#include <linux/kernel.h> #include <linux/export.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_pci.h> #include <linux/slab.h> #include <asm-generic/pci-bridge.h> static inline int __of_pci_pci_compare(struct device_node *node, unsigned int data) { int devfn; devfn = of_pci_get_devfn(node); if (devfn < 0) return 0; return devfn == data; } struct device_node *of_pci_find_child_device(struct device_node *parent, unsigned int devfn) { struct device_node *node, *node2; for_each_child_of_node(parent, node) { if (__of_pci_pci_compare(node, devfn)) return node; /* * Some OFs create a parent node "multifunc-device" as * a fake root for all functions of a multi-function * device we go down them as well. */ if (!strcmp(node->name, "multifunc-device")) { for_each_child_of_node(node, node2) { if (__of_pci_pci_compare(node2, devfn)) { of_node_put(node); return node2; } } } } return NULL; } EXPORT_SYMBOL_GPL(of_pci_find_child_device); /** * of_pci_get_devfn() - Get device and function numbers for a device node * @np: device node * * Parses a standard 5-cell PCI resource and returns an 8-bit value that can * be passed to the PCI_SLOT() and PCI_FUNC() macros to extract the device * and function numbers respectively. On error a negative error code is * returned. */ int of_pci_get_devfn(struct device_node *np) { unsigned int size; const __be32 *reg; reg = of_get_property(np, "reg", &size); if (!reg || size < 5 * sizeof(__be32)) return -EINVAL; return (be32_to_cpup(reg) >> 8) & 0xff; } EXPORT_SYMBOL_GPL(of_pci_get_devfn); /** * of_pci_parse_bus_range() - parse the bus-range property of a PCI device * @node: device node * @res: address to a struct resource to return the bus-range * * Returns 0 on success or a negative error-code on failure. */ int of_pci_parse_bus_range(struct device_node *node, struct resource *res) { const __be32 *values; int len; values = of_get_property(node, "bus-range", &len); if (!values || len < sizeof(*values) * 2) return -EINVAL; res->name = node->name; res->start = be32_to_cpup(values++); res->end = be32_to_cpup(values); res->flags = IORESOURCE_BUS; return 0; } EXPORT_SYMBOL_GPL(of_pci_parse_bus_range); /** * This function will try to obtain the host bridge domain number by * finding a property called "linux,pci-domain" of the given device node. * * @node: device tree node with the domain information * * Returns the associated domain number from DT in the range [0-0xffff], or * a negative value if the required property is not found. */ int of_get_pci_domain_nr(struct device_node *node) { const __be32 *value; int len; u16 domain; value = of_get_property(node, "linux,pci-domain", &len); if (!value || len < sizeof(*value)) return -EINVAL; domain = (u16)be32_to_cpup(value); return domain; } EXPORT_SYMBOL_GPL(of_get_pci_domain_nr); /** * of_pci_check_probe_only - Setup probe only mode if linux,pci-probe-only * is present and valid */ void of_pci_check_probe_only(void) { u32 val; int ret; ret = of_property_read_u32(of_chosen, "linux,pci-probe-only", &val); if (ret) { if (ret == -ENODATA || ret == -EOVERFLOW) pr_warn("linux,pci-probe-only without valid value, ignoring\n"); return; } if (val) pci_add_flags(PCI_PROBE_ONLY); else pci_clear_flags(PCI_PROBE_ONLY); pr_info("PCI: PROBE_ONLY %sabled\n", val ? "en" : "dis"); } EXPORT_SYMBOL_GPL(of_pci_check_probe_only); #if defined(CONFIG_OF_ADDRESS) /** * of_pci_get_host_bridge_resources - Parse PCI host bridge resources from DT * @dev: device node of the host bridge having the range property * @busno: bus number associated with the bridge root bus * @bus_max: maximum number of buses for this bridge * @resources: list where the range of resources will be added after DT parsing * @io_base: pointer to a variable that will contain on return the physical * address for the start of the I/O range. Can be NULL if the caller doesn't * expect IO ranges to be present in the device tree. * * It is the caller's job to free the @resources list. * * This function will parse the "ranges" property of a PCI host bridge device * node and setup the resource mapping based on its content. It is expected * that the property conforms with the Power ePAPR document. * * It returns zero if the range parsing has been successful or a standard error * value if it failed. */ int of_pci_get_host_bridge_resources(struct device_node *dev, unsigned char busno, unsigned char bus_max, struct list_head *resources, resource_size_t *io_base) { struct resource_entry *window; struct resource *res; struct resource *bus_range; struct of_pci_range range; struct of_pci_range_parser parser; char range_type[4]; int err; if (io_base) *io_base = (resource_size_t)OF_BAD_ADDR; bus_range = kzalloc(sizeof(*bus_range), GFP_KERNEL); if (!bus_range) return -ENOMEM; pr_info("PCI host bridge %s ranges:\n", dev->full_name); err = of_pci_parse_bus_range(dev, bus_range); if (err) { bus_range->start = busno; bus_range->end = bus_max; bus_range->flags = IORESOURCE_BUS; pr_info(" No bus range found for %s, using %pR\n", dev->full_name, bus_range); } else { if (bus_range->end > bus_range->start + bus_max) bus_range->end = bus_range->start + bus_max; } pci_add_resource(resources, bus_range); /* Check for ranges property */ err = of_pci_range_parser_init(&parser, dev); if (err) goto parse_failed; pr_debug("Parsing ranges property...\n"); for_each_of_pci_range(&parser, &range) { /* Read next ranges element */ if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_IO) snprintf(range_type, 4, " IO"); else if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_MEM) snprintf(range_type, 4, "MEM"); else snprintf(range_type, 4, "err"); pr_info(" %s %#010llx..%#010llx -> %#010llx\n", range_type, range.cpu_addr, range.cpu_addr + range.size - 1, range.pci_addr); /* * If we failed translation or got a zero-sized region * then skip this range */ if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) continue; res = kzalloc(sizeof(struct resource), GFP_KERNEL); if (!res) { err = -ENOMEM; goto parse_failed; } err = of_pci_range_to_resource(&range, dev, res); if (err) { kfree(res); continue; } if (resource_type(res) == IORESOURCE_IO) { if (!io_base) { pr_err("I/O range found for %s. Please provide an io_base pointer to save CPU base address\n", dev->full_name); err = -EINVAL; goto conversion_failed; } if (*io_base != (resource_size_t)OF_BAD_ADDR) pr_warn("More than one I/O resource converted for %s. CPU base address for old range lost!\n", dev->full_name); *io_base = range.cpu_addr; } pci_add_resource_offset(resources, res, res->start - range.pci_addr); } return 0; conversion_failed: kfree(res); parse_failed: resource_list_for_each_entry(window, resources) kfree(window->res); pci_free_resource_list(resources); return err; } EXPORT_SYMBOL_GPL(of_pci_get_host_bridge_resources); #endif /* CONFIG_OF_ADDRESS */ #ifdef CONFIG_PCI_MSI static LIST_HEAD(of_pci_msi_chip_list); static DEFINE_MUTEX(of_pci_msi_chip_mutex); int of_pci_msi_chip_add(struct msi_controller *chip) { if (!of_property_read_bool(chip->of_node, "msi-controller")) return -EINVAL; mutex_lock(&of_pci_msi_chip_mutex); list_add(&chip->list, &of_pci_msi_chip_list); mutex_unlock(&of_pci_msi_chip_mutex); return 0; } EXPORT_SYMBOL_GPL(of_pci_msi_chip_add); void of_pci_msi_chip_remove(struct msi_controller *chip) { mutex_lock(&of_pci_msi_chip_mutex); list_del(&chip->list); mutex_unlock(&of_pci_msi_chip_mutex); } EXPORT_SYMBOL_GPL(of_pci_msi_chip_remove); struct msi_controller *of_pci_find_msi_chip_by_node(struct device_node *of_node) { struct msi_controller *c; mutex_lock(&of_pci_msi_chip_mutex); list_for_each_entry(c, &of_pci_msi_chip_list, list) { if (c->of_node == of_node) { mutex_unlock(&of_pci_msi_chip_mutex); return c; } } mutex_unlock(&of_pci_msi_chip_mutex); return NULL; } EXPORT_SYMBOL_GPL(of_pci_find_msi_chip_by_node); #endif /* CONFIG_PCI_MSI */