/* * core.c -- Voltage/Current Regulator framework. * * Copyright 2007, 2008 Wolfson Microelectronics PLC. * Copyright 2008 SlimLogic Ltd. * * Author: Liam Girdwood <lrg@slimlogic.co.uk> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/device.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/suspend.h> #include <linux/regulator/consumer.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #define REGULATOR_VERSION "0.5" static DEFINE_MUTEX(regulator_list_mutex); static LIST_HEAD(regulator_list); static LIST_HEAD(regulator_map_list); static int has_full_constraints; /* * struct regulator_map * * Used to provide symbolic supply names to devices. */ struct regulator_map { struct list_head list; struct device *dev; const char *supply; struct regulator_dev *regulator; }; /* * struct regulator * * One for each consumer device. */ struct regulator { struct device *dev; struct list_head list; int uA_load; int min_uV; int max_uV; char *supply_name; struct device_attribute dev_attr; struct regulator_dev *rdev; }; static int _regulator_is_enabled(struct regulator_dev *rdev); static int _regulator_disable(struct regulator_dev *rdev); static int _regulator_get_voltage(struct regulator_dev *rdev); static int _regulator_get_current_limit(struct regulator_dev *rdev); static unsigned int _regulator_get_mode(struct regulator_dev *rdev); static void _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data); /* gets the regulator for a given consumer device */ static struct regulator *get_device_regulator(struct device *dev) { struct regulator *regulator = NULL; struct regulator_dev *rdev; mutex_lock(®ulator_list_mutex); list_for_each_entry(rdev, ®ulator_list, list) { mutex_lock(&rdev->mutex); list_for_each_entry(regulator, &rdev->consumer_list, list) { if (regulator->dev == dev) { mutex_unlock(&rdev->mutex); mutex_unlock(®ulator_list_mutex); return regulator; } } mutex_unlock(&rdev->mutex); } mutex_unlock(®ulator_list_mutex); return NULL; } /* Platform voltage constraint check */ static int regulator_check_voltage(struct regulator_dev *rdev, int *min_uV, int *max_uV) { BUG_ON(*min_uV > *max_uV); if (!rdev->constraints) { printk(KERN_ERR "%s: no constraints for %s\n", __func__, rdev->desc->name); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { printk(KERN_ERR "%s: operation not allowed for %s\n", __func__, rdev->desc->name); return -EPERM; } if (*max_uV > rdev->constraints->max_uV) *max_uV = rdev->constraints->max_uV; if (*min_uV < rdev->constraints->min_uV) *min_uV = rdev->constraints->min_uV; if (*min_uV > *max_uV) return -EINVAL; return 0; } /* current constraint check */ static int regulator_check_current_limit(struct regulator_dev *rdev, int *min_uA, int *max_uA) { BUG_ON(*min_uA > *max_uA); if (!rdev->constraints) { printk(KERN_ERR "%s: no constraints for %s\n", __func__, rdev->desc->name); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { printk(KERN_ERR "%s: operation not allowed for %s\n", __func__, rdev->desc->name); return -EPERM; } if (*max_uA > rdev->constraints->max_uA) *max_uA = rdev->constraints->max_uA; if (*min_uA < rdev->constraints->min_uA) *min_uA = rdev->constraints->min_uA; if (*min_uA > *max_uA) return -EINVAL; return 0; } /* operating mode constraint check */ static int regulator_check_mode(struct regulator_dev *rdev, int mode) { switch (mode) { case REGULATOR_MODE_FAST: case REGULATOR_MODE_NORMAL: case REGULATOR_MODE_IDLE: case REGULATOR_MODE_STANDBY: break; default: return -EINVAL; } if (!rdev->constraints) { printk(KERN_ERR "%s: no constraints for %s\n", __func__, rdev->desc->name); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { printk(KERN_ERR "%s: operation not allowed for %s\n", __func__, rdev->desc->name); return -EPERM; } if (!(rdev->constraints->valid_modes_mask & mode)) { printk(KERN_ERR "%s: invalid mode %x for %s\n", __func__, mode, rdev->desc->name); return -EINVAL; } return 0; } /* dynamic regulator mode switching constraint check */ static int regulator_check_drms(struct regulator_dev *rdev) { if (!rdev->constraints) { printk(KERN_ERR "%s: no constraints for %s\n", __func__, rdev->desc->name); return -ENODEV; } if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { printk(KERN_ERR "%s: operation not allowed for %s\n", __func__, rdev->desc->name); return -EPERM; } return 0; } static ssize_t device_requested_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator *regulator; regulator = get_device_regulator(dev); if (regulator == NULL) return 0; return sprintf(buf, "%d\n", regulator->uA_load); } static ssize_t regulator_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); ssize_t ret; mutex_lock(&rdev->mutex); ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); mutex_unlock(&rdev->mutex); return ret; } static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); static ssize_t regulator_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); } static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); static ssize_t regulator_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); const char *name; if (rdev->constraints->name) name = rdev->constraints->name; else if (rdev->desc->name) name = rdev->desc->name; else name = ""; return sprintf(buf, "%s\n", name); } static ssize_t regulator_print_opmode(char *buf, int mode) { switch (mode) { case REGULATOR_MODE_FAST: return sprintf(buf, "fast\n"); case REGULATOR_MODE_NORMAL: return sprintf(buf, "normal\n"); case REGULATOR_MODE_IDLE: return sprintf(buf, "idle\n"); case REGULATOR_MODE_STANDBY: return sprintf(buf, "standby\n"); } return sprintf(buf, "unknown\n"); } static ssize_t regulator_opmode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, _regulator_get_mode(rdev)); } static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); static ssize_t regulator_print_state(char *buf, int state) { if (state > 0) return sprintf(buf, "enabled\n"); else if (state == 0) return sprintf(buf, "disabled\n"); else return sprintf(buf, "unknown\n"); } static ssize_t regulator_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, _regulator_is_enabled(rdev)); } static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); static ssize_t regulator_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); int status; char *label; status = rdev->desc->ops->get_status(rdev); if (status < 0) return status; switch (status) { case REGULATOR_STATUS_OFF: label = "off"; break; case REGULATOR_STATUS_ON: label = "on"; break; case REGULATOR_STATUS_ERROR: label = "error"; break; case REGULATOR_STATUS_FAST: label = "fast"; break; case REGULATOR_STATUS_NORMAL: label = "normal"; break; case REGULATOR_STATUS_IDLE: label = "idle"; break; case REGULATOR_STATUS_STANDBY: label = "standby"; break; default: return -ERANGE; } return