage or current. Calls to * regulator_enable() must be balanced with calls to * regulator_disable(). * * NOTE: this will only disable the regulator output if no other consumer * devices have it enabled, the regulator device supports disabling and * machine constraints permit this operation. */ int regulator_disable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; if (regulator->always_on) return 0; mutex_lock(&rdev->mutex); ret = _regulator_disable(rdev); mutex_unlock(&rdev->mutex); if (ret == 0 && rdev->supply) regulator_disable(rdev->supply); return ret; } EXPORT_SYMBOL_GPL(regulator_disable); /* locks held by regulator_force_disable() */ static int _regulator_force_disable(struct regulator_dev *rdev) { int ret = 0; ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | REGULATOR_EVENT_PRE_DISABLE, NULL); if (ret & NOTIFY_STOP_MASK) return -EINVAL; ret = _regulator_do_disable(rdev); if (ret < 0) { rdev_err(rdev, "failed to force disable\n"); _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | REGULATOR_EVENT_ABORT_DISABLE, NULL); return ret; } _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | REGULATOR_EVENT_DISABLE, NULL); return 0; } /** * regulator_force_disable - force disable regulator output * @regulator: regulator source * * Forcibly disable the regulator output voltage or current. * NOTE: this *will* disable the regulator output even if other consumer * devices have it enabled. This should be used for situations when device * damage will likely occur if the regulator is not disabled (e.g. over temp). */ int regulator_force_disable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); regulator->uA_load = 0; ret = _regulator_force_disable(regulator->rdev); mutex_unlock(&rdev->mutex); if (rdev->supply) while (rdev->open_count--) regulator_disable(rdev->supply); return ret; } EXPORT_SYMBOL_GPL(regulator_force_disable); static void regulator_disable_work(struct work_struct *work) { struct regulator_dev *rdev = container_of(work, struct regulator_dev, disable_work.work); int count, i, ret; mutex_lock(&rdev->mutex); BUG_ON(!rdev->deferred_disables); count = rdev->deferred_disables; rdev->deferred_disables = 0; for (i = 0; i < count; i++) { ret = _regulator_disable(rdev); if (ret != 0) rdev_err(rdev, "Deferred disable failed: %d\n", ret); } mutex_unlock(&rdev->mutex); if (rdev->supply) { for (i = 0; i < count; i++) { ret = regulator_disable(rdev->supply); if (ret != 0) { rdev_err(rdev, "Supply disable failed: %d\n", ret); } } } } /** * regulator_disable_deferred - disable regulator output with delay * @regulator: regulator source * @ms: miliseconds until the regulator is disabled * * Execute regulator_disable() on the regulator after a delay. This * is intended for use with devices that require some time to quiesce. * * NOTE: this will only disable the regulator output if no other consumer * devices have it enabled, the regulator device supports disabling and * machine constraints permit this operation. */ int regulator_disable_deferred(struct regulator *regulator, int ms) { struct regulator_dev *rdev = regulator->rdev; int ret; if (regulator->always_on) return 0; if (!ms) return regulator_disable(regulator); mutex_lock(&rdev->mutex); rdev->deferred_disables++; mutex_unlock(&rdev->mutex); ret = queue_delayed_work(system_power_efficient_wq, &rdev->disable_work, msecs_to_jiffies(ms)); if (ret < 0) return ret; else return 0; } EXPORT_SYMBOL_GPL(regulator_disable_deferred); static int _regulator_is_enabled(struct regulator_dev *rdev) { /* A GPIO control always takes precedence */ if (rdev->ena_pin) return rdev->ena_gpio_state; /* If we don't know then assume that the regulator is always on */ if (!rdev->desc->ops->is_enabled) return 1; return rdev->desc->ops->is_enabled(rdev); } /** * regulator_is_enabled - is the regulator output enabled * @regulator: regulator source * * Returns positive if the regulator driver backing the source/client * has requested that the device be enabled, zero if it hasn't, else a * negative errno code. * * Note that the device backing this regulator handle can have multiple * users, so it might be enabled even if regulator_enable() was never * called for this particular source. */ int regulator_is_enabled(struct regulator *regulator) { int ret; if (regulator->always_on) return 1; mutex_lock(®ulator->rdev->mutex); ret = _regulator_is_enabled(regulator->rdev); mutex_unlock(®ulator->rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_is_enabled); /** * regulator_can_change_voltage - check if regulator can change voltage * @regulator: regulator source * * Returns positive if the regulator driver backing the source/client * can change its voltage, false otherwise. Useful for detecting fixed * or dummy regulators and disabling voltage change logic in the client * driver. */ int regulator_can_change_voltage(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; if (rdev->constraints && (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) return 1; if (rdev->desc->continuous_voltage_range && rdev->constraints->min_uV && rdev->constraints->max_uV && rdev->constraints->min_uV != rdev->constraints->max_uV) return 1; } return 0; } EXPORT_SYMBOL_GPL(regulator_can_change_voltage); /** * regulator_count_voltages - count regulator_list_voltage() selectors * @regulator: regulator source * * Returns number of selectors, or negative errno. Selectors are * numbered starting at zero, and typically correspond to bitfields * in hardware registers. */ int regulator_count_voltages(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; if (rdev->desc->n_voltages) return rdev->desc->n_voltages; if (!rdev->supply) return -EINVAL; return regulator_count_voltages(rdev->supply); } EXPORT_SYMBOL_GPL(regulator_count_voltages); /** * regulator_list_voltage - enumerate supported voltages * @regulator: regulator source * @selector: identify voltage to list * Context: can sleep * * Returns a voltage that can be passed to @regulator_set_voltage(), * zero if this selector code can't be used on this system, or a * negative errno. */ int regulator_list_voltage(struct regulator *regulator, unsigned selector) { struct regulator_dev *rdev = regulator->rdev; const struct regulator_ops *ops = rdev->desc->ops; int ret; if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) return