// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2018 Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/device.h> #include <linux/ndctl.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/cred.h> #include <linux/key.h> #include <linux/key-type.h> #include <keys/user-type.h> #include <keys/encrypted-type.h> #include "nd-core.h" #include "nd.h" #define NVDIMM_BASE_KEY 0 #define NVDIMM_NEW_KEY 1 static bool key_revalidate = true; module_param(key_revalidate, bool, 0444); MODULE_PARM_DESC(key_revalidate, "Require key validation at init."); static void *key_data(struct key *key) { struct encrypted_key_payload *epayload = dereference_key_locked(key); lockdep_assert_held_read(&key->sem); return epayload->decrypted_data; } static void nvdimm_put_key(struct key *key) { if (!key) return; up_read(&key->sem); key_put(key); } /* * Retrieve kernel key for DIMM and request from user space if * necessary. Returns a key held for read and must be put by * nvdimm_put_key() before the usage goes out of scope. */ static struct key *nvdimm_request_key(struct nvdimm *nvdimm) { struct key *key = NULL; static const char NVDIMM_PREFIX[] = "nvdimm:"; char desc[NVDIMM_KEY_DESC_LEN + sizeof(NVDIMM_PREFIX)]; struct device *dev = &nvdimm->dev; sprintf(desc, "%s%s", NVDIMM_PREFIX, nvdimm->dimm_id); key = request_key(&key_type_encrypted, desc, ""); if (IS_ERR(key)) { if (PTR_ERR(key) == -ENOKEY) dev_dbg(dev, "request_key() found no key\n"); else dev_dbg(dev, "request_key() upcall failed\n"); key = NULL; } else { struct encrypted_key_payload *epayload; down_read(&key->sem); epayload = dereference_key_locked(key); if (epayload->decrypted_datalen != NVDIMM_PASSPHRASE_LEN) { up_read(&key->sem); key_put(key); key = NULL; } } return key; } static struct key *nvdimm_lookup_user_key(struct nvdimm *nvdimm, key_serial_t id, int subclass) { key_ref_t keyref; struct key *key; struct encrypted_key_payload *epayload; struct device *dev = &nvdimm->dev; keyref = lookup_user_key(id, 0, 0); if (IS_ERR(keyref)) return NULL; key = key_ref_to_ptr(keyref); if (key->type != &key_type_encrypted) { key_put(key); return NULL; } dev_dbg(dev, "%s: key found: %#x\n", __func__, key_serial(key)); down_read_nested(&key->sem, subclass); epayload = dereference_key_locked(key); if (epayload->decrypted_datalen != NVDIMM_PASSPHRASE_LEN) { up_read(&key->sem); key_put(key); key = NULL; } return key; } static struct key *nvdimm_key_revalidate(struct nvdimm *nvdimm) { struct key *key; int rc; if (!nvdimm->sec.ops->change_key) return NULL; key = nvdimm_request_key(nvdimm); if (!key) return NULL; /* * Send the same key to the hardware as new and old key to * verify that the key is good. */ rc = nvdimm->sec.ops->change_key(nvdimm, key_data(key), key_data(key), NVDIMM_USER); if (rc < 0) { nvdimm_put_key(key); key = NULL; } return key; } static int __nvdimm_security_unlock(struct nvdimm *nvdimm) { struct device *dev = &nvdimm->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct key *key = NULL; int rc; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); if (!nvdimm->sec.ops || !nvdimm->sec.ops->unlock || nvdimm->sec.state < 0) return -EIO; if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { dev_dbg(dev, "Security operation in progress.