sprintf(buf, "%s\n", label); } static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); static ssize_t regulator_min_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->min_uA); } static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); static ssize_t regulator_max_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->max_uA); } static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); static ssize_t regulator_min_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->min_uV); } static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); static ssize_t regulator_max_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); if (!rdev->constraints) return sprintf(buf, "constraint not defined\n"); return sprintf(buf, "%d\n", rdev->constraints->max_uV); } static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); static ssize_t regulator_total_uA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); struct regulator *regulator; int uA = 0; mutex_lock(&rdev->mutex); list_for_each_entry(regulator, &rdev->consumer_list, list) uA += regulator->uA_load; mutex_unlock(&rdev->mutex); return sprintf(buf, "%d\n", uA); } static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); static ssize_t regulator_num_users_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->use_count); } static ssize_t regulator_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); switch (rdev->desc->type) { case REGULATOR_VOLTAGE: return sprintf(buf, "voltage\n"); case REGULATOR_CURRENT: return sprintf(buf, "current\n"); } return sprintf(buf, "unknown\n"); } static ssize_t regulator_suspend_mem_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); } static DEVICE_ATTR(suspend_mem_microvolts, 0444, regulator_suspend_mem_uV_show, NULL); static ssize_t regulator_suspend_disk_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); } static DEVICE_ATTR(suspend_disk_microvolts, 0444, regulator_suspend_disk_uV_show, NULL); static ssize_t regulator_suspend_standby_uV_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); } static DEVICE_ATTR(suspend_standby_microvolts, 0444, regulator_suspend_standby_uV_show, NULL); static ssize_t regulator_suspend_mem_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_mem.mode); } static DEVICE_ATTR(suspend_mem_mode, 0444, regulator_suspend_mem_mode_show, NULL); static ssize_t regulator_suspend_disk_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_disk.mode); } static DEVICE_ATTR(suspend_disk_mode, 0444, regulator_suspend_disk_mode_show, NULL); static ssize_t regulator_suspend_standby_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_opmode(buf, rdev->constraints->state_standby.mode); } static DEVICE_ATTR(suspend_standby_mode, 0444, regulator_suspend_standby_mode_show, NULL); static ssize_t regulator_suspend_mem_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_mem.enabled); } static DEVICE_ATTR(suspend_mem_state, 0444, regulator_suspend_mem_state_show, NULL); static ssize_t regulator_suspend_disk_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_disk.enabled); } static DEVICE_ATTR(suspend_disk_state, 0444, regulator_suspend_disk_state_show, NULL); static ssize_t regulator_suspend_standby_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct regulator_dev *rdev = dev_get_drvdata(dev); return regulator_print_state(buf, rdev->constraints->state_standby.enabled); } static DEVICE_ATTR(suspend_standby_state, 0444, regulator_suspend_standby_state_show, NULL); /* * These are the only attributes are present for all regulators. * Other attributes are a function of regulator functionality. */ static struct device_attribute regulator_dev_attrs[] = { __ATTR(name, 0444, regulator_name_show, NULL), __ATTR(num_users, 0444, regulator_num_users_show, NULL), __ATTR(type, 0444, regulator_type_show, NULL), __ATTR_NULL, }; static void regulator_dev_release(struct device *dev) { struct regulator_dev *rdev = dev_get_drvdata(dev); kfree(rdev); } static struct class regulator_class = { .name = "regulator", .dev_release = regulator_dev_release, .dev_attrs = regulator_dev_attrs, }; /* Calculate the new optimum regulator operating mode based on the new total * consumer load. All locks held by caller */ static void drms_uA_update(struct regulator_dev *rdev) { struct regulator *sibling; int current_uA = 0, output_uV, input_uV, err; unsigned int mode; err = regulator_check_drms(rdev); if (err < 0 || !rdev->desc->ops->get_optimum_mode || !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode) return; /* get output voltage */ output_uV = rdev->desc->ops->get_voltage(rdev); if (output_uV <= 0) return; /* get input voltage */ if (rdev->supply && rdev->supply->desc->ops->get_voltage) input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); else input_uV = rdev->constraints->input_uV; if (input_uV <= 0) return; /* calc total requested load */ list_for_each_entry(sibling, &rdev->consumer_list, list) current_uA += sibling->uA_load; /* now get the optimum mode for our new total regulator load */ mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, output_uV, current_uA); /* check the new mode is allowed */ err = regulator_check_mode(rdev, mode); if (err == 0) rdev->desc->ops->set_mode(rdev, mode); } static int suspend_set_state(struct regulator_dev *rdev, struct regulator_state *rstate) { int ret = 0; /* enable & disable are mandatory for suspend control */ if (!rdev->desc->ops->set_suspend_enable || !rdev->desc->ops->set_suspend_disable) { printk(KERN_ERR "%s: no way to set suspend state\n", __func__); return -EINVAL; } if (rstate->enabled) ret = rdev->desc->ops->set_suspend_enable(rdev); else ret = rdev->desc->ops->set_suspend_disable(rdev); if (ret < 0) { printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); return ret; } if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); if (ret < 0) { printk(KERN_ERR "%s: failed to set voltage\n", __func__); return ret; } } if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); if (ret < 0) { printk(KERN_ERR "%s: failed to set mode\n", __func__); return ret; } } return ret; } /* locks held by caller */ static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) { if (!rdev->constraints) return -EINVAL; switch (state) { case PM_SUSPEND_STANDBY: return suspend_set_state(rdev, &rdev->constraints->state_standby); case PM_SUSPEND_MEM: return suspend_set_state(rdev, &rdev->constraints->state_mem); case PM_SUSPEND_MAX: return suspend_set_state(rdev, &rdev->constraints->state_disk); default: return -EINVAL; } } static void print_constraints(struct regulator_dev *rdev) { struct regulation_constraints *constraints = rdev->constraints; char buf[80]; int count; if (rdev->desc->type == REGULATOR_VOLTAGE) { if (constraints->min_uV == constraints->max_uV) count = sprintf(buf, "%d mV ", constraints->min_uV / 1000); else count = sprintf(buf, "%d <--> %d mV ", constraints->min_uV / 1000, constraints->max_uV / 1000); } else { if (constraints->min_uA == constraints->max_uA) count = sprintf(buf, "%d mA ", constraints->min_uA / 1000); else count = sprintf(buf, "%d <--> %d mA ", constraints->min_uA / 1000, constraints->max_uA / 1000); } if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) count += sprintf(buf + count, "fast "); if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) count += sprintf(buf + count, "normal "); if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) count += sprintf(buf + count, "idle "); if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) count += sprintf(buf + count, "standby"); printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf); } /** * set_machine_constraints - sets regulator constraints * @rdev: regulator source * @constraints: constraints to apply * * Allows platform initialisation code to define and constrain * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: * Constraints *must* be set by platform code in order for some * regulator operations to proceed i.e. set_voltage, set_current_limit, * set_mode. */ static int set_machine_constraints(struct regulator_dev *rdev, struct regulation_constraints *constraints) { int ret = 0; const char *name; struct regulator_ops *ops = rdev->desc->ops; if (constraints->name) name = constraints->name; else if (rdev->desc->name) name = rdev->desc->name; else name = "regulator"; /* constrain machine-level voltage specs to fit * the actual range supported by this regulator. */ if (ops->list_voltage && rdev->desc->n_voltages) { int count = rdev->desc->n_voltages; int i; int min_uV = INT_MAX; int max_uV = INT_MIN; int cmin = constraints->min_uV; int cmax = constraints->max_uV; /* it's safe to autoconfigure fixed-voltage supplies and the constraints are used by list_voltage. */ if (count == 1 && !cmin) { cmin = 1; cmax = INT_MAX; constraints->min_uV = cmin; constraints->max_uV = cmax; } /* voltage constraints are optional */ if ((cmin == 0) && (cmax == 0)) goto out; /* else require explicit machine-level constraints */ if (cmin <= 0 || cmax <= 0 || cmax < cmin) { pr_err("%s: %s '%s' voltage constraints\n", __func__, "invalid", name); ret = -EINVAL; goto out; } /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ for (i = 0; i < count; i++) { int value; value = ops->list_voltage(rdev, i); if (value <= 0) continue; /* maybe adjust [min_uV..max_uV] */ if (value >= cmin && value < min_uV) min_uV = value; if (value <= cmax && value > max_uV) max_uV = value; } /* final: [min_uV..max_uV] valid iff constraints valid */ if (max_uV < min_uV) { pr_err("%s: %s '%s' voltage constraints\n", __func__, "unsupportable", name); ret = -EINVAL; goto out; } /* use regulator's subset of machine constraints */ if (constraints->min_uV < min_uV) { pr_debug("%s: override '%s' %s, %d -> %d\n", __func__, name, "min_uV", constraints->min_uV, min_uV); constraints->min_uV = min_uV; } if (constraints->max_uV > max_uV) { pr_debug("%s: override '%s' %s, %d -> %d\n", __func__, name, "max_uV", constraints->max_uV, max_uV); constraints->max_uV = max_uV; } } rdev->constraints = constraints; /* do we need to apply the constraint voltage */ if (rdev->constraints->apply_uV && rdev->constraints->min_uV == rdev->constraints->max_uV && ops->set_voltage) { ret = ops->set_voltage(rdev, rdev->constraints->min_uV, rdev->constraints->max_uV); if (ret < 0) { printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", __func__, rdev->constraints->min_uV, name); rdev->constraints = NULL; goto out; } } /* do we need to setup our suspend state */ if (constraints->initial_state) { ret = suspend_prepare(rdev, constraints->initial_state); if (ret < 0) { printk(KERN_ERR "%s: failed to set suspend state for %s\n", __func__, name); rdev->constraints = NULL; goto out; } } if (constraints->initial_mode) { if (!ops->set_mode) { printk(KERN_ERR "%s: no set_mode operation for %s\n", __func__, name); ret = -EINVAL; goto out; } ret = ops->set_mode(rdev, constraints->initial_mode); if (ret < 0) { printk(KERN_ERR "%s: failed to set initial mode for %s: %d\n", __func__, name, ret); goto out; } } /* If the constraints say the regulator should be on at this point * and we have control then make sure it is enabled. */ if ((constraints->always_on || constraints->boot_on) && ops->enable) { ret = ops->enable(rdev); if (ret < 0) { printk(KERN_ERR "%s: failed to enable %s\n", __func__, name); rdev->constraints = NULL; goto out; } } print_constraints(rdev); out: return ret; } /** * set_supply - set regulator supply regulator * @rdev: regulator name * @supply_rdev: supply regulator name * * Called by platform initialisation code to set the supply regulator for this * regulator. This ensures that a regulators supply will also be enabled by the * core if it's child is enabled. */ static int set_supply(struct regulator_dev *rdev, struct regulator_dev *supply_rdev) { int err; err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, "supply"); if (err) { printk(KERN_ERR "%s: could not add device link %s err %d\n", __func__, supply_rdev->dev.kobj.name, err); goto out; } rdev->supply = supply_rdev; list_add(&rdev->slist, &supply_rdev->supply_list); out: return err; } /** * set_consumer_device_supply: Bind a regulator to a symbolic supply * @rdev: regulator source * @consumer_dev: device the supply applies to * @supply: symbolic name for supply * * Allows platform initialisation code to map physical regulator * sources to symbolic names for supplies for use by devices. Devices * should use these symbolic names to request regulators, avoiding the * need to provide board-specific regulator names as platform data. */ static int set_consumer_device_supply(struct regulator_dev *rdev, struct device *consumer_dev, const char *supply) { struct regulator_map *node; if (supply == NULL) return -EINVAL; list_for_each_entry(node, ®ulator_map_list, list) { if (consumer_dev != node->dev) continue; if (strcmp(node->supply, supply) != 0) continue; dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n", dev_name(&node->regulator->dev), node->regulator->desc->name, supply, dev_name(&rdev->dev), rdev->desc->name); return -EBUSY; } node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL); if (node == NULL) return -ENOMEM; node->regulator = rdev; node->dev = consumer_dev; node->supply = supply; list_add(&node->list, ®ulator_map_list); return 0; } static void unset_consumer_device_supply(struct regulator_dev *rdev, struct device *consumer_dev) { struct regulator_map *node, *n; list_for_each_entry_safe(node, n, ®ulator_map_list, list) { if (rdev == node->regulator && consumer_dev == node->dev) { list_del(&node->list); kfree(node); return; } } } static