rdev->desc->fixed_uV; if (ops->list_voltage) { if (selector >= rdev->desc->n_voltages) return -EINVAL; mutex_lock(&rdev->mutex); ret = ops->list_voltage(rdev, selector); mutex_unlock(&rdev->mutex); } else if (rdev->supply) { ret = regulator_list_voltage(rdev->supply, selector); } else { return -EINVAL; } if (ret > 0) { if (ret < rdev->constraints->min_uV) ret = 0; else if (ret > rdev->constraints->max_uV) ret = 0; } return ret; } EXPORT_SYMBOL_GPL(regulator_list_voltage); /** * regulator_get_regmap - get the regulator's register map * @regulator: regulator source * * Returns the register map for the given regulator, or an ERR_PTR value * if the regulator doesn't use regmap. */ struct regmap *regulator_get_regmap(struct regulator *regulator) { struct regmap *map = regulator->rdev->regmap; return map ? map : ERR_PTR(-EOPNOTSUPP); } /** * regulator_get_hardware_vsel_register - get the HW voltage selector register * @regulator: regulator source * @vsel_reg: voltage selector register, output parameter * @vsel_mask: mask for voltage selector bitfield, output parameter * * Returns the hardware register offset and bitmask used for setting the * regulator voltage. This might be useful when configuring voltage-scaling * hardware or firmware that can make I2C requests behind the kernel's back, * for example. * * On success, the output parameters @vsel_reg and @vsel_mask are filled in * and 0 is returned, otherwise a negative errno is returned. */ int regulator_get_hardware_vsel_register(struct regulator *regulator, unsigned *vsel_reg, unsigned *vsel_mask) { struct regulator_dev *rdev = regulator->rdev; const struct regulator_ops *ops = rdev->desc->ops; if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) return -EOPNOTSUPP; *vsel_reg = rdev->desc->vsel_reg; *vsel_mask = rdev->desc->vsel_mask; return 0; } EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); /** * regulator_list_hardware_vsel - get the HW-specific register value for a selector * @regulator: regulator source * @selector: identify voltage to list * * Converts the selector to a hardware-specific voltage selector that can be * directly written to the regulator registers. The address of the voltage * register can be determined by calling @regulator_get_hardware_vsel_register. * * On error a negative errno is returned. */ int regulator_list_hardware_vsel(struct regulator *regulator, unsigned selector) { struct regulator_dev *rdev = regulator->rdev; const struct regulator_ops *ops = rdev->desc->ops; if (selector >= rdev->desc->n_voltages) return -EINVAL; if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) return -EOPNOTSUPP; return selector; } EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); /** * regulator_get_linear_step - return the voltage step size between VSEL values * @regulator: regulator source * * Returns the voltage step size between VSEL values for linear * regulators, or return 0 if the regulator isn't a linear regulator. */ unsigned int regulator_get_linear_step(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; return rdev->desc->uV_step; } EXPORT_SYMBOL_GPL(regulator_get_linear_step); /** * regulator_is_supported_voltage - check if a voltage range can be supported * * @regulator: Regulator to check. * @min_uV: Minimum required voltage in uV. * @max_uV: Maximum required voltage in uV. * * Returns a boolean or a negative error code. */ int regulator_is_supported_voltage(struct regulator *regulator, int min_uV, int max_uV) { struct regulator_dev *rdev = regulator->rdev; int i, voltages, ret; /* If we can't change voltage check the current voltage */ if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { ret = regulator_get_voltage(regulator); if (ret >= 0) return min_uV <= ret && ret <= max_uV; else return ret; } /* Any voltage within constrains range is fine? */ if (rdev->desc->continuous_voltage_range) return min_uV >= rdev->constraints->min_uV && max_uV <= rdev->constraints->max_uV; ret = regulator_count_voltages(regulator); if (ret < 0) return ret; voltages = ret; for (i = 0; i < voltages; i++) { ret = regulator_list_voltage(regulator, i); if (ret >= min_uV && ret <= max_uV) return 1; } return 0; } EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); static int _regulator_call_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned *selector) { struct pre_voltage_change_data data; int ret; data.old_uV = _regulator_get_voltage(rdev); data.min_uV = min_uV; data.max_uV = max_uV; ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, &data); if (ret & NOTIFY_STOP_MASK) return -EINVAL; ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); if (ret >= 0) return ret; _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, (void *)data.old_uV); return ret; } static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, int uV, unsigned selector) { struct pre_voltage_change_data data; int ret; data.old_uV = _regulator_get_voltage(rdev); data.min_uV = uV; data.max_uV = uV; ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, &data); if (ret & NOTIFY_STOP_MASK) return -EINVAL; ret = rdev->desc->ops->set_voltage_sel(rdev, selector); if (ret >= 0) return ret; _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, (void *)data.old_uV); return ret; } static int _regulator_do_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV) { int ret; int delay = 0; int best_val = 0; unsigned int selector; int old_selector = -1; trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); min_uV += rdev->constraints->uV_offset; max_uV += rdev->constraints->uV_offset; /* * If we can't obtain the old selector there is not enough * info to call set_voltage_time_sel(). */ if (_regulator_is_enabled(rdev) && rdev->desc->ops->set_voltage_time_sel && rdev->desc->ops->get_voltage_sel) { old_selector = rdev->desc->ops->get_voltage_sel(rdev); if (old_selector < 0) return old_selector; } if (rdev->desc->ops->set_voltage) { ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, &selector); if (ret >= 0) { if (rdev->desc->ops->list_voltage) best_val = rdev->desc->ops->list_voltage(rdev, selector); else best_val = _regulator_get_voltage(rdev); } } else if (rdev->desc->ops->set_voltage_sel) { if (rdev->desc->ops->map_voltage) { ret = rdev->desc->ops->map_voltage(rdev, min_uV, max_uV); } else { if (rdev->desc->ops->list_voltage == regulator_list_voltage_linear) ret = regulator_map_voltage_linear(rdev, min_uV, max_uV); else if (rdev->desc->ops->list_voltage == regulator_list_voltage_linear_range) ret = regulator_map_voltage_linear_range(rdev, min_uV, max_uV); else ret = regulator_map_voltage_iterate(rdev, min_uV, max_uV); } if (ret >= 0) { best_val = rdev->desc->ops->list_voltage(rdev, ret); if (min_uV <= best_val && max_uV >= best_val) { selector = ret; if (old_selector == selector) ret = 0; else ret = _regulator_call_set_voltage_sel( rdev, best_val, selector); } else { ret = -EINVAL; } } } else { ret = -EINVAL; } /* Call set_voltage_time_sel if successfully obtained old_selector */ if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 && old_selector != selector) { delay = rdev->desc->ops->set_voltage_time_sel(rdev, old_selector, selector); if (delay < 0) { rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", delay); delay = 0; } /* Insert any necessary delays */ if (delay >= 1000) { mdelay(delay / 1000); udelay(delay % 1000); } else if (delay) { udelay(delay); } } if (ret == 0 && best_val >= 0) { unsigned long data = best_val; _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, (void *)data); } trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); return ret; } /** * regulator_set_voltage - set regulator output voltage * @regulator: regulator source * @min_uV: Minimum required voltage in uV * @max_uV: Maximum acceptable voltage in uV * * Sets a voltage regulator to the desired output voltage. This can be set * during any regulator state. IOW, regulator can be disabled or enabled. * * If the regulator is enabled then the voltage will change to the new value * immediately otherwise if the regulator is disabled the regulator will * output at the new voltage when enabled. * * NOTE: If the regulator is shared between several devices then the lowest * request voltage that meets the system constraints will be used. * Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; int old_min_uV, old_max_uV; int current_uV; mutex_lock(&rdev->mutex); /* If we're setting the same range as last time the change * should be a noop (some cpufreq implementations use the same * voltage for multiple frequencies, for example). */ if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) goto out; /* If we're trying to set a range that overlaps the current voltage, * return succesfully even though the regulator does not support * changing the voltage. */ if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { current_uV = _regulator_get_voltage(rdev); if (min_uV <= current_uV && current_uV <= max_uV) { regulator->min_uV = min_uV; regulator->max_uV = max_uV; goto out; } } /* sanity check */ if (!rdev->desc->ops->set_voltage && !rdev->desc->ops->set_voltage_sel) { ret = -EINVAL; goto out; } /* constraints check */ ret = regulator_check_voltage(rdev, &min_uV, &max_uV); if (ret < 0) goto out; /* restore original values in case of error */ old_min_uV = regulator->min_uV; old_max_uV = regulator->max_uV; regulator->min_uV = min_uV; regulator->max_uV = max_uV; ret = regulator_check_consumers(rdev, &min_uV, &max_uV); if (ret < 0) goto out2; ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); if (ret < 0) goto out2; out: mutex_unlock(&rdev->mutex); return ret; out2: regulator->min_uV = old_min_uV; regulator->max_uV = old_max_uV; mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage); /** * regulator_set_voltage_time - get raise/fall time * @regulator: regulator source * @old_uV: starting voltage in microvolts * @new_uV: target voltage in microvolts * * Provided with the starting and ending voltage, this function attempts to * calculate the time in microseconds required to rise or fall to this new * voltage. */ int regulator_set_voltage_time(struct regulator *regulator, int old_uV, int new_uV) { struct regulator_dev *rdev = regulator->rdev; const struct regulator_ops *ops = rdev->desc->ops; int old_sel = -1; int new_sel = -1; int voltage; int i; /* Currently requires operations to do this */ if (!ops->list_voltage || !ops->set_voltage_time_sel || !rdev->desc->n_voltages) return -EINVAL; for (i = 0; i < rdev->desc->n_voltages; i++) { /* We only look for exact voltage matches here */ voltage = regulator_list_voltage(regulator, i); if (voltage < 0) return -EINVAL; if (voltage == 0) continue; if (voltage == old_uV) old_sel = i; if (voltage == new_uV) new_sel = i; } if (old_sel < 0 || new_sel < 0) return -EINVAL; return ops->set_voltage_time_sel(rdev, old_sel, new_sel); } EXPORT_SYMBOL_GPL(regulator_set_voltage_time); /** * regulator_set_voltage_time_sel - get raise/fall time * @rdev: regulator source device * @old_selector: selector for starting voltage * @new_selector: selector for target voltage * * Provided with the starting and target voltage selectors, this function * returns time in microseconds required to rise or fall to this new voltage * * Drivers providing ramp_delay in regulation_constraints can use this as their * set_voltage_time_sel() operation. */ int regulator_set_voltage_time_sel(struct regulator_dev *rdev, unsigned int old_selector, unsigned int new_selector) { unsigned int ramp_delay = 0; int old_volt, new_volt; if (rdev->constraints->ramp_delay) ramp_delay = rdev->constraints->ramp_delay; else if (rdev->desc->ramp_delay) ramp_delay = rdev->desc->ramp_delay; if (ramp_delay == 0) { rdev_warn(rdev, "ramp_delay not set\n"); return 0; } /* sanity check */ if (!rdev->desc->ops->list_voltage) return -EINVAL; old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); } EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); /** * regulator_sync_voltage - re-apply last regulator output voltage * @regulator: regulator source * * Re-apply the last configured voltage. This is intended to be used * where some external control source the consumer is cooperating with * has caused the configured voltage to change. */ int regulator_sync_voltage(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret, min_uV, max_uV; mutex_lock(&rdev->mutex); if (!rdev->desc->ops->set_voltage && !rdev->desc->ops->set_voltage_sel) { ret = -EINVAL; goto out; } /* This is only going to work if we've had a voltage configured. */ if (!regulator->min_uV && !regulator->max_uV) { ret = -EINVAL; goto out; } min_uV = regulator->min_uV; max_uV = regulator->max_uV; /* This should be a paranoia check... */ ret = regulator_check_voltage(rdev, &min_uV, &max_uV); if (ret < 0) goto out; ret = regulator_check_consumers(rdev, &min_uV, &max_uV); if (ret < 0) goto out; ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_sync_voltage); static int _regulator_get_voltage(struct regulator_dev *rdev) { int sel, ret; if (rdev->desc->ops->get_voltage_sel) { sel = rdev->desc->ops->get_voltage_sel(rdev); if (sel < 0) return sel; ret = rdev->desc->ops->list_voltage(rdev, sel); } else if (rdev->desc->ops->get_voltage) { ret = rdev->desc->ops->get_voltage(rdev); } else if (rdev->desc->ops->list_voltage) { ret = rdev->desc->ops->list_voltage(rdev, 0); } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { ret = rdev->desc->fixed_uV; } else if (rdev->supply) { ret = regulator_get_voltage(rdev->supply); } else { return -EINVAL; } if (ret < 0) return ret; return ret - rdev->constraints->uV_offset; } /** * regulator_get_voltage - get regulator output voltage * @regulator: regulator source * * This returns the current regulator voltage in uV. * * NOTE: If the regulator is disabled it will return the voltage value. This * function should not be used to determine regulator state. */ int regulator_get_voltage(struct regulator *regulator) { int ret; mutex_lock(®ulator->rdev->mutex); ret = _regulator_get_voltage(regulator->rdev); mutex_unlock(®ulator->rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_get_voltage); /** * regulator_set_current_limit - set regulator output current limit * @regulator: regulator source * @min_uA: Minimum supported current in uA * @max_uA: Maximum supported current in uA * * Sets current sink to the desired output current. This can be set during * any regulator state. IOW, regulator can be disabled or enabled. * * If the regulator is enabled then the current will change to the new value * immediately otherwise if the regulator is disabled the regulator will * output at the new current when enabled. * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_current_limit(struct regulator *regulator, int min_uA, int max_uA) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->set_current_limit) { ret = -EINVAL; goto out; } /* constraints check */ ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); if (ret < 0) goto out; ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_current_limit); static int _regulator_get_current_limit(struct regulator_dev *rdev) { int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->get_current_limit) { ret = -EINVAL; goto out; } ret = rdev->desc->ops->get_current_limit(rdev); out: mutex_unlock(&rdev->mutex); return ret; } /** * regulator_get_current_limit - get regulator output current * @regulator: regulator source * * This returns the current supplied by the specified current sink in uA. * * NOTE: If the regulator is disabled it will return the current value. This * function should not be used to determine regulator state. */ int regulator_get_current_limit(struct regulator *regulator) { return _regulator_get_current_limit(regulator->rdev); } EXPORT_SYMBOL_GPL(regulator_get_current_limit); /** * regulator_set_mode - set regulator operating mode * @regulator: regulator source * @mode: operating mode - one of the REGULATOR_MODE constants * * Set regulator operating mode to increase regulator efficiency or improve * regulation performance. * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_mode(struct regulator *regulator, unsigned int mode) { struct regulator_dev *rdev = regulator->rdev; int ret; int regulator_curr_mode; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->set_mode) { ret = -EINVAL; goto out; } /* return if the same mode is requested */ if (rdev->desc->ops->get_mode) { regulator_curr_mode = rdev->desc->ops->get_mode(rdev); if (regulator_curr_mode == mode) { ret = 0; goto out; } } /* constraints check */ ret = regulator_mode_constrain(rdev, &mode); if (ret < 0) goto out; ret = rdev->desc->ops->set_mode(rdev, mode); out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_mode); static unsigned int _regulator_get_mode(struct regulator_dev *rdev) { int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->get_mode) { ret = -EINVAL; goto out; } ret = rdev->desc->ops->get_mode(rdev); out: mutex_unlock(&rdev->mutex); return ret; } /** * regulator_get_mode - get regulator operating mode * @regulator: regulator source * * Get the current regulator operating mode. */ unsigned int regulator_get_mode(struct regulator *regulator) { return _regulator_get_mode(regulator->rdev); } EXPORT_SYMBOL_GPL(regulator_get_mode); /** * regulator_set_load - set regulator load * @regulator: regulator source * @uA_load: load current * * Notifies the regulator core of a new device load. This is then used by * DRMS (if enabled by constraints) to set the most efficient regulator * operating mode for the new regulator loading. * * Consumer devices notify their supply regulator of the maximum power * they will require (can be taken from device datasheet in the power * consumption tables) when they change operational status and hence power * state. Examples of operational state changes that can affect power * consumption are :- * * o Device is opened / closed. * o Device I/O is about to begin or has just finished. * o Device is idling in between work. * * This information is also exported via sysfs to userspace. * * DRMS will sum the total requested load on the regulator and change * to the most efficient operating mode if platform constraints allow. * * On error a negative errno is returned. */ int regulator_set_load(struct regulator *regulator, int uA_load) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); regulator->uA_load = uA_load; ret = drms_uA_update(rdev); mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_load); /** * regulator_allow_bypass - allow the regulator to go into bypass mode * * @regulator: Regulator to configure * @enable: enable or disable bypass mode * * Allow the regulator to go into bypass mode if all other consumers * for the regulator also enable bypass mode and the machine * constraints allow this. Bypass mode means that the regulator is * simply passing the input directly to the output with no regulation. */ int regulator_allow_bypass(struct regulator *regulator, bool enable) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; if (!rdev->desc->ops->set_bypass) return 0; if (rdev->constraints && !