// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "dm.h" #include "fw.h" #include "led.h" #include "hw.h" void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: { *((u32 *) (val)) = rtlpci->receive_config; break; } case HW_VAR_RF_STATE: { *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; } case HW_VAR_FW_PSMODE_STATUS: { *((bool *) (val)) = ppsc->fw_current_inpsmode; break; } case HW_VAR_CORRECT_TSF: { u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, TSFR); *((u64 *) (val)) = tsf; break; } case HW_VAR_MRC: { *((bool *)(val)) = rtlpriv->dm.current_mrc_switch; break; } case HAL_DEF_WOWLAN: break; default: pr_err("switch case %#x not processed\n", variable); break; } } void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); switch (variable) { case HW_VAR_ETHER_ADDR:{ rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]); rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]); break; } case HW_VAR_BASIC_RATE:{ u16 rate_cfg = ((u16 *) val)[0]; u8 rate_index = 0; if (rtlhal->version == VERSION_8192S_ACUT) rate_cfg = rate_cfg & 0x150; else rate_cfg = rate_cfg & 0x15f; rate_cfg |= 0x01; rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff); rtl_write_byte(rtlpriv, RRSR + 1, (rate_cfg >> 8) & 0xff); while (rate_cfg > 0x1) { rate_cfg = (rate_cfg >> 1); rate_index++; } rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index); break; } case HW_VAR_BSSID:{ rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]); rtl_write_word(rtlpriv, BSSIDR + 4, ((u16 *)(val + 4))[0]); break; } case HW_VAR_SIFS:{ rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]); rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]); break; } case HW_VAR_SLOT_TIME:{ u8 e_aci; rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, SLOT_TIME, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (&e_aci)); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool) (*val); reg_tmp = (mac->cur_40_prime_sc) << 5; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp); break; } case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *val; if (min_spacing_to_set <= 7) { if (rtlpriv->sec.pairwise_enc_algorithm == NO_ENCRYPTION) sec_min_space = 0; else sec_min_space = 1; if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; if (min_spacing_to_set > 5) min_spacing_to_set = 5; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *val; mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; mac->min_space_cfg |= (density_to_set << 3); rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR:{ u8 factor_toset; u8 regtoset; u8 factorlevel[18] = { 2, 4, 4, 7, 7, 13, 13, 13, 2, 7, 7, 13, 13, 15, 15, 15, 15, 0}; u8 index = 0; factor_toset = *val; if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 17; index++) { if (factorlevel[index] > factor_toset) factorlevel[index] = factor_toset; } for (index = 0; index < 8; index++) { regtoset = ((factorlevel[index * 2]) | (factorlevel[index * 2 + 1] << 4)); rtl_write_byte(rtlpriv, AGGLEN_LMT_L + index, regtoset); } regtoset = ((factorlevel[16]) | (factorlevel[17] << 4)); rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset); rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } break; } case HW_VAR_AC_PARAM:{ u8 e_aci = *val; rtl92s_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, &e_aci); break; } case HW_VAR_ACM_CTRL:{ u8 e_aci = *val; union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&( mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_VOQEN); break; default: pr_err("switch case %#x not processed\n", e_aci); break; } } rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE, "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR:{ rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]); rtlpci->receive_config = ((u32 *) (val))[0]; break; } case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = val[0]; rtl_write_word(rtlpriv, RETRY_LIMIT, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); break; } case HW_VAR_DUAL_TSF_RST: { break; } case HW_VAR_EFUSE_BYTES: { rtlefuse->efuse_usedbytes = *((u16 *) val); break; } case HW_VAR_EFUSE_USAGE: { rtlefuse->efuse_usedpercentage = *val; break; } case HW_VAR_IO_CMD: { break; } case HW_VAR_WPA_CONFIG: { rtl_write_byte(rtlpriv, REG_SECR, *val); break; } case HW_VAR_SET_RPWM:{ break; } case HW_VAR_H2C_FW_PWRMODE:{ break; } case HW_VAR_FW_PSMODE_STATUS: { ppsc->fw_current_inpsmode = *((bool *) val); break; } case HW_VAR_H2C_FW_JOINBSSRPT:{ break; } case HW_VAR_AID:{ break; } case HW_VAR_CORRECT_TSF:{ break; } case HW_VAR_MRC: { bool bmrc_toset = *((bool *)val); u8 u1bdata = 0; if (bmrc_toset) { rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x33); u1bdata = (u8)rtl_get_bbreg(hw, ROFDM1_TRXPATHENABLE, MASKBYTE0); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, MASKBYTE0, ((u1bdata & 0xf0) | 0x03)); u1bdata = (u8)rtl_get_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE1); rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE1, (u1bdata | 0x04)); /* Update current settings. */ rtlpriv->dm.current_mrc_switch = bmrc_toset; } else { rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x13); u1bdata = (u8)rtl_get_bbreg(hw, ROFDM1_TRXPATHENABLE, MASKBYTE0); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, MASKBYTE0, ((u1bdata & 0xf0) | 0x01)); u1bdata = (u8)rtl_get_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE1); rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE1, (u1bdata & 0xfb)); /* Update current settings. */ rtlpriv->dm.current_mrc_switch = bmrc_toset; } break; } case HW_VAR_FW_LPS_ACTION: { bool enter_fwlps = *((bool *)val); u8 rpwm_val, fw_pwrmode; bool fw_current_inps; if (enter_fwlps) { rpwm_val = 0x02; /* RF off */ fw_current_inps = true; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &ppsc->fwctrl_psmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); } else { rpwm_val = 0x0C; /* RF on */ fw_pwrmode = FW_PS_ACTIVE_MODE; fw_current_inps = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &fw_pwrmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } break; } default: pr_err("switch case %#x not processed\n", variable); break; } } void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value = 0x0; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 waitcount = 100; bool bresult = false; u8 tmpvalue; rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); /* Wait the MAC synchronized. */ udelay(400); /* Check if it is set ready. */ tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); bresult = ((tmpvalue & BIT(7)) == (data & BIT(7))); if ((data & (BIT(6) | BIT(7))) == false) { waitcount = 100; tmpvalue = 0; while (1) { waitcount--; tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); if ((tmpvalue & BIT(6))) break; pr_err("wait for BIT(6) return value %x\n", tmpvalue); if (waitcount == 0) break; udelay(10); } if (waitcount == 0) bresult = false; else bresult = true; } return bresult; } void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 u1tmp; /* The following config GPIO function */ rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); /* config GPIO3 to input */ u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); } static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 u1tmp; u8 retval = ERFON; /* The following config GPIO function */ rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); /* config GPIO3 to input */ u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); /* On some of the platform, driver cannot read correct * value without delay between Write_GPIO_SEL and Read_GPIO_IN */ mdelay(10); /* check GPIO3 */ u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE); retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF; return retval; } static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 i; u8 tmpu1b; u16 tmpu2b; u8 pollingcnt = 20; if (rtlpci->first_init) { /* Reset PCIE Digital */ tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmpu1b &= 0xFE; rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); udelay(1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0)); } /* Switch to SW IO control */ tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); if (tmpu1b & BIT(7)) { tmpu1b &= ~(BIT(6) | BIT(7)); /* Set failed, return to prevent hang. */ if (!_rtl92se_halset_sysclk(hw, tmpu1b)) return; } rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); udelay(50); rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); udelay(50); /* Clear FW RPWM for FW control LPS.*/ rtl_write_byte(rtlpriv, RPWM, 0x0); /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */ tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmpu1b &= 0x73; rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); /* wait for BIT 10/11/15 to pull high automatically!! */ mdelay(1); rtl_write_byte(rtlpriv, CMDR, 0); rtl_write_byte(rtlpriv, TCR, 0); /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ tmpu1b = rtl_read_byte(rtlpriv, 0x562); tmpu1b |= 0x08; rtl_write_byte(rtlpriv, 0x562, tmpu1b); tmpu1b &= ~(BIT(3)); rtl_write_byte(rtlpriv, 0x562, tmpu1b); /* Enable AFE clock source */ tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); /* Delay 1.5ms */ mdelay(2); tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); /* Enable AFE Macro Block's Bandgap */ tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); mdelay(1); /* Enable AFE Mbias */ tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); mdelay(1); /* Enable LDOA15 block */ tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); /* Set Digital Vdd to Retention isolation Path. */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); /* For warm reboot NIC disappera bug. */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); /* Enable AFE PLL Macro Block */ /* We need to delay 100u before enabling PLL. */ udelay(200); tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); /* for divider reset */ udelay(100); rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4) | BIT(6))); udelay(10); rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); udelay(10); /* Enable MAC 80MHZ clock */ tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); mdelay(1); /* Release isolation AFE PLL & MD */ rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); /* Enable MAC clock */ tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); /* Enable Core digital and enable IOREG R/W */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7))); /* enable REG_EN */ rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); /* Switch the control path. */ tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); if (!