void unset_regulator_supplies(struct regulator_dev *rdev) { struct regulator_map *node, *n; list_for_each_entry_safe(node, n, ®ulator_map_list, list) { if (rdev == node->regulator) { list_del(&node->list); kfree(node); return; } } } #define REG_STR_SIZE 32 static struct regulator *create_regulator(struct regulator_dev *rdev, struct device *dev, const char *supply_name) { struct regulator *regulator; char buf[REG_STR_SIZE]; int err, size; regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); if (regulator == NULL) return NULL; mutex_lock(&rdev->mutex); regulator->rdev = rdev; list_add(®ulator->list, &rdev->consumer_list); if (dev) { /* create a 'requested_microamps_name' sysfs entry */ size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", supply_name); if (size >= REG_STR_SIZE) goto overflow_err; regulator->dev = dev; regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); if (regulator->dev_attr.attr.name == NULL) goto attr_name_err; regulator->dev_attr.attr.owner = THIS_MODULE; regulator->dev_attr.attr.mode = 0444; regulator->dev_attr.show = device_requested_uA_show; err = device_create_file(dev, ®ulator->dev_attr); if (err < 0) { printk(KERN_WARNING "%s: could not add regulator_dev" " load sysfs\n", __func__); goto attr_name_err; } /* also add a link to the device sysfs entry */ size = scnprintf(buf, REG_STR_SIZE, "%s-%s", dev->kobj.name, supply_name); if (size >= REG_STR_SIZE) goto attr_err; regulator->supply_name = kstrdup(buf, GFP_KERNEL); if (regulator->supply_name == NULL) goto attr_err; err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, buf); if (err) { printk(KERN_WARNING "%s: could not add device link %s err %d\n", __func__, dev->kobj.name, err); device_remove_file(dev, ®ulator->dev_attr); goto link_name_err; } } mutex_unlock(&rdev->mutex); return regulator; link_name_err: kfree(regulator->supply_name); attr_err: device_remove_file(regulator->dev, ®ulator->dev_attr); attr_name_err: kfree(regulator->dev_attr.attr.name); overflow_err: list_del(®ulator->list); kfree(regulator); mutex_unlock(&rdev->mutex); return NULL; } /** * regulator_get - lookup and obtain a reference to a regulator. * @dev: device for regulator "consumer" * @id: Supply name or regulator ID. * * Returns a struct regulator corresponding to the regulator producer, * or IS_ERR() condition containing errno. * * Use of supply names configured via regulator_set_device_supply() is * strongly encouraged. It is recommended that the supply name used * should match the name used for the supply and/or the relevant * device pins in the datasheet. */ struct regulator *regulator_get(struct device *dev, const char *id) { struct regulator_dev *rdev; struct regulator_map *map; struct regulator *regulator = ERR_PTR(-ENODEV); if (id == NULL) { printk(KERN_ERR "regulator: get() with no identifier\n"); return regulator; } mutex_lock(®ulator_list_mutex); list_for_each_entry(map, ®ulator_map_list, list) { if (dev == map->dev && strcmp(map->supply, id) == 0) { rdev = map->regulator; goto found; } } mutex_unlock(®ulator_list_mutex); return regulator; found: if (!try_module_get(rdev->owner)) goto out; regulator = create_regulator(rdev, dev, id); if (regulator == NULL) { regulator = ERR_PTR(-ENOMEM); module_put(rdev->owner); } out: mutex_unlock(®ulator_list_mutex); return regulator; } EXPORT_SYMBOL_GPL(regulator_get); /** * regulator_put - "free" the regulator source * @regulator: regulator source * * Note: drivers must ensure that all regulator_enable calls made on this * regulator source are balanced by regulator_disable calls prior to calling * this function. */ void regulator_put(struct regulator *regulator) { struct regulator_dev *rdev; if (regulator == NULL || IS_ERR(regulator)) return; mutex_lock(®ulator_list_mutex); rdev = regulator->rdev; /* remove any sysfs entries */ if (regulator->dev) { sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); kfree(regulator->supply_name); device_remove_file(regulator->dev, ®ulator->dev_attr); kfree(regulator->dev_attr.attr.name); } list_del(®ulator->list); kfree(regulator); module_put(rdev->owner); mutex_unlock(®ulator_list_mutex); } EXPORT_SYMBOL_GPL(regulator_put); /* locks held by regulator_enable() */ static int _regulator_enable(struct regulator_dev *rdev) { int ret = -EINVAL; if (!rdev->constraints) { printk(KERN_ERR "%s: %s has no constraints\n", __func__, rdev->desc->name); return ret; } /* do we need to enable the supply regulator first */ if (rdev->supply) { ret = _regulator_enable(rdev->supply); if (ret < 0) { printk(KERN_ERR "%s: failed to enable %s: %d\n", __func__, rdev->desc->name, ret); return ret; } } /* check voltage and requested load before enabling */ if (rdev->desc->ops->enable) { if (rdev->constraints && (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) drms_uA_update(rdev); ret = rdev->desc->ops->enable(rdev); if (ret < 0) { printk(KERN_ERR "%s: failed to enable %s: %d\n", __func__, rdev->desc->name, ret); return ret; } rdev->use_count++; return ret; } return ret; } /** * regulator_enable - enable regulator output * @regulator: regulator source * * Request that the regulator be enabled with the regulator output at * the predefined voltage or current value. Calls to regulator_enable() * must be balanced with calls to regulator_disable(). * * NOTE: the output value can be set by other drivers, boot loader or may be * hardwired in the regulator. */ int regulator_enable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; mutex_lock(&rdev->mutex); ret = _regulator_enable(rdev); mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_enable); /* locks held by regulator_disable() */ static int _regulator_disable(struct regulator_dev *rdev) { int ret = 0; if (WARN(rdev->use_count <= 0, "unbalanced disables for %s\n", rdev->desc->name)) return -EIO; /* are we the last user and permitted to disable ? */ if (rdev->use_count == 1 && !rdev->constraints->always_on) { /* we are last user */ if (rdev->desc->ops->disable) { ret = rdev->desc->ops->disable(rdev); if (ret < 0) { printk(KERN_ERR "%s: failed to disable %s\n", __func__, rdev->desc->name); return ret; } } /* decrease our supplies ref count and disable if required */ if (rdev->supply) _regulator_disable(rdev->supply); rdev->use_count = 0; } else if (rdev->use_count > 1) { if (rdev->constraints && (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) drms_uA_update(rdev); rdev->use_count--; } return ret; } /** * regulator_disable - disable regulator output * @regulator: regulator source * * Disable the regulator output voltage or current. Calls to * regulator_enable() must be balanced with calls to * regulator_disable(). * * NOTE: this will only disable the regulator output if no other consumer * devices have it enabled, the regulator device supports disabling and * machine constraints permit this operation. */ int regulator_disable(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; int ret = 0; mutex_lock(&rdev->mutex); ret = _regulator_disable(rdev); mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_disable); /* locks held by regulator_force_disable() */ static int _regulator_force_disable(struct regulator_dev *rdev) { int ret = 0; /* force disable */ if (rdev->desc->ops->disable) { /* ah well, who wants to live forever... */ ret = rdev->desc->ops->disable(rdev); if (ret < 0) { printk(KERN_ERR "%s: failed to force disable %s\n", __func__, rdev->desc->name); return ret; } /* notify other consumers that power has been forced off */ _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, NULL); } /* decrease our supplies ref count and disable if required */ if (rdev->supply) _regulator_disable(rdev->supply); rdev->use_count = 0; return ret; } /** * regulator_force_disable - force disable regulator output * @regulator: regulator source * * Forcibly disable the regulator output voltage or current. * NOTE: this *will* disable the regulator output even if other consumer * devices have it enabled. This should be used for situations when device * damage will likely occur if the regulator is not disabled (e.g. over temp). */ int regulator_force_disable(struct regulator *regulator) { int ret; mutex_lock(®ulator->rdev->mutex); regulator->uA_load = 0; ret = _regulator_force_disable(regulator->rdev); mutex_unlock(®ulator->rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_force_disable); static int _regulator_is_enabled(struct regulator_dev *rdev) { int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->is_enabled) { ret = -EINVAL; goto out; } ret = rdev->desc->ops->is_enabled(rdev); out: mutex_unlock(&rdev->mutex); return ret; } /** * regulator_is_enabled - is the regulator output enabled * @regulator: regulator source * * Returns positive if the regulator driver backing the source/client * has requested that the device be enabled, zero if it hasn't, else a * negative errno code. * * Note that the device backing this regulator handle can have multiple * users, so it might be enabled even if regulator_enable() was never * called for this particular source. */ int regulator_is_enabled(struct regulator *regulator) { return _regulator_is_enabled(regulator->rdev); } EXPORT_SYMBOL_GPL(regulator_is_enabled); /** * regulator_count_voltages - count regulator_list_voltage() selectors * @regulator: regulator source * * Returns number of selectors, or negative errno. Selectors are * numbered starting at zero, and typically correspond to bitfields * in hardware registers. */ int regulator_count_voltages(struct regulator *regulator) { struct regulator_dev *rdev = regulator->rdev; return rdev->desc->n_voltages ? : -EINVAL; } EXPORT_SYMBOL_GPL(regulator_count_voltages); /** * regulator_list_voltage - enumerate supported voltages * @regulator: regulator source * @selector: identify voltage to list * Context: can sleep * * Returns a voltage that can be passed to @regulator_set_voltage(), * zero if this selector code can't be used on this sytem, or a * negative errno. */ int regulator_list_voltage(struct regulator *regulator, unsigned selector) { struct regulator_dev *rdev = regulator->rdev; struct regulator_ops *ops = rdev->desc->ops; int ret; if (!ops->list_voltage || selector >= rdev->desc->n_voltages) return -EINVAL; mutex_lock(&rdev->mutex); ret = ops->list_voltage(rdev, selector); mutex_unlock(&rdev->mutex); if (ret > 0) { if (ret < rdev->constraints->min_uV) ret = 0; else if (ret > rdev->constraints->max_uV) ret = 0; } return ret; } EXPORT_SYMBOL_GPL(regulator_list_voltage); /** * regulator_set_voltage - set regulator output voltage * @regulator: regulator source * @min_uV: Minimum required voltage in uV * @max_uV: Maximum acceptable voltage in uV * * Sets a voltage regulator to the desired output voltage. This can be set * during any regulator state. IOW, regulator can be disabled or enabled. * * If the regulator is enabled then the voltage will change to the new value * immediately otherwise if the regulator is disabled the regulator will * output at the new voltage when enabled. * * NOTE: If the regulator is shared between several devices then the lowest * request voltage that meets the system constraints will be used. * Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->set_voltage) { ret = -EINVAL; goto out; } /* constraints check */ ret = regulator_check_voltage(rdev, &min_uV, &max_uV); if (ret < 0) goto out; regulator->min_uV = min_uV; regulator->max_uV = max_uV; ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); out: _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL); mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage); static int _regulator_get_voltage(struct regulator_dev *rdev) { /* sanity check */ if (rdev->desc->ops->get_voltage) return rdev->desc->ops->get_voltage(rdev); else return -EINVAL; } /** * regulator_get_voltage - get regulator output voltage * @regulator: regulator source * * This returns the current regulator voltage in uV. * * NOTE: If the regulator is disabled it will return the voltage value. This * function should not be used to determine regulator state. */ int regulator_get_voltage(struct regulator *regulator) { int ret; mutex_lock(®ulator->rdev->mutex); ret = _regulator_get_voltage(regulator->rdev); mutex_unlock(®ulator->rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_get_voltage); /** * regulator_set_current_limit - set regulator output current limit * @regulator: regulator source * @min_uA: Minimuum supported current in uA * @max_uA: Maximum supported current in uA * * Sets current sink to the desired output current. This can be set during * any regulator state. IOW, regulator can be disabled or enabled. * * If the regulator is enabled then the current will change to the new value * immediately otherwise if the regulator is disabled the regulator will * output at the new current when enabled. * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_current_limit(struct regulator *regulator, int min_uA, int max_uA) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->set_current_limit) { ret = -EINVAL; goto out; } /* constraints check */ ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); if (ret < 0) goto out; ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_current_limit); static int _regulator_get_current_limit(struct regulator_dev *rdev) { int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->get_current_limit) { ret = -EINVAL; goto out; } ret = rdev->desc->ops->get_current_limit(rdev); out: mutex_unlock(&rdev->mutex); return