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) return 0; mutex_lock(&rdev->mutex); if (enable && !regulator->bypass) { rdev->bypass_count++; if (rdev->bypass_count == rdev->open_count) { ret = rdev->desc->ops->set_bypass(rdev, enable); if (ret != 0) rdev->bypass_count--; } } else if (!enable && regulator->bypass) { rdev->bypass_count--; if (rdev->bypass_count != rdev->open_count) { ret = rdev->desc->ops->set_bypass(rdev, enable); if (ret != 0) rdev->bypass_count++; } } if (ret == 0) regulator->bypass = enable; mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_allow_bypass); /** * regulator_register_notifier - register regulator event notifier * @regulator: regulator source * @nb: notifier block * * Register notifier block to receive regulator events. */ int regulator_register_notifier(struct regulator *regulator, struct notifier_block *nb) { return blocking_notifier_chain_register(®ulator->rdev->notifier, nb); } EXPORT_SYMBOL_GPL(regulator_register_notifier); /** * regulator_unregister_notifier - unregister regulator event notifier * @regulator: regulator source * @nb: notifier block * * Unregister regulator event notifier block. */ int regulator_unregister_notifier(struct regulator *regulator, struct notifier_block *nb) { return blocking_notifier_chain_unregister(®ulator->rdev->notifier, nb); } EXPORT_SYMBOL_GPL(regulator_unregister_notifier); /* notify regulator consumers and downstream regulator consumers. * Note mutex must be held by caller. */ static int _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { /* call rdev chain first */ return blocking_notifier_call_chain(&rdev->notifier, event, data); } /** * regulator_bulk_get - get multiple regulator consumers * * @dev: Device to supply * @num_consumers: Number of consumers to register * @consumers: Configuration of consumers; clients are stored here. * * @return 0 on success, an errno on failure. * * This helper function allows drivers to get several regulator * consumers in one operation. If any of the regulators cannot be * acquired then any regulators that were allocated will be freed * before returning to the caller. */ int regulator_bulk_get(struct device *dev, int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret; for (i = 0; i < num_consumers; i++) consumers[i].consumer = NULL; for (i = 0; i < num_consumers; i++) { consumers[i].consumer = regulator_get(dev, consumers[i].supply); if (IS_ERR(consumers[i].consumer)) { ret = PTR_ERR(consumers[i].consumer); dev_err(dev, "Failed to get supply '%s': %d\n", consumers[i].supply, ret); consumers[i].consumer = NULL; goto err; } } return 0; err: while (--i >= 0) regulator_put(consumers[i].consumer); return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_get); static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) { struct regulator_bulk_data *bulk = data; bulk->ret = regulator_enable(bulk->consumer); } /** * regulator_bulk_enable - enable multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * @return 0 on success, an errno on failure * * This convenience API allows consumers to enable multiple regulator * clients in a single API call. If any consumers cannot be enabled * then any others that were enabled will be disabled again prior to * return. */ int regulator_bulk_enable(int num_consumers, struct regulator_bulk_data *consumers) { ASYNC_DOMAIN_EXCLUSIVE(async_domain); int i; int ret = 0; for (i = 0; i < num_consumers; i++) { if (consumers[i].consumer->always_on) consumers[i].ret = 0; else async_schedule_domain(regulator_bulk_enable_async, &consumers[i], &async_domain); } async_synchronize_full_domain(&async_domain); /* If any consumer failed we need to unwind any that succeeded */ for (i = 0; i < num_consumers; i++) { if (consumers[i].ret != 0) { ret = consumers[i].ret; goto err; } } return 0; err: for (i = 0; i < num_consumers; i++) { if (consumers[i].ret < 0) pr_err("Failed to enable %s: %d\n", consumers[i].supply, consumers[i].ret); else regulator_disable(consumers[i].consumer); } return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_enable); /** * regulator_bulk_disable - disable multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * @return 0 on success, an errno on failure * * This convenience API allows consumers to disable multiple regulator * clients in a single API call. If any consumers cannot be disabled * then any others that were disabled will be enabled again prior to * return. */ int regulator_bulk_disable(int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret, r; for (i = num_consumers - 1; i >= 0; --i) { ret = regulator_disable(consumers[i].consumer); if (ret != 0) goto err; } return 0; err: pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); for (++i; i < num_consumers; ++i) { r = regulator_enable(consumers[i].consumer); if (r != 0) pr_err("Failed to reename %s: %d\n", consumers[i].supply, r); } return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_disable); /** * regulator_bulk_force_disable - force disable multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * @return 0 on success, an errno on failure * * This convenience API allows consumers to forcibly disable multiple regulator * clients in a single API call. * NOTE: This should be used for situations when device damage will * likely occur if the regulators are not disabled (e.g. over temp). * Although regulator_force_disable function call for some consumers can * return error numbers, the function is called for all consumers. */ int regulator_bulk_force_disable(int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret; for (i = 0; i < num_consumers; i++) consumers[i].ret = regulator_force_disable(consumers[i].consumer); for (i = 0; i < num_consumers; i++) { if (consumers[i].ret != 0) { ret = consumers[i].ret; goto out; } } return 0; out: return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); /** * regulator_bulk_free - free multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * * This convenience API allows consumers to free multiple regulator * clients in a single