/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/libnvdimm.h> #include <linux/badblocks.h> #include <linux/export.h> #include <linux/module.h> #include <linux/blkdev.h> #include <linux/device.h> #include <linux/ctype.h> #include <linux/ndctl.h> #include <linux/mutex.h> #include <linux/slab.h> #include "nd-core.h" #include "nd.h" LIST_HEAD(nvdimm_bus_list); DEFINE_MUTEX(nvdimm_bus_list_mutex); static DEFINE_IDA(nd_ida); void nvdimm_bus_lock(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return; mutex_lock(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(nvdimm_bus_lock); void nvdimm_bus_unlock(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return; mutex_unlock(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(nvdimm_bus_unlock); bool is_nvdimm_bus_locked(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return false; return mutex_is_locked(&nvdimm_bus->reconfig_mutex); } EXPORT_SYMBOL(is_nvdimm_bus_locked); u64 nd_fletcher64(void *addr, size_t len, bool le) { u32 *buf = addr; u32 lo32 = 0; u64 hi32 = 0; int i; for (i = 0; i < len / sizeof(u32); i++) { lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i]; hi32 += lo32; } return hi32 << 32 | lo32; } EXPORT_SYMBOL_GPL(nd_fletcher64); static void nvdimm_bus_release(struct device *dev) { struct nvdimm_bus *nvdimm_bus; nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); ida_simple_remove(&nd_ida, nvdimm_bus->id); kfree(nvdimm_bus); } struct nvdimm_bus *to_nvdimm_bus(struct device *dev) { struct nvdimm_bus *nvdimm_bus; nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); WARN_ON(nvdimm_bus->dev.release != nvdimm_bus_release); return nvdimm_bus; } EXPORT_SYMBOL_GPL(to_nvdimm_bus); struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus) { /* struct nvdimm_bus definition is private to libnvdimm */ return nvdimm_bus->nd_desc; } EXPORT_SYMBOL_GPL(to_nd_desc); struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev) { struct device *dev; for (dev = nd_dev; dev; dev = dev->parent) if (dev->release == nvdimm_bus_release) break; dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n"); if (dev) return to_nvdimm_bus(dev); return NULL; } static bool is_uuid_sep(char sep) { if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0') return true; return false; } static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf, size_t len) { const char *str = buf; u8 uuid[16]; int i; for (i = 0; i < 16; i++) { if (!isxdigit(str[0]) || !isxdigit(str[1])) { dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n", __func__, i, str - buf, str[0], str + 1 - buf, str[1]); return -EINVAL; } uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]); str += 2; if (is_uuid_sep(*str)) str++; } memcpy(uuid_out, uuid, sizeof(uuid)); return 0; } /** * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes * @dev: container device for the uuid property * @uuid_out: uuid buffer to replace * @buf: raw sysfs buffer to parse * * Enforce that uuids can only be changed while the device is disabled * (driver detached) * LOCKING: expects device_lock() is held on entry */ int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf, size_t len) { u8 uuid[16]; int rc; if (dev->driver) return -EBUSY; rc = nd_uuid_parse(dev, uuid, buf, len); if (rc) return rc; kfree(*uuid_out); *uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); if (!(*uuid_out)) return -ENOMEM; return 0; } ssize_t nd_sector_size_show(unsigned long current_lbasize, const unsigned long *supported, char *buf) { ssize_t len = 0; int i; for (i = 0; supported[i]; i++) if (current_lbasize == supported[i]) len += sprintf(buf + len, "[%ld] ", supported[i]); else len += sprintf(buf + len, "%ld ", supported[i]); len += sprintf(buf + len, "\n"); return len; } ssize_t nd_sector_size_store(struct device *dev, const char *buf, unsigned long *current_lbasize, const unsigned long *supported) { unsigned long lbasize; int rc, i; if (dev->driver) return -EBUSY; rc = kstrtoul(buf, 0, &lbasize); if (rc) return rc; for (i = 0; supported[i]; i++) if (lbasize == supported[i]) break; if (supported[i]) { *current_lbasize = lbasize; return 0; } else { return -EINVAL; } } void __nd_iostat_start(struct bio *bio, unsigned long *start) { struct gendisk *disk = bio->bi_bdev->bd_disk; const int rw = bio_data_dir(bio); int cpu = part_stat_lock(); *start = jiffies; part_round_stats(cpu, &disk->part0); part_stat_inc(cpu, &disk->part0, ios[rw]); part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio)); part_inc_in_flight(&disk->part0, rw); part_stat_unlock(); } EXPORT_SYMBOL(__nd_iostat_start); void nd_iostat_end(struct bio *bio, unsigned long start) { struct gendisk *disk = bio->bi_bdev->bd_disk; unsigned long duration = jiffies - start; const int rw = bio_data_dir(bio); int cpu = part_stat_lock(); part_stat_add(cpu, &disk->part0, ticks[rw], duration); part_round_stats(cpu, &disk->part0); part_dec_in_flight(&disk->part0, rw); part_stat_unlock(); } EXPORT_SYMBOL(nd_iostat_end); static ssize_t commands_show(struct device *dev, struct device_attribute *attr, char *buf) { int cmd, len = 0; struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; for_each_set_bit(cmd, &nd_desc->dsm_mask, BITS_PER_LONG) len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd)); len += sprintf(buf + len, "\n"); return len; } static DEVICE_ATTR_RO(commands); static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus) { struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; struct device *parent = nvdimm_bus->dev.parent; if (nd_desc->provider_name) return nd_desc->provider_name; else if (parent) return dev_name(parent); else return "unknown"; } static ssize_t provider_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus)); } static DEVICE_ATTR_RO(provider); static int flush_namespaces(struct device *dev, void *data) { device_lock(dev); device_unlock(dev); return 0; } static int flush_regions_dimms(struct device *dev, void *data) { device_lock(dev); device_unlock(dev); device_for_each_child(dev, NULL, flush_namespaces); return 0; } static ssize_t wait_probe_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; int rc; if (nd_desc->flush_probe) { rc = nd_desc->flush_probe(nd_desc); if (rc) return rc; } nd_synchronize(); device_for_each_child(dev, NULL, flush_regions_dimms); return sprintf(buf, "1\n"); } static DEVICE_ATTR_RO(wait_probe); static struct attribute *nvdimm_bus_attributes[] = { &dev_attr_commands.attr, &dev_attr_wait_probe.attr, &dev_attr_provider.attr, NULL, }; struct attribute_group nvdimm_bus_attribute_group = { .attrs = nvdimm_bus_attributes, }; EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group); struct nvdimm_bus *__nvdimm_bus_register(struct device *parent, struct nvdimm_bus_descriptor *nd_desc, struct module *module) { struct nvdimm_bus *nvdimm_bus; int rc; nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL); if (!nvdimm_bus) return NULL; INIT_LIST_HEAD(&nvdimm_bus->list); INIT_LIST_HEAD(&nvdimm_bus->poison_list); init_waitqueue_head(&nvdimm_bus->probe_wait); nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL); mutex_init(&nvdimm_bus->reconfig_mutex); if (nvdimm_bus->id < 0) { kfree(nvdimm_bus); return NULL; } nvdimm_bus->nd_desc = nd_desc; nvdimm_bus->module = module; nvdimm_bus->dev.parent = parent; nvdimm_bus->dev.release = nvdimm_bus_release; nvdimm_bus->dev.groups = nd_desc->attr_groups; dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id); rc = device_register(&nvdimm_bus->dev); if (rc) { dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc); goto err; } rc = nvdimm_bus_create_ndctl(nvdimm_bus); if (rc) goto err; mutex_lock(&nvdimm_bus_list_mutex); list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list); mutex_unlock(&nvdimm_bus_list_mutex); return nvdimm_bus; err: put_device(&nvdimm_bus->dev); return NULL; } EXPORT_SYMBOL_GPL(__nvdimm_bus_register); static void set_badblock(struct badblocks *bb, sector_t s, int num) { dev_dbg(bb->dev, "Found a poison range (0x%llx, 0x%llx)\n", (u64) s * 512, (u64) num * 512); /* this isn't an error as the hardware will still throw an exception */ if (badblocks_set(bb, s, num, 1)) dev_info_once(bb->dev, "%s: failed for sector %llx\n", __func__, (u64) s); } /** * __add_badblock_range() - Convert a physical address range to bad sectors * @bb: badblocks instance to populate * @ns_offset: namespace offset where the error range begins (in bytes) * @len: number of bytes of poison to be added * * This assumes that the range provided with (ns_offset, len) is within * the bounds of physical addresses for this namespace, i.e. lies in the * interval [ns_start, ns_start + ns_size) */ static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len) { const unsigned int sector_size = 512; sector_t start_sector; u64 num_sectors; u32 rem; start_sector = div_u64(ns_offset, sector_size); num_sectors = div_u64_rem(len, sector_size, &rem); if (rem) num_sectors++; if (unlikely(num_sectors > (u64)INT_MAX)) { u64 remaining = num_sectors; sector_t s = start_sector; while (remaining) { int done = min_t(u64, remaining, INT_MAX); set_badblock(bb, s, done); remaining -= done; s += done; } } else set_badblock(bb, start_sector, num_sectors); } static void namespace_add_poison(struct list_head *poison_list, struct badblocks *bb, struct resource *res) { struct nd_poison *pl; if (list_empty(poison_list)) return; list_for_each_entry(pl, poison_list, list) { u64 pl_end = pl->start + pl->length - 1; /* Discard intervals with no intersection */ if (pl_end < res->start) continue; if (pl->start > res->end) continue; /* Deal with any overlap after start of the namespace */ if (pl->start >= res->start) { u64 start = pl->start; u64 len; if (pl_end <= res->end) len = pl->length; else len = res->start + resource_size(res) - pl->start; __add_badblock_range(bb, start - res->start, len); continue; } /* Deal with overlap for poison starting before the namespace */ if (pl->start < res->start) { u64 len; if (pl_end < res->end) len = pl->start + pl->length - res->start; else len = resource_size(res); __add_badblock_range(bb, 0, len); } } } /** * nvdimm_namespace_add_poison() - Convert a list of poison ranges to badblocks * @ndns: the namespace containing poison ranges * @bb: badblocks instance to populate * @offset: offset at the start of the namespace before 'sector 0' * * The poison list generated during NFIT initialization may contain multiple, * possibly overlapping ranges in the SPA (System Physical Address) space. * Compare each of these ranges to the namespace currently being initialized, * and add badblocks to the gendisk for all matching sub-ranges */ void nvdimm_namespace_add_poison(struct nd_namespace_common *ndns, struct badblocks *bb, resource_size_t offset) { struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); struct nd_region *nd_region = to_nd_region(ndns->dev.parent); struct nvdimm_bus *nvdimm_bus; struct list_head *poison_list; struct resource res = { .start = nsio->res.start + offset, .end = nsio->res.end, }; nvdimm_bus = to_nvdimm_bus(nd_region->dev.parent); poison_list = &nvdimm_bus->poison_list; nvdimm_bus_lock(&nvdimm_bus->dev); namespace_add_poison(poison_list, bb, &res); nvdimm_bus_unlock(&nvdimm_bus->dev); } EXPORT_SYMBOL_GPL(nvdimm_namespace_add_poison); static int add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) { struct nd_poison *pl; pl = kzalloc(sizeof(*pl), GFP_KERNEL); if (!pl) return -ENOMEM; pl->start = addr; pl->length = length; list_add_tail(&pl->list, &nvdimm_bus->poison_list); return 0; } static int bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) { struct nd_poison *pl; if (list_empty(&nvdimm_bus->poison_list)) return add_poison(nvdimm_bus, addr, length); /* * There is a chance this is a duplicate, check for those first. * This will be the common case as ARS_STATUS returns all known * errors in the SPA space, and we can't query it per region */ list_for_each_entry(pl, &nvdimm_bus->poison_list, list) if (pl->start == addr) { /* If length has changed, update this list entry */ if (pl->length != length) pl->length = length; return 0; } /* * If not a duplicate or a simple length update, add the entry as is, * as any overlapping ranges will get resolved when the list is consumed * and converted to badblocks */ return add_poison(nvdimm_bus, addr, length); } int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length) { int rc; nvdimm_bus_lock(&nvdimm_bus->dev); rc = bus_add_poison(nvdimm_bus, addr, length); nvdimm_bus_unlock(&nvdimm_bus->dev); return rc; } EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison); static void free_poison_list(struct list_head *poison_list) { struct nd_poison *pl, *next; list_for_each_entry_safe(pl, next, poison_list, list) { list_del(&pl->list); kfree(pl); } list_del_init(poison_list); } static int child_unregister(struct device *dev, void *data) { /* * the singular ndctl class device per bus needs to be * "device_destroy"ed, so skip it here * * i.e. remove classless children */ if (dev->class) /* pass */; else nd_device_unregister(dev, ND_SYNC); return 0; } void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus) { if (!nvdimm_bus) return; mutex_lock(&nvdimm_bus_list_mutex); list_del_init(&nvdimm_bus->list); mutex_unlock(&nvdimm_bus_list_mutex); nd_synchronize(); device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister); nvdimm_bus_lock(&nvdimm_bus->dev); free_poison_list(&nvdimm_bus->poison_list); nvdimm_bus_unlock(&nvdimm_bus->dev); nvdimm_bus_destroy_ndctl(nvdimm_bus); device_unregister(&nvdimm_bus->dev); } EXPORT_SYMBOL_GPL(nvdimm_bus_unregister); #ifdef CONFIG_BLK_DEV_INTEGRITY int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) { struct blk_integrity bi; if (meta_size == 0) return 0; bi.profile = NULL; bi.tuple_size = meta_size; bi.tag_size = meta_size; blk_integrity_register(disk, &bi); blk_queue_max_integrity_segments(disk->queue, 1); return 0; } EXPORT_SYMBOL(nd_integrity_init); #else /* CONFIG_BLK_DEV_INTEGRITY */ int nd_integrity_init(struct gendisk *disk, unsigned long meta_size) { return 0; } EXPORT_SYMBOL(nd_integrity_init); #endif static __init int libnvdimm_init(void) { int rc; rc = nvdimm_bus_init(); if (rc) return rc; rc = nvdimm_init(); if (rc) goto err_dimm; rc = nd_region_init(); if (rc) goto err_region; return 0; err_region: nvdimm_exit(); err_dimm: nvdimm_bus_exit(); return rc; } static __exit void libnvdimm_exit(void) { WARN_ON(!list_empty(&nvdimm_bus_list)); nd_region_exit(); nvdimm_exit(); nvdimm_bus_exit(); } MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation"); subsys_initcall(libnvdimm_init); module_exit(libnvdimm_exit);