ret; } /** * regulator_get_current_limit - get regulator output current * @regulator: regulator source * * This returns the current supplied by the specified current sink in uA. * * NOTE: If the regulator is disabled it will return the current value. This * function should not be used to determine regulator state. */ int regulator_get_current_limit(struct regulator *regulator) { return _regulator_get_current_limit(regulator->rdev); } EXPORT_SYMBOL_GPL(regulator_get_current_limit); /** * regulator_set_mode - set regulator operating mode * @regulator: regulator source * @mode: operating mode - one of the REGULATOR_MODE constants * * Set regulator operating mode to increase regulator efficiency or improve * regulation performance. * * NOTE: Regulator system constraints must be set for this regulator before * calling this function otherwise this call will fail. */ int regulator_set_mode(struct regulator *regulator, unsigned int mode) { struct regulator_dev *rdev = regulator->rdev; int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->set_mode) { ret = -EINVAL; goto out; } /* constraints check */ ret = regulator_check_mode(rdev, mode); if (ret < 0) goto out; ret = rdev->desc->ops->set_mode(rdev, mode); out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_mode); static unsigned int _regulator_get_mode(struct regulator_dev *rdev) { int ret; mutex_lock(&rdev->mutex); /* sanity check */ if (!rdev->desc->ops->get_mode) { ret = -EINVAL; goto out; } ret = rdev->desc->ops->get_mode(rdev); out: mutex_unlock(&rdev->mutex); return ret; } /** * regulator_get_mode - get regulator operating mode * @regulator: regulator source * * Get the current regulator operating mode. */ unsigned int regulator_get_mode(struct regulator *regulator) { return _regulator_get_mode(regulator->rdev); } EXPORT_SYMBOL_GPL(regulator_get_mode); /** * regulator_set_optimum_mode - set regulator optimum operating mode * @regulator: regulator source * @uA_load: load current * * Notifies the regulator core of a new device load. This is then used by * DRMS (if enabled by constraints) to set the most efficient regulator * operating mode for the new regulator loading. * * Consumer devices notify their supply regulator of the maximum power * they will require (can be taken from device datasheet in the power * consumption tables) when they change operational status and hence power * state. Examples of operational state changes that can affect power * consumption are :- * * o Device is opened / closed. * o Device I/O is about to begin or has just finished. * o Device is idling in between work. * * This information is also exported via sysfs to userspace. * * DRMS will sum the total requested load on the regulator and change * to the most efficient operating mode if platform constraints allow. * * Returns the new regulator mode or error. */ int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) { struct regulator_dev *rdev = regulator->rdev; struct regulator *consumer; int ret, output_uV, input_uV, total_uA_load = 0; unsigned int mode; mutex_lock(&rdev->mutex); regulator->uA_load = uA_load; ret = regulator_check_drms(rdev); if (ret < 0) goto out; ret = -EINVAL; /* sanity check */ if (!rdev->desc->ops->get_optimum_mode) goto out; /* get output voltage */ output_uV = rdev->desc->ops->get_voltage(rdev); if (output_uV <= 0) { printk(KERN_ERR "%s: invalid output voltage found for %s\n", __func__, rdev->desc->name); goto out; } /* get input voltage */ if (rdev->supply && rdev->supply->desc->ops->get_voltage) input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); else input_uV = rdev->constraints->input_uV; if (input_uV <= 0) { printk(KERN_ERR "%s: invalid input voltage found for %s\n", __func__, rdev->desc->name); goto out; } /* calc total requested load for this regulator */ list_for_each_entry(consumer, &rdev->consumer_list, list) total_uA_load += consumer->uA_load; mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, output_uV, total_uA_load); ret = regulator_check_mode(rdev, mode); if (ret < 0) { printk(KERN_ERR "%s: failed to get optimum mode for %s @" " %d uA %d -> %d uV\n", __func__, rdev->desc->name, total_uA_load, input_uV, output_uV); goto out; } ret = rdev->desc->ops->set_mode(rdev, mode); if (ret < 0) { printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", __func__, mode, rdev->desc->name); goto out; } ret = mode; out: mutex_unlock(&rdev->mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); /** * regulator_register_notifier - register regulator event notifier * @regulator: regulator source * @nb: notifier block * * Register notifier block to receive regulator events. */ int regulator_register_notifier(struct regulator *regulator, struct notifier_block *nb) { return blocking_notifier_chain_register(®ulator->rdev->notifier, nb); } EXPORT_SYMBOL_GPL(regulator_register_notifier); /** * regulator_unregister_notifier - unregister regulator event notifier * @regulator: regulator source * @nb: notifier block * * Unregister regulator event notifier block. */ int regulator_unregister_notifier(struct regulator *regulator, struct notifier_block *nb) { return blocking_notifier_chain_unregister(®ulator->rdev->notifier, nb); } EXPORT_SYMBOL_GPL(regulator_unregister_notifier); /* notify regulator consumers and downstream regulator consumers. * Note mutex must be held by caller. */ static void _notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { struct regulator_dev *_rdev; /* call rdev chain first */ blocking_notifier_call_chain(&rdev->notifier, event, NULL); /* now notify regulator we supply */ list_for_each_entry(_rdev, &rdev->supply_list, slist) { mutex_lock(&_rdev->mutex); _notifier_call_chain(_rdev, event, data); mutex_unlock(&_rdev->mutex); } } /** * regulator_bulk_get - get multiple regulator consumers * * @dev: Device to supply * @num_consumers: Number of consumers to register * @consumers: Configuration of consumers; clients are stored here. * * @return 0 on success, an errno on failure. * * This helper function allows drivers to get several regulator * consumers in one operation. If any of the regulators cannot be * acquired then any regulators that were allocated will be freed * before returning to the caller. */ int regulator_bulk_get(struct device *dev, int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret; for (i = 0; i < num_consumers; i++) consumers[i].consumer = NULL; for (i = 0; i < num_consumers; i++) { consumers[i].consumer = regulator_get(dev, consumers[i].supply); if (IS_ERR(consumers[i].consumer)) { dev_err(dev, "Failed to get supply '%s'\n", consumers[i].supply); ret = PTR_ERR(consumers[i].consumer); consumers[i].consumer = NULL; goto err; } } return 0; err: for (i = 0; i < num_consumers && consumers[i].consumer; i++) regulator_put(consumers[i].consumer); return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_get); /** * regulator_bulk_enable - enable multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * @return 0 on success, an errno on failure * * This convenience API allows consumers to enable multiple regulator * clients in a single API call. If any consumers cannot be enabled * then any others that were enabled will be disabled again prior to * return. */ int regulator_bulk_enable(int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret; for (i = 0; i < num_consumers; i++) { ret = regulator_enable(consumers[i].consumer); if (ret != 0) goto err; } return 0; err: printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply); for (i = 0; i < num_consumers; i++) regulator_disable(consumers[i].consumer); return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_enable); /** * regulator_bulk_disable - disable multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * @return 0 on success, an errno on failure * * This convenience API allows consumers to disable multiple regulator * clients in a single API call. If any consumers cannot be enabled * then any others that were disabled will be disabled again prior to * return. */ int regulator_bulk_disable(int num_consumers, struct regulator_bulk_data *consumers) { int i; int ret; for (i = 0; i < num_consumers; i++) { ret = regulator_disable(consumers[i].consumer); if (ret != 0) goto err; } return 0; err: printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply); for (i = 0; i < num_consumers; i++) regulator_enable(consumers[i].consumer); return ret; } EXPORT_SYMBOL_GPL(regulator_bulk_disable); /** * regulator_bulk_free - free multiple regulator consumers * * @num_consumers: Number of consumers * @consumers: Consumer data; clients are stored here. * * This convenience API allows consumers to free multiple regulator * clients in a single API call. */ void regulator_bulk_free(int num_consumers, struct regulator_bulk_data *consumers) { int i; for (i = 0; i < num_consumers; i++) { regulator_put(consumers[i].consumer); consumers[i].consumer = NULL; } } EXPORT_SYMBOL_GPL(regulator_bulk_free); /** * regulator_notifier_call_chain - call regulator event notifier * @rdev: regulator source * @event: notifier block * @data: callback-specific data. * * Called by regulator drivers to notify clients a regulator event has * occurred. We also notify regulator clients downstream. * Note lock must be held by caller. */ int regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned long event, void *data) { _notifier_call_chain(rdev, event, data); return NOTIFY_DONE; } EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); /** * regulator_mode_to_status - convert a regulator mode into a status * * @mode: Mode to convert * * Convert a regulator mode into a status. */ int regulator_mode_to_status(unsigned int mode) { switch (mode) { case REGULATOR_MODE_FAST: return REGULATOR_STATUS_FAST; case REGULATOR_MODE_NORMAL: return REGULATOR_STATUS_NORMAL; case REGULATOR_MODE_IDLE: return REGULATOR_STATUS_IDLE; case REGULATOR_STATUS_STANDBY: return REGULATOR_STATUS_STANDBY; default: return 0; } } EXPORT_SYMBOL_GPL(regulator_mode_to_status); /* * To avoid cluttering sysfs (and memory) with useless state, only * create attributes that can be meaningfully displayed. */ static int add_regulator_attributes(struct regulator_dev *rdev) { struct device *dev = &rdev->dev; struct regulator_ops *ops = rdev->desc->ops; int status = 0; /* some attributes need specific methods to be displayed */ if (ops->get_voltage) { status = device_create_file(dev, &dev_attr_microvolts); if (status < 0) return status; } if (ops->get_current_limit) { status = device_create_file(dev, &dev_attr_microamps); if (status < 0) return status; } if (ops->get_mode) { status = device_create_file(dev, &dev_attr_opmode); if (status < 0) return status; } if (ops->is_enabled) { status = device_create_file(dev, &dev_attr_state); if (status < 0) return status; } if (ops->get_status) { status = device_create_file(dev, &dev_attr_status); if (status < 0) return status; } /* some attributes are type-specific */ if (rdev->desc->type == REGULATOR_CURRENT) { status = device_create_file(dev, &dev_attr_requested_microamps); if (status < 0) return status; } /* all the other attributes exist to support constraints; * don't show them if there are no constraints, or if the * relevant supporting methods are missing. */ if (!rdev->constraints) return status; /* constraints need specific supporting methods */ if (ops->set_voltage) { status = device_create_file(dev, &dev_attr_min_microvolts); if (status < 0) return status; status = device_create_file(dev, &dev_attr_max_microvolts); if (status < 0) return status; } if (ops->set_current_limit) { status = device_create_file(dev, &dev_attr_min_microamps); if (status < 0) return status; status = device_create_file(dev, &dev_attr_max_microamps); if (status < 0) return status; } /* suspend mode constraints need multiple supporting methods */ if (!(ops->set_suspend_enable && ops->set_suspend_disable)) return status; status = device_create_file(dev, &dev_attr_suspend_standby_state); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_mem_state); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_disk_state); if (status < 0) return status; if (ops->set_suspend_voltage) { status = device_create_file(dev, &dev_attr_suspend_standby_microvolts); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_mem_microvolts); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_disk_microvolts); if (status < 0) return status; } if (ops->set_suspend_mode) { status = device_create_file(dev, &dev_attr_suspend_standby_mode); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_mem_mode); if (status < 0) return status; status = device_create_file(dev, &dev_attr_suspend_disk_mode); if (status < 0) return status; } return status; } /** * regulator_register - register regulator * @regulator_desc: regulator to register * @dev: struct device for the regulator * @init_data: platform provided init data, passed through by driver * @driver_data: private regulator data * * Called by regulator drivers to register a regulator. * Returns 0 on success. */ struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, struct device *dev, struct regulator_init_data *init_data, void *driver_data) { static atomic_t regulator_no = ATOMIC_INIT(0); struct regulator_dev *rdev; int ret, i; if (regulator_desc == NULL) return ERR_PTR(-EINVAL); if (regulator_desc->name == NULL || regulator_desc->ops == NULL) return ERR_PTR(-EINVAL); if (regulator_desc->type != REGULATOR_VOLTAGE && regulator_desc->type != REGULATOR_CURRENT) return ERR_PTR(-EINVAL); if (!init_data) return ERR_PTR(-EINVAL); rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); if (rdev == NULL) return ERR_PTR(-ENOMEM); mutex_lock(®ulator_list_mutex); mutex_init(&rdev->mutex); rdev->reg_data = driver_data; rdev->owner = regulator_desc->owner; rdev->desc = regulator_desc; INIT_LIST_HEAD(&rdev->consumer_list); INIT_LIST_HEAD(&rdev->supply_list); INIT_LIST_HEAD(&rdev->list); INIT_LIST_HEAD(&rdev->slist); BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); /* preform any regulator specific init */ if (init_data->regulator_init) { ret = init_data->regulator_init(rdev->reg_data); if (ret < 0) goto clean; } /* register with sysfs */ rdev->dev.class = ®ulator_class; rdev->dev.parent = dev; dev_set_name(&rdev->dev, "regulator.