API call. */ void regulator_bulk_free(int num_consumers, struct regulator_bulk_data *consumers) { int i; for (i = 0; i < num_consumers; i++) { regulator_put(consumers[i].consumer); consumers[i].consumer = NULL; } } EXPORT_SYMBOL_GPL(regulator_bulk_free); /** * regulator_notifier_call_chain - call regulator event notifier * @rdev: regulator source * @event: notifier block * @data: callback-specific data. * * Called by regulator drivers to notify clients a regulator event has * occurred. We also notify regulator clients downstream. * Note lock must be held by caller. */ int regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { _notifier_call_chain(rdev, event, data); return NOTIFY_DONE; } EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); /** * regulator_mode_to_status - convert a regulator mode into a status * * @mode: Mode to convert * * Convert a regulator mode into a status. */ int regulator_mode_to_status(unsigned int mode) { switch (mode) { case REGULATOR_MODE_FAST: return REGULATOR_STATUS_FAST; case REGULATOR_MODE_NORMAL: return REGULATOR_STATUS_NORMAL; case REGULATOR_MODE_IDLE: return REGULATOR_STATUS_IDLE; case REGULATOR_MODE_STANDBY: return REGULATOR_STATUS_STANDBY; default: return REGULATOR_STATUS_UNDEFINED; } } EXPORT_SYMBOL_GPL(regulator_mode_to_status); static struct attribute *regulator_dev_attrs[] = { &dev_attr_name.attr, &dev_attr_num_users.attr, &dev_attr_type.attr, &dev_attr_microvolts.attr, &dev_attr_microamps.attr, &dev_attr_opmode.attr, &dev_attr_state.attr, &dev_attr_status.attr, &dev_attr_bypass.attr, &dev_attr_requested_microamps.attr, &dev_attr_min_microvolts.attr, &dev_attr_max_microvolts.attr, &dev_attr_min_microamps.attr, &dev_attr_max_microamps.attr, &dev_attr_suspend_standby_state.attr, &dev_attr_suspend_mem_state.attr, &dev_attr_suspend_disk_state.attr, &dev_attr_suspend_standby_microvolts.attr, &dev_attr_suspend_mem_microvolts.attr, &dev_attr_suspend_disk_microvolts.attr, &dev_attr_suspend_standby_mode.attr, &dev_attr_suspend_mem_mode.attr, &dev_attr_suspend_disk_mode.attr, NULL }; /* * To avoid cluttering sysfs (and memory) with useless state, only * create attributes that can be meaningfully displayed. */ static umode_t regulator_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); const struct regulator_ops *ops = rdev->desc->ops; umode_t mode = attr->mode; /* these three are always present */ if (attr == &dev_attr_name.attr || attr == &dev_attr_num_users.attr || attr == &dev_attr_type.attr) return mode; /* some attributes need specific methods to be displayed */ if (attr == &dev_attr_microvolts.attr) { if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) return mode; return 0; } if (attr == &dev_attr_microamps.attr) return ops->get_current_limit ? mode : 0; if (attr == &dev_attr_opmode.attr) return ops->get_mode ? mode : 0; if (attr == &dev_attr_state.attr) return (rdev->ena_pin || ops->is_enabled) ? mode : 0; if (attr == &dev_attr_status.attr) return ops->get_status ? mode : 0; if (attr == &dev_attr_bypass.attr) return ops->get_bypass ? mode : 0; /* some attributes are type-specific */ if (attr == &dev_attr_requested_microamps.attr) return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; /* constraints need specific supporting methods */ if (attr == &dev_attr_min_microvolts.attr || attr == &dev_attr_max_microvolts.attr) return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; if (attr == &dev_attr_min_microamps.attr || attr == &dev_attr_max_microamps.attr) return ops->set_current_limit ? mode : 0; if (attr == &dev_attr_suspend_standby_state.attr || attr == &dev_attr_suspend_mem_state.attr || attr == &dev_attr_suspend_disk_state.attr) return mode; if (attr == &dev_attr_suspend_standby_microvolts.attr || attr == &dev_attr_suspend_mem_microvolts.attr || attr == &dev_attr_suspend_disk_microvolts.attr) return ops->set_suspend_voltage ? mode : 0; if (attr == &dev_attr_suspend_standby_mode.attr || attr == &dev_attr_suspend_mem_mode.attr || attr == &dev_attr_suspend_disk_mode.attr) return ops->set_suspend_mode ? mode : 0; return mode; } static const struct attribute_group regulator_dev_group = { .attrs = regulator_dev_attrs, .is_visible = regulator_attr_is_visible, }; static const struct attribute_group *regulator_dev_groups[] = { ®ulator_dev_group, NULL }; static void regulator_dev_release(struct device *dev) { struct regulator_dev *rdev = dev_get_drvdata(dev); kfree(rdev); } static struct class regulator_class = { .name = "regulator", .dev_release = regulator_dev_release, .dev_groups = regulator_dev_groups, }; static void rdev_init_debugfs(struct regulator_dev *rdev) { struct device *parent = rdev->dev.parent; const char *rname = rdev_get_name(rdev); char name[NAME_MAX]; /* Avoid duplicate debugfs directory names */ if (parent && rname == rdev->desc->name) { snprintf(name, sizeof(name), "%s-%s", dev_name(parent), rname); rname = name; } rdev->debugfs = debugfs_create_dir(rname, debugfs_root); if (!rdev->debugfs) { rdev_warn(rdev, "Failed to create debugfs directory\n"); return; } debugfs_create_u32("use_count", 0444, rdev->debugfs, &rdev->use_count); debugfs_create_u32("open_count", 0444, rdev->debugfs, &rdev->open_count); debugfs_create_u32("bypass_count", 0444, rdev->debugfs, &rdev->bypass_count); } /** * regulator_register - register regulator * @regulator_desc: regulator to register * @cfg: runtime configuration for regulator * * Called by regulator drivers to register a regulator. * Returns a valid pointer to struct regulator_dev on success * or an ERR_PTR() on error. */ struct regulator_dev * regulator_register(const struct regulator_desc *regulator_desc, const struct regulator_config *cfg) { const struct regulation_constraints *constraints = NULL; const struct regulator_init_data *init_data; struct regulator_config *config = NULL; static atomic_t regulator_no = ATOMIC_INIT(-1); struct regulator_dev *rdev; struct device *dev; int ret, i; if (regulator_desc == NULL || cfg == NULL) return ERR_PTR(-EINVAL); dev = cfg->dev; WARN_ON(!dev); if (regulator_desc->name == NULL || regulator_desc->ops == NULL) return ERR_PTR(-EINVAL); if (regulator_desc->type != REGULATOR_VOLTAGE && regulator_desc->type != REGULATOR_CURRENT) return ERR_PTR(-EINVAL); /* Only one of each should be implemented */ WARN_ON(regulator_desc->ops->get_voltage && regulator_desc->ops->get_voltage_sel); WARN_ON(regulator_desc->ops->set_voltage && regulator_desc->ops->set_voltage_sel); /* If we're using selectors we must implement list_voltage. */ if (regulator_desc->ops->get_voltage_sel && !regulator_desc->ops->list_voltage) { return ERR_PTR(-EINVAL); } if (regulator_desc->ops->set_voltage_sel && !regulator_desc->ops->list_voltage) { return ERR_PTR(-EINVAL); } rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); if (rdev == NULL) return ERR_PTR(-ENOMEM); /* * Duplicate the config so the driver could override it after * parsing init data. */ config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); if (config == NULL) { kfree(rdev); return ERR_PTR(-ENOMEM); } init_data = regulator_of_get_init_data(dev, regulator_desc, config, &rdev->dev.of_node); if (!init_data) { init_data = config->init_data; rdev->dev.of_node = of_node_get(config->of_node); } mutex_lock(®ulator_list_mutex); mutex_init(&rdev->mutex); rdev->reg_data = config->driver_data; rdev->owner = regulator_desc->owner; rdev->desc = regulator_desc; if (config->regmap) rdev->regmap = config->regmap; else if (dev_get_regmap(dev, NULL)) rdev->regmap = dev_get_regmap(dev, NULL); else if (dev->parent) rdev->regmap = dev_get_regmap(dev->parent, NULL); INIT_LIST_HEAD(&rdev->consumer_list); INIT_LIST_HEAD(&rdev->list); BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); /* preform any regulator specific init */ if (init_data && init_data->regulator_init) { ret = init_data->regulator_init(rdev->reg_data); if (ret < 0) goto clean; } /* register with sysfs */ rdev->dev.class = ®ulator_class; rdev->dev.parent = dev; dev_set_name(&rdev->dev, "regulator.%lu", (unsigned long) atomic_inc_return(®ulator_no)); ret = device_register(&rdev->dev); if (ret != 0) { put_device(&rdev->dev); goto clean; } dev_set_drvdata(&rdev->dev, rdev); if ((config->ena_gpio || config->ena_gpio_initialized) && gpio_is_valid(config->ena_gpio)) { ret = regulator_ena_gpio_request(rdev, config); if (ret != 0) { rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", config->ena_gpio, ret); goto wash; } } /* set regulator constraints */ if (init_data) constraints = &init_data->constraints; ret = set_machine_constraints(rdev, constraints); if (ret < 0) goto scrub; if (init_data && init_data->supply_regulator) rdev->supply_name = init_data->supply_regulator; else if (regulator_desc->supply_name) rdev->supply_name = regulator_desc->supply_name; /* add consumers devices */ if (init_data) { for (i = 0; i < init_data->num_consumer_supplies; i++) { ret = set_consumer_device_supply(rdev, init_data->consumer_supplies[i].dev_name, init_data->consumer_supplies[i].supply); if (ret < 0) { dev_err(dev, "Failed to set supply %s\n", init_data->consumer_supplies[i].supply); goto unset_supplies; } } } list_add(&rdev->list, ®ulator_list); rdev_init_debugfs(rdev); out: mutex_unlock(®ulator_list_mutex); kfree(config); return rdev; unset_supplies: unset_regulator_supplies(rdev); scrub: regulator_ena_gpio_free(rdev); kfree(rdev->constraints); wash: device_unregister(&rdev->dev); /* device core frees rdev */ rdev = ERR_PTR(ret); goto out; clean: kfree(rdev); rdev = ERR_PTR(ret); goto out; } EXPORT_SYMBOL_GPL(regulator_register); /** * regulator_unregister - unregister regulator * @rdev: regulator to unregister * * Called by regulator drivers to unregister a regulator. */ void regulator_unregister(struct regulator_dev *rdev) { if (rdev == NULL) return; if (rdev->supply) { while (rdev->use_count--) regulator_disable(rdev->supply); regulator_put(rdev->supply); } mutex_lock(®ulator_list_mutex); debugfs_remove_recursive(rdev->debugfs); flush_work(&rdev->disable_work.work); WARN_ON(rdev->open_count); unset_regulator_supplies(rdev); list_del(&rdev->list); kfree(rdev->constraints); regulator_ena_gpio_free(rdev); of_node_put(rdev->dev.of_node); device_unregister(&rdev->dev); mutex_unlock(®ulator_list_mutex); } EXPORT_SYMBOL_GPL(regulator_unregister); /** * regulator_suspend_prepare - prepare regulators for system wide suspend * @state: system suspend state * * Configure each regulator with it's suspend operating parameters for state. * This will usually be called by machine suspend code prior to supending. */ int regulator_suspend_prepare(suspend_state_t state) { struct regulator_dev *rdev; int ret = 0; /* ON is handled by regulator active state */ if (state == PM_SUSPEND_ON) return -EINVAL; mutex_lock(®ulator_list_mutex); list_for_each_entry(rdev, ®ulator_list, list) { mutex_lock(&rdev->mutex); ret = suspend_prepare(rdev, state); mutex_unlock(&rdev->mutex); if (ret < 0) { rdev_err(rdev, "failed to prepare\n"); goto out; } } out: mutex_unlock(®ulator_list_mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_suspend_prepare); /** * regulator_suspend_finish - resume regulators from system wide suspend * * Turn on regulators that might be turned off by regulator_suspend_prepare * and that should be turned on according to the regulators properties. */ int regulator_suspend_finish(void) { struct regulator_dev *rdev; int ret = 0, error; mutex_lock(®ulator_list_mutex); list_for_each_entry(rdev, ®ulator_list, list) { mutex_lock(&rdev->mutex); if (rdev->use_count > 0 || rdev->constraints->always_on) { if (!_regulator_is_enabled(rdev)) { error = _regulator_do_enable(rdev); if (error) ret = error; } } else { if (!have_full_constraints()) goto unlock; if (!