\n"); return -EBUSY; } /* * If the pre-OS has unlocked the DIMM, attempt to send the key * from request_key() to the hardware for verification. Failure * to revalidate the key against the hardware results in a * freeze of the security configuration. I.e. if the OS does not * have the key, security is being managed pre-OS. */ if (nvdimm->sec.state == NVDIMM_SECURITY_UNLOCKED) { if (!key_revalidate) return 0; key = nvdimm_key_revalidate(nvdimm); if (!key) return nvdimm_security_freeze(nvdimm); } else key = nvdimm_request_key(nvdimm); if (!key) return -ENOKEY; rc = nvdimm->sec.ops->unlock(nvdimm, key_data(key)); dev_dbg(dev, "key: %d unlock: %s\n", key_serial(key), rc == 0 ? "success" : "fail"); nvdimm_put_key(key); nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); return rc; } int nvdimm_security_unlock(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); int rc; nvdimm_bus_lock(dev); rc = __nvdimm_security_unlock(nvdimm); nvdimm_bus_unlock(dev); return rc; } int nvdimm_security_disable(struct nvdimm *nvdimm, unsigned int keyid) { struct device *dev = &nvdimm->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct key *key; int rc; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); if (!nvdimm->sec.ops || !nvdimm->sec.ops->disable || nvdimm->sec.state < 0) return -EOPNOTSUPP; if (nvdimm->sec.state >= NVDIMM_SECURITY_FROZEN) { dev_dbg(dev, "Incorrect security state: %d\n", nvdimm->sec.state); return -EIO; } if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { dev_dbg(dev, "Security operation in progress.\n"); return -EBUSY; } key = nvdimm_lookup_user_key(nvdimm, keyid, NVDIMM_BASE_KEY); if (!key) return -ENOKEY; rc = nvdimm->sec.ops->disable(nvdimm, key_data(key)); dev_dbg(dev, "key: %d disable: %s\n", key_serial(key), rc == 0 ? "success" : "fail"); nvdimm_put_key(key); nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); return rc; } int nvdimm_security_update(struct nvdimm *nvdimm, unsigned int keyid, unsigned int new_keyid, enum nvdimm_passphrase_type pass_type) { struct device *dev = &nvdimm->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct key *key, *newkey; int rc; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); if (!nvdimm->sec.ops || !nvdimm->sec.ops->change_key || nvdimm->sec.state < 0) return -EOPNOTSUPP; if (nvdimm->sec.state >= NVDIMM_SECURITY_FROZEN) { dev_dbg(dev, "Incorrect security state: %d\n", nvdimm->sec.state); return -EIO; } if (keyid == 0) key = NULL; else { key = nvdimm_lookup_user_key(nvdimm, keyid, NVDIMM_BASE_KEY); if (!key) return -ENOKEY; } newkey = nvdimm_lookup_user_key(nvdimm, new_keyid, NVDIMM_NEW_KEY); if (!newkey) { nvdimm_put_key(key); return -ENOKEY; } rc = nvdimm->sec.ops->change_key(nvdimm, key ? key_data(key) : NULL, key_data(newkey), pass_type); dev_dbg(dev, "key: %d %d update%s: %s\n", key_serial(key), key_serial(newkey), pass_type == NVDIMM_MASTER ? "(master)" : "(user)", rc == 0 ? "success" : "fail"); nvdimm_put_key(newkey); nvdimm_put_key(key); if (pass_type == NVDIMM_MASTER) nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER); else nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); return rc; } int nvdimm_security_erase(struct nvdimm *nvdimm, unsigned int keyid, enum nvdimm_passphrase_type pass_type) { struct device *dev = &nvdimm->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct key *key; int rc; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); if (!nvdimm->sec.ops || !nvdimm->sec.ops->erase || nvdimm->sec.state < 0) return -EOPNOTSUPP; if (atomic_read(&nvdimm->busy)) { dev_dbg(dev, "Unable to secure erase while DIMM active.\n"); return -EBUSY; } if (nvdimm->sec.state >= NVDIMM_SECURITY_FROZEN) { dev_dbg(dev, "Incorrect security state: %d\n", nvdimm->sec.state); return -EIO; } if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { dev_dbg(dev, "Security operation in progress.