_rtl92se_halset_sysclk(hw, tmpu1b)) return; /* Set failed, return to prevent hang. */ rtl_write_word(rtlpriv, CMDR, 0x07FC); /* MH We must enable the section of code to prevent load IMEM fail. */ /* Load MAC register from WMAc temporarily We simulate macreg. */ /* txt HW will provide MAC txt later */ rtl_write_byte(rtlpriv, 0x6, 0x30); rtl_write_byte(rtlpriv, 0x49, 0xf0); rtl_write_byte(rtlpriv, 0x4b, 0x81); rtl_write_byte(rtlpriv, 0xb5, 0x21); rtl_write_byte(rtlpriv, 0xdc, 0xff); rtl_write_byte(rtlpriv, 0xdd, 0xff); rtl_write_byte(rtlpriv, 0xde, 0xff); rtl_write_byte(rtlpriv, 0xdf, 0xff); rtl_write_byte(rtlpriv, 0x11a, 0x00); rtl_write_byte(rtlpriv, 0x11b, 0x00); for (i = 0; i < 32; i++) rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b); rtl_write_byte(rtlpriv, 0x236, 0xff); rtl_write_byte(rtlpriv, 0x503, 0x22); if (ppsc->support_aspm && !ppsc->support_backdoor) rtl_write_byte(rtlpriv, 0x560, 0x40); else rtl_write_byte(rtlpriv, 0x560, 0x00); rtl_write_byte(rtlpriv, DBG_PORT, 0x91); /* Set RX Desc Address */ rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma); rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma); /* Set TX Desc Address */ rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma); rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma); rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma); rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma); rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma); rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma); rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma); rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma); rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma); rtl_write_word(rtlpriv, CMDR, 0x37FC); /* To make sure that TxDMA can ready to download FW. */ /* We should reset TxDMA if IMEM RPT was not ready. */ do { tmpu1b = rtl_read_byte(rtlpriv, TCR); if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE) break; udelay(5); } while (pollingcnt--); if (pollingcnt <= 0) { pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n", tmpu1b); tmpu1b = rtl_read_byte(rtlpriv, CMDR); rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN)); udelay(2); /* Reset TxDMA */ rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN); } /* After MACIO reset,we must refresh LED state. */ if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) || (ppsc->rfoff_reason == 0)) { struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; enum rf_pwrstate rfpwr_state_toset; rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw); if (rfpwr_state_toset == ERFON) rtl92se_sw_led_on(hw, pled0); } } static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 i; u16 tmpu2b; /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */ /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */ /* Turn on 0x40 Command register */ rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN | SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN | RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN)); /* Set TCR TX DMA pre 2 FULL enable bit */ rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) | TXDMAPRE2FULL); /* Set RCR */ rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */ /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */ /* Set CCK/OFDM SIFS */ /* CCK SIFS shall always be 10us. */ rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a); rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010); /* Set AckTimeout */ rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40); /* Beacon related */ rtl_write_word(rtlpriv, BCN_INTERVAL, 100); rtl_write_word(rtlpriv, ATIMWND, 2); /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */ /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */ /* Firmware allocate now, associate with FW internal setting.!!! */ /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */ /* 5.3 Set driver info, we only accept PHY status now. */ /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */ rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6)); /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */ /* Set RRSR to all legacy rate and HT rate * CCK rate is supported by default. * CCK rate will be filtered out only when associated * AP does not support it. * Only enable ACK rate to OFDM 24M * Disable RRSR for CCK rate in A-Cut */ if (rtlhal->version == VERSION_8192S_ACUT) rtl_write_byte(rtlpriv, RRSR, 0xf0); else if (rtlhal->version == VERSION_8192S_BCUT) rtl_write_byte(rtlpriv, RRSR, 0xff); rtl_write_byte(rtlpriv, RRSR + 1, 0x01); rtl_write_byte(rtlpriv, RRSR + 2, 0x00); /* A-Cut IC