_regulator_is_enabled(rdev)) goto unlock; error = _regulator_do_disable(rdev); if (error) ret = error; } unlock: mutex_unlock(&rdev->mutex); } mutex_unlock(®ulator_list_mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_suspend_finish); /** * regulator_has_full_constraints - the system has fully specified constraints * * Calling this function will cause the regulator API to disable all * regulators which have a zero use count and don't have an always_on * constraint in a late_initcall. * * The intention is that this will become the default behaviour in a * future kernel release so users are encouraged to use this facility * now. */ void regulator_has_full_constraints(void) { has_full_constraints = 1; } EXPORT_SYMBOL_GPL(regulator_has_full_constraints); /** * rdev_get_drvdata - get rdev regulator driver data * @rdev: regulator * * Get rdev regulator driver private data. This call can be used in the * regulator driver context. */ void *rdev_get_drvdata(struct regulator_dev *rdev) { return rdev->reg_data; } EXPORT_SYMBOL_GPL(rdev_get_drvdata); /** * regulator_get_drvdata - get regulator driver data * @regulator: regulator * * Get regulator driver private data. This call can be used in the consumer * driver context when non API regulator specific functions need to be called. */ void *regulator_get_drvdata(struct regulator *regulator) { return regulator->rdev->reg_data; } EXPORT_SYMBOL_GPL(regulator_get_drvdata); /** * regulator_set_drvdata - set regulator driver data * @regulator: regulator * @data: data */ void regulator_set_drvdata(struct regulator *regulator, void *data) { regulator->rdev->reg_data = data; } EXPORT_SYMBOL_GPL(regulator_set_drvdata); /** * regulator_get_id - get regulator ID * @rdev: regulator */ int rdev_get_id(struct regulator_dev *rdev) { return rdev->desc->id; } EXPORT_SYMBOL_GPL(rdev_get_id); struct device *rdev_get_dev(struct regulator_dev *rdev) { return &rdev->dev; } EXPORT_SYMBOL_GPL(rdev_get_dev); void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) { return reg_init_data->driver_data; } EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); #ifdef CONFIG_DEBUG_FS static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); ssize_t len, ret = 0; struct regulator_map *map; if (!buf) return -ENOMEM; list_for_each_entry(map, ®ulator_map_list, list) { len = snprintf(buf + ret, PAGE_SIZE - ret, "%s -> %s.%s\n", rdev_get_name(map->regulator), map->dev_name, map->supply); if (len >= 0) ret += len; if (ret > PAGE_SIZE) { ret = PAGE_SIZE; break; } } ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } #endif static const struct file_operations supply_map_fops = { #ifdef CONFIG_DEBUG_FS .read = supply_map_read_file, .llseek = default_llseek, #endif }; #ifdef CONFIG_DEBUG_FS static void regulator_summary_show_subtree(struct seq_file *s, struct regulator_dev *rdev, int level) { struct list_head *list = s->private; struct regulator_dev *child; struct regulation_constraints *c; struct regulator *consumer; if (!rdev) return; seq_printf(s, "%*s%-*s %3d %4d %6d ", level * 3 + 1, "", 30 - level * 3, rdev_get_name(rdev), rdev->use_count, rdev->open_count, rdev->bypass_count); seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); c = rdev->constraints; if (c) { switch (rdev->desc->type) { case REGULATOR_VOLTAGE: seq_printf(s, "%5dmV %5dmV ", c->min_uV / 1000, c->max_uV / 1000); break; case REGULATOR_CURRENT: seq_printf(s, "%5dmA %5dmA ", c->min_uA / 1000, c->max_uA / 1000); break; } } seq_puts(s, "\n"); list_for_each_entry(consumer, &rdev->consumer_list, list) { if (consumer->dev->class == ®ulator_class) continue; seq_printf(s, "%*s%-*s ", (level + 1) * 3 + 1, "", 30 - (level + 1) * 3, dev_name(consumer->dev)); switch (rdev->desc->type) { case REGULATOR_VOLTAGE: seq_printf(s, "%37dmV %5dmV", consumer->min_uV / 1000, consumer->max_uV / 1000); break; case REGULATOR_CURRENT: break; } seq_puts(s, "\n"); } list_for_each_entry(child, list, list) { /* handle only non-root regulators supplied by current rdev */ if (!child->supply || child->supply->rdev != rdev) continue; regulator_summary_show_subtree(s, child, level + 1); } } static int regulator_summary_show(struct seq_file *s, void *data) { struct list_head *list = s->private; struct regulator_dev *rdev; seq_puts(s, " regulator use open bypass voltage current min max\n"); seq_puts(s, "-------------------------------------------------------------------------------\n"); mutex_lock(®ulator_list_mutex); list_for_each_entry(rdev, list, list) { if (rdev->supply) continue; regulator_summary_show_subtree(s, rdev, 0); } mutex_unlock(®ulator_list_mutex); return 0; } static int regulator_summary_open(struct inode *inode, struct file *file) { return single_open(file, regulator_summary_show, inode->i_private); } #endif static const struct file_operations regulator_summary_fops = { #ifdef CONFIG_DEBUG_FS .open = regulator_summary_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, #endif }; static int __init regulator_init(void) { int ret; ret = class_register(®ulator_class); debugfs_root = debugfs_create_dir("regulator", NULL); if (!debugfs_root) pr_warn("regulator: Failed to create debugfs directory\n"); debugfs_create_file("supply_map", 0444, debugfs_root, NULL, &supply_map_fops); debugfs_create_file("regulator_summary", 0444, debugfs_root, ®ulator_list, ®ulator_summary_fops); regulator_dummy_init(); return ret; } /* init early to allow our consumers to complete system booting */ core_initcall(regulator_init); static int __init regulator_init_complete(void) { struct regulator_dev *rdev; const struct regulator_ops *ops; struct regulation_constraints *c; int enabled, ret; /* * Since DT doesn't provide an idiomatic mechanism for * enabling full constraints and since it's much more natural * with DT to provide them just assume that a DT enabled * system has full constraints. */ if (of_have_populated_dt()) has_full_constraints = true; mutex_lock(®ulator_list_mutex); /* If we have a full configuration then disable any regulators * we have permission to change the status for and which are * not in use or always_on. This is effectively the default * for DT and ACPI as they have full constraints. */ list_for_each_entry(rdev, ®ulator_list, list) { ops = rdev->desc->ops; c = rdev->constraints; if (c && c->always_on) continue; if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) continue; mutex_lock(&rdev->mutex); if (rdev->use_count) goto unlock; /* If we can't read the status assume it's on. */ if (ops->is_enabled) enabled = ops->is_enabled(rdev); else enabled = 1; if (!enabled) goto unlock; if (have_full_constraints()) { /* We log since this may kill the system if it * goes wrong. */ rdev_info(rdev, "disabling\n"); ret = _regulator_do_disable(rdev); if (ret != 0) rdev_err(rdev, "couldn't disable: %d\n", ret); } else { /* The intention is that in future we will * assume that full constraints are provided * so warn even if we aren't going to do * anything here. */ rdev_warn(rdev, "incomplete constraints, leaving on\n"); } unlock: mutex_unlock(&rdev->mutex); } mutex_unlock(®ulator_list_mutex); return 0; } late_initcall_sync(regulator_init_complete);