%d", atomic_inc_return(®ulator_no) - 1); ret = device_register(&rdev->dev); if (ret != 0) goto clean; dev_set_drvdata(&rdev->dev, rdev); /* set regulator constraints */ ret = set_machine_constraints(rdev, &init_data->constraints); if (ret < 0) goto scrub; /* add attributes supported by this regulator */ ret = add_regulator_attributes(rdev); if (ret < 0) goto scrub; /* set supply regulator if it exists */ if (init_data->supply_regulator_dev) { ret = set_supply(rdev, dev_get_drvdata(init_data->supply_regulator_dev)); if (ret < 0) goto scrub; } /* add consumers devices */ for (i = 0; i < init_data->num_consumer_supplies; i++) { ret = set_consumer_device_supply(rdev, init_data->consumer_supplies[i].dev, init_data->consumer_supplies[i].supply); if (ret < 0) { for (--i; i >= 0; i--) unset_consumer_device_supply(rdev, init_data->consumer_supplies[i].dev); goto scrub; } } list_add(&rdev->list, ®ulator_list); out: mutex_unlock(®ulator_list_mutex); return rdev; scrub: device_unregister(&rdev->dev); /* device core frees rdev */ rdev = ERR_PTR(ret); goto out; clean: kfree(rdev); rdev = ERR_PTR(ret); goto out; } EXPORT_SYMBOL_GPL(regulator_register); /** * regulator_unregister - unregister regulator * @rdev: regulator to unregister * * Called by regulator drivers to unregister a regulator. */ void regulator_unregister(struct regulator_dev *rdev) { if (rdev == NULL) return; mutex_lock(®ulator_list_mutex); unset_regulator_supplies(rdev); list_del(&rdev->list); if (rdev->supply) sysfs_remove_link(&rdev->dev.kobj, "supply"); device_unregister(&rdev->dev); mutex_unlock(®ulator_list_mutex); } EXPORT_SYMBOL_GPL(regulator_unregister); /** * regulator_suspend_prepare - prepare regulators for system wide suspend * @state: system suspend state * * Configure each regulator with it's suspend operating parameters for state. * This will usually be called by machine suspend code prior to supending. */ int regulator_suspend_prepare(suspend_state_t state) { struct regulator_dev *rdev; int ret = 0; /* ON is handled by regulator active state */ if (state == PM_SUSPEND_ON) return -EINVAL; mutex_lock(®ulator_list_mutex); list_for_each_entry(rdev, ®ulator_list, list) { mutex_lock(&rdev->mutex); ret = suspend_prepare(rdev, state); mutex_unlock(&rdev->mutex); if (ret < 0) { printk(KERN_ERR "%s: failed to prepare %s\n", __func__, rdev->desc->name); goto out; } } out: mutex_unlock(®ulator_list_mutex); return ret; } EXPORT_SYMBOL_GPL(regulator_suspend_prepare); /** * regulator_has_full_constraints - the system has fully specified constraints * * Calling this function will cause the regulator API to disable all * regulators which have a zero use count and don't have an always_on * constraint in a late_initcall. * * The intention is that this will become the default behaviour in a * future kernel release so users are encouraged to use this facility * now. */ void regulator_has_full_constraints(void) { has_full_constraints = 1; } EXPORT_SYMBOL_GPL(regulator_has_full_constraints); /** * rdev_get_drvdata - get rdev regulator driver data * @rdev: regulator * * Get rdev regulator driver private data. This call can be used in the * regulator driver context. */ void *rdev_get_drvdata(struct regulator_dev *rdev) { return rdev->reg_data; } EXPORT_SYMBOL_GPL(rdev_get_drvdata); /** * regulator_get_drvdata - get regulator driver data * @regulator: regulator * * Get regulator driver private data. This call can be used in the consumer * driver context when non API regulator specific functions need to be called. */ void *regulator_get_drvdata(struct regulator *regulator) { return regulator->rdev->reg_data; } EXPORT_SYMBOL_GPL(regulator_get_drvdata); /** * regulator_set_drvdata - set regulator driver data * @regulator: regulator * @data: data */ void regulator_set_drvdata(struct regulator *regulator, void *data) { regulator->rdev->reg_data = data; } EXPORT_SYMBOL_GPL(regulator_set_drvdata); /** * regulator_get_id - get regulator ID * @rdev: regulator */ int rdev_get_id(struct regulator_dev *rdev) { return rdev->desc->id; } EXPORT_SYMBOL_GPL(rdev_get_id); struct device *rdev_get_dev(struct regulator_dev *rdev) { return &rdev->dev; } EXPORT_SYMBOL_GPL(rdev_get_dev); void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) { return reg_init_data->driver_data; } EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); static int __init regulator_init(void) { printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); return class_register(®ulator_class); } /* init early to allow our consumers to complete system booting */ core_initcall(regulator_init); static int __init regulator_init_complete(void) { struct regulator_dev *rdev; struct regulator_ops *ops; struct regulation_constraints *c; int enabled, ret; const char *name; mutex_lock(®ulator_list_mutex); /* If we have a full configuration then disable any regulators * which are not in use or always_on. This will become the * default behaviour in the future. */ list_for_each_entry(rdev, ®ulator_list, list) { ops = rdev->desc->ops; c = rdev->constraints; if (c->name) name = c->name; else if (rdev->desc->name) name = rdev->desc->name; else name = "regulator"; if (!ops->disable || c->always_on) continue; mutex_lock(&rdev->mutex); if (rdev->use_count) goto unlock; /* If we can't read the status assume it's on. */ if (ops->is_enabled) enabled = ops->is_enabled(rdev); else enabled = 1; if (!enabled) goto unlock; if (has_full_constraints) { /* We log since this may kill the system if it * goes wrong. */ printk(KERN_INFO "%s: disabling %s\n", __func__, name); ret = ops->disable(rdev); if (ret != 0) { printk(KERN_ERR "%s: couldn't disable %s: %d\n", __func__, name, ret); } } else { /* The intention is that in future we will * assume that full constraints are provided * so warn even if we aren't going to do * anything here. */ printk(KERN_WARNING "%s: incomplete constraints, leaving %s on\n", __func__, name); } unlock: mutex_unlock(&rdev->mutex); } mutex_unlock(®ulator_list_mutex); return 0; } late_initcall(regulator_init_complete);