do not support CCK rate. We forbid ARFR to */ /* fallback to CCK rate */ for (i = 0; i < 8; i++) { /*Disable RRSR for CCK rate in A-Cut */ if (rtlhal->version == VERSION_8192S_ACUT) rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0); } /* Different rate use different AMPDU size */ /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */ rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f); /* MCS0/1/2/3 use max AMPDU size 4*2=8K */ rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442); /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */ rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7); /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */ rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772); /* MCS12/13/14/15 use max AMPDU size 15*2=30K */ rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd); /* Set Data / Response auto rate fallack retry count */ rtl_write_dword(rtlpriv, DARFRC, 0x04010000); rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605); rtl_write_dword(rtlpriv, RARFRC, 0x04010000); rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605); /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */ /* Set all rate to support SG */ rtl_write_word(rtlpriv, SG_RATE, 0xFFFF); /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */ /* Set NAV protection length */ rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080); /* CF-END Threshold */ rtl_write_byte(rtlpriv, CFEND_TH, 0xFF); /* Set AMPDU minimum space */ rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07); /* Set TXOP stall control for several queue/HI/BCN/MGT/ */ rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00); /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */ /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */ /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */ /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */ /* 13. Test mode and Debug Control Register (Offset: 0x0310 - 0x034F) */ /* 14. Set driver info, we only accept PHY status now. */ rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4); /* 15. For EEPROM R/W Workaround */ /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */ tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13)); tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8))); /* 17. For EFUSE */ /* We may R/W EFUSE in EEPROM mode */ if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { u8 tempval; tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1); tempval &= 0xFE; rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval); /* Change Program timing */ rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72); rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n"); } rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n"); } static void _rtl92se_hw_configure(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 reg_bw_opmode = 0; u32 reg_rrsr = 0; u8 regtmp = 0; reg_bw_opmode = BW_OPMODE_20MHZ; reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL); reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp; rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr); rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); /* Set Retry Limit here */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT, (u8 *)(&rtlpci->shortretry_limit)); rtl_write_byte(rtlpriv, MLT, 0x8f); /* For Min Spacing configuration. */ switch (rtlphy->rf_type) { case RF_1T2R: case RF_1T1R: rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); break; case RF_2T2R: case RF_2T2R_GREEN: rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); break; } rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg); } int rtl92se_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 tmp_byte = 0; unsigned long flags; bool rtstatus = true; u8 tmp_u1b; int err = false; u8 i; int wdcapra_add[] = { EDCAPARA_BE, EDCAPARA_BK, EDCAPARA_VI, EDCAPARA_VO}; u8 secr_value = 0x0; rtlpci->being_init_adapter = true; /* As this function can take a very long time (up to 350 ms) * and can be called with irqs disabled, reenable the irqs * to let the other devices continue being serviced. * * It is safe doing so since our own interrupts will only be enabled * in a subsequent step. */ local_save_flags(flags); local_irq_enable(); rtlpriv->intf_ops->disable_aspm(hw); /* 1. MAC Initialize */ /* Before FW download, we have to set some MAC register */ _rtl92se_macconfig_before_fwdownload(hw); rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv, PMC_FSM) >> 16) & 0xF); rtl8192se_gpiobit3_cfg_inputmode(hw); /* 2. download firmware */ rtstatus = rtl92s_download_fw(hw); if (!rtstatus) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now... Please copy FW into /lib/firmware/rtlwifi\n"); err = 1; goto exit; } /* After FW download, we have to reset MAC register */ _rtl92se_macconfig_after_fwdownload(hw); /*Retrieve default FW Cmd IO map. */ rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR); rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK); /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */ if (!rtl92s_phy_mac_config(hw)) { pr_err("MAC Config failed\n"); err = rtstatus; goto exit; } /* because last function modify RCR, so we update * rcr var here, or TP will unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 */ rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR); rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */ /* We must set flag avoid BB/RF config period later!! */ rtl_write_dword(rtlpriv, CMDR, 0x37FC); /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */ if (!rtl92s_phy_bb_config(hw)) { pr_err("BB Config failed\n"); err = rtstatus; goto exit; } /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */ /* Before initalizing RF. We can not use FW to do RF-R/W. */ rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; /* Before RF-R/W we must execute the IO from Scott's suggestion. */ rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB); if (rtlhal->version == VERSION_8192S_ACUT) rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07); else rtl_write_byte(rtlpriv, RF_CTRL, 0x07); if (!rtl92s_phy_rf_config(hw)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n"); err = rtstatus; goto exit; } /* After read predefined TXT, we must set BB/MAC/RF * register as our requirement */ rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); /*---- Set CCK and OFDM Block "ON"----*/ rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); /*3 Set Hardware(Do nothing now) */ _rtl92se_hw_configure(hw); /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ /* TX power index for different rate set. */ /* Get original hw reg values */ rtl92s_phy_get_hw_reg_originalvalue(hw); /* Write correct tx power index */ rtl92s_phy_set_txpower(hw, rtlphy->current_channel); /* We must set MAC address after firmware download. */ for (i = 0; i < 6; i++) rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); /* EEPROM R/W workaround */ tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG); rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3))); rtl_write_byte(rtlpriv, 0x4d, 0x0); if (hal_get_firmwareversion(rtlpriv) >= 0x49) { tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4)); tmp_byte = tmp_byte | BIT(5); rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte); rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF); } /* We enable high power and RA related mechanism after NIC * initialized. */ if (hal_get_firmwareversion(rtlpriv) >= 0x35) { /* Fw v.53 and later. */ rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT); } else if (hal_get_firmwareversion(rtlpriv) == 0x34) { /* Fw v.52. */ rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT); rtl92s_phy_chk_fwcmd_iodone(hw); } else { /* Compatible earlier FW version. */ rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH); rtl92s_phy_chk_fwcmd_iodone(hw); } /* Add to prevent ASPM bug. */ /* Always enable hst and NIC clock request. */ rtl92s_phy_switch_ephy_parameter(hw); /* Security related * 1. Clear all H/W keys. * 2. Enable H/W encryption/decryption. */ rtl_cam_reset_all_entry(hw); secr_value |= SCR_TXENCENABLE; secr_value |= SCR_RXENCENABLE; secr_value |= SCR_NOSKMC; rtl_write_byte(rtlpriv, REG_SECR, secr_value); for (i = 0; i < 4; i++) rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322); if (rtlphy->rf_type == RF_1T2R) { bool mrc2set = true; /* Turn on B-Path */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set); } rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON); rtl92s_dm_init(hw); exit: local_irq_restore(flags); rtlpci->being_init_adapter = false; return err; } void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr) { /* This is a stub. */ } void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 reg_rcr; if (rtlpriv->psc.rfpwr_state != ERFON) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); if (check_bssid) { reg_rcr |= (RCR_CBSSID); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } else if (!check_bssid) { reg_rcr &= (~RCR_CBSSID); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } static int _rtl92se_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR); u32 temp; bt_msr &= ~MSR_LINK_MASK; switch (type) { case NL80211_IFTYPE_UNSPECIFIED: bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: pr_err("Network type %d not supported!\n", type); return 1; } if (type != NL80211_IFTYPE_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK; rtl_write_byte(rtlpriv, MSR, bt_msr); temp = rtl_read_dword(rtlpriv, TCR); rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8))); rtl_write_dword(rtlpriv, TCR, temp | BIT(8)); return 0; } /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */ int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl92se_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP) rtl92se_set_check_bssid(hw, true); } else { rtl92se_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ void rtl92se_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl92s_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f); break; case AC0_BE: /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */ break; case AC2_VI: rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222); break; default: WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci); break; } } void rtl92se_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]); /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */ rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F); rtlpci->irq_enabled = true; } void rtl92se_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv; struct rtl_pci *rtlpci; rtlpriv = rtl_priv(hw); /* if firmware not available, no interrupts */ if (!rtlpriv || !rtlpriv->max_fw_size) return; rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, INTA_MASK, 0); rtl_write_dword(rtlpriv, INTA_MASK + 4, 0); rtlpci->irq_enabled = false; } static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 waitcnt = 100; bool result = false; u8 tmp; rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); /* Wait the MAC synchronized. */ udelay(400); /* Check if it is set ready. */ tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); result = ((tmp & BIT(7)) == (data & BIT(7))); if ((data & (BIT(6) | BIT(7))) == false) { waitcnt = 100; tmp = 0; while (1) { waitcnt--; tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); if ((tmp & BIT(6))) break; pr_err("wait for BIT(6) return value %x\n", tmp); if (waitcnt == 0) break; udelay(10); } if (waitcnt == 0) result = false; else result = true; } return result; } static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 u1btmp; if (rtlhal->driver_going2unload) rtl_write_byte(rtlpriv, 0x560, 0x0); /* Power save for BB/RF */ u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL); u1btmp |= BIT(0); rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp); rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0); rtl_write_byte(rtlpriv, TXPAUSE, 0xFF); rtl_write_word(rtlpriv, CMDR, 0x57FC); udelay(100); rtl_write_word(rtlpriv, CMDR, 0x77FC); rtl_write_byte(rtlpriv, PHY_CCA, 0x0); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x37FC); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x77FC); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x57FC); rtl_write_word(rtlpriv, CMDR, 0x0000); if (rtlhal->driver_going2unload) { u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1)); u1btmp &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp); } u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); /* Add description. After switch control path. register * after page1 will be invisible. We can not do any IO * for register>0x40. After resume&MACIO reset, we need * to remember previous reg content. */ if (u1btmp & BIT(7)) { u1btmp &= ~(BIT(6) | BIT(7)); if (!_rtl92s_set_sysclk(hw, u1btmp)) { pr_err("Switch ctrl path fail\n"); return; } } /* Power save for MAC */ if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS && !rtlhal->driver_going2unload) { /* enable LED function */ rtl_write_byte(rtlpriv, 0x03, 0xF9); /* SW/HW radio off or halt adapter!! For example S3/S4 */ } else { /* LED function disable. Power range is about 8mA now. */ /* if write 0xF1 disconnect_pci power * ifconfig wlan0 down power are both high 35:70 */ /* if write oxF9 disconnect_pci power * ifconfig wlan0 down power are both low 12:45*/ rtl_write_byte(rtlpriv, 0x03, 0xF9); } rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70); rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68); rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00); rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; if (rtlpci->up_first_time == 1) return; if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS) rtl92se_sw_led_on(hw, pled0); else rtl92se_sw_led_off(hw, pled0); } static void _rtl92se_power_domain_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 tmpu2b; u8 tmpu1b; rtlpriv->psc.pwrdomain_protect = true; tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); if (tmpu1b & BIT(7)) { tmpu1b &= ~(BIT(6) | BIT(7)); if (!_rtl92s_set_sysclk(hw, tmpu1b)) { rtlpriv->psc.pwrdomain_protect = false; return; } } rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */ tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); /* If IPS we need to turn LED on. So we not * not disable BIT 3/7 of reg3. */ if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW)) tmpu1b &= 0xFB; else tmpu1b &= 0x73; rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); /* wait for BIT 10/11/15 to pull high automatically!! */ mdelay(1); rtl_write_byte(rtlpriv, CMDR, 0); rtl_write_byte(rtlpriv, TCR, 0); /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ tmpu1b = rtl_read_byte(rtlpriv, 0x562); tmpu1b |= 0x08; rtl_write_byte(rtlpriv, 0x562, tmpu1b); tmpu1b &= ~(BIT(3)); rtl_write_byte(rtlpriv, 0x562, tmpu1b); /* Enable AFE clock source */ tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); /* Delay 1.5ms */ udelay(1500); tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); /* Enable AFE Macro Block's Bandgap */ tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); mdelay(1); /* Enable AFE Mbias */ tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); mdelay(1); /* Enable LDOA15 block */ tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); /* Set Digital Vdd to Retention isolation Path. */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); /* For warm reboot NIC disappera bug. */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); /* Enable AFE PLL Macro Block */ tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); /* Enable MAC 80MHZ clock */ tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); mdelay(1); /* Release isolation AFE PLL & MD */ rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); /* Enable MAC clock */ tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); /* Enable Core digital and enable IOREG R/W */ tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); /* enable REG_EN */ rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); /* Switch the control path. */ tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); if (!_rtl92s_set_sysclk(hw, tmpu1b)) { rtlpriv->psc.pwrdomain_protect = false; return; } rtl_write_word(rtlpriv, CMDR, 0x37FC); /* After MACIO reset,we must refresh LED state. */ _rtl92se_gen_refreshledstate(hw); rtlpriv->psc.pwrdomain_protect = false; } void rtl92se_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); enum nl80211_iftype opmode; u8 wait = 30; rtlpriv->intf_ops->enable_aspm(hw); if (rtlpci->driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); /* we should chnge GPIO to input mode * this will drop away current about 25mA*/ rtl8192se_gpiobit3_cfg_inputmode(hw); /* this is very important for ips power save */ while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) { if (rtlpriv->psc.pwrdomain_protect) mdelay(20); else break; } mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl92se_set_media_status(hw, opmode); _rtl92s_phy_set_rfhalt(hw); udelay(100); } void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, struct rtl_int *intvec) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, intvec->inta); intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, ISR + 4, intvec->intb); } void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcntime_cfg = 0; u16 bcn_cw = 6, bcn_ifs = 0xf; u16 atim_window = 2; /* ATIM Window (in unit of TU). */ rtl_write_word(rtlpriv, ATIMWND, atim_window); /* Beacon interval (in unit of TU). */ rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval); /* DrvErlyInt (in unit of TU). (Time to send * interrupt to notify driver to change * beacon content) */ rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4); /* BcnDMATIM(in unit of us). Indicates the * time before TBTT to perform beacon queue DMA */ rtl_write_word(rtlpriv, BCN_DMATIME, 256); /* Force beacon frame transmission even * after receiving beacon frame from * other ad hoc STA */ rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100); /* Beacon Time Configuration */ if (mac->opmode == NL80211_IFTYPE_ADHOC) bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT); /* TODO: bcn_ifs may required to be changed on ASIC */ bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS; /*for beacon changed */ rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval); } void rtl92se_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; /* Beacon interval (in unit of TU). */ rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval); /* 2008.10.24 added by tynli for beacon changed. */ rtl92s_phy_set_beacon_hwreg(hw, bcn_interval); } void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl92se_disable_interrupt(hw); rtl92se_enable_interrupt(hw); } static void _rtl8192se_get_ic_inferiority(struct ieee80211_hw *hw) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 efuse_id; rtlhal->ic_class = IC_INFERIORITY_A; /* Only retrieving while using EFUSE. */ if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) && !rtlefuse->autoload_failflag) { efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET); if (efuse_id == 0xfe) rtlhal->ic_class = IC_INFERIORITY_B; } } static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev; u16 i, usvalue; u16 eeprom_id; u8 tempval; u8 hwinfo[HWSET_MAX_SIZE_92S]; u8 rf_path, index; switch (rtlefuse->epromtype) { case EEPROM_BOOT_EFUSE: rtl_efuse_shadow_map_update(hw); break; case EEPROM_93C46: pr_err("RTL819X Not boot from eeprom, check it !!\n"); return; default: dev_warn(dev, "no efuse data\n"); return; } memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], HWSET_MAX_SIZE_92S); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", hwinfo, HWSET_MAX_SIZE_92S); eeprom_id = *((u16 *)&hwinfo[0]); if (eeprom_id != RTL8190_EEPROM_ID) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "EEPROM ID(%#x) is invalid!!\n", eeprom_id); rtlefuse->autoload_failflag = true; } else { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; } if (rtlefuse->autoload_failflag) return; _rtl8192se_get_ic_inferiority(hw); /* Read IC Version && Channel Plan */ /* VID, DID SE 0xA-D */ rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; } for (i = 0; i < 6; i++) rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); /* Get Tx Power Level by Channel */ /