\n"); return -EBUSY; } if (nvdimm->sec.ext_state != NVDIMM_SECURITY_UNLOCKED && pass_type == NVDIMM_MASTER) { dev_dbg(dev, "Attempt to secure erase in wrong master state.\n"); return -EOPNOTSUPP; } key = nvdimm_lookup_user_key(nvdimm, keyid, NVDIMM_BASE_KEY); if (!key) return -ENOKEY; rc = nvdimm->sec.ops->erase(nvdimm, key_data(key), pass_type); dev_dbg(dev, "key: %d erase%s: %s\n", key_serial(key), pass_type == NVDIMM_MASTER ? "(master)" : "(user)", rc == 0 ? "success" : "fail"); nvdimm_put_key(key); nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); return rc; } int nvdimm_security_overwrite(struct nvdimm *nvdimm, unsigned int keyid) { struct device *dev = &nvdimm->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct key *key; int rc; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); if (!nvdimm->sec.ops || !nvdimm->sec.ops->overwrite || nvdimm->sec.state < 0) return -EOPNOTSUPP; if (atomic_read(&nvdimm->busy)) { dev_dbg(dev, "Unable to overwrite while DIMM active.\n"); return -EBUSY; } if (dev->driver == NULL) { dev_dbg(dev, "Unable to overwrite while DIMM active.\n"); return -EINVAL; } if (nvdimm->sec.state >= NVDIMM_SECURITY_FROZEN) { dev_dbg(dev, "Incorrect security state: %d\n", nvdimm->sec.state); return -EIO; } if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { dev_dbg(dev, "Security operation in progress.\n"); return -EBUSY; } if (keyid == 0) key = NULL; else { key = nvdimm_lookup_user_key(nvdimm, keyid, NVDIMM_BASE_KEY); if (!key) return -ENOKEY; } rc = nvdimm->sec.ops->overwrite(nvdimm, key ? key_data(key) : NULL); dev_dbg(dev, "key: %d overwrite submission: %s\n", key_serial(key), rc == 0 ? "success" : "fail"); nvdimm_put_key(key); if (rc == 0) { set_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags); set_bit(NDD_WORK_PENDING, &nvdimm->flags); nvdimm->sec.state = NVDIMM_SECURITY_OVERWRITE; /* * Make sure we don't lose device while doing overwrite * query. */ get_device(dev); queue_delayed_work(system_wq, &nvdimm->dwork, 0); } return rc; } void __nvdimm_security_overwrite_query(struct nvdimm *nvdimm) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nvdimm->dev); int rc; unsigned int tmo; /* The bus lock should be held at the top level of the call stack */ lockdep_assert_held(&nvdimm_bus->reconfig_mutex); /* * Abort and release device if we no longer have the overwrite * flag set. It means the work has been canceled. */ if (!test_bit(NDD_WORK_PENDING, &nvdimm->flags)) return; tmo = nvdimm->sec.overwrite_tmo; if (!nvdimm->sec.ops || !nvdimm->sec.ops->query_overwrite || nvdimm->sec.state < 0) return; rc = nvdimm->sec.ops->query_overwrite(nvdimm); if (rc == -EBUSY) { /* setup delayed work again */ tmo += 10; queue_delayed_work(system_wq, &nvdimm->dwork, tmo * HZ); nvdimm->sec.overwrite_tmo = min(15U * 60U, tmo); return; } if (rc < 0) dev_dbg(&nvdimm->dev, "overwrite failed\n"); else dev_dbg(&nvdimm->dev, "overwrite completed\n"); if (nvdimm->sec.overwrite_state) sysfs_notify_dirent(nvdimm->sec.overwrite_state); nvdimm->sec.overwrite_tmo = 0; clear_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags); clear_bit(NDD_WORK_PENDING, &nvdimm->flags); put_device(&nvdimm->dev); nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER); } void nvdimm_security_overwrite_query(struct work_struct *work) { struct nvdimm *nvdimm = container_of(work, typeof(*nvdimm), dwork.work); nvdimm_bus_lock(&nvdimm->dev); __nvdimm_security_overwrite_query(nvdimm); nvdimm_bus_unlock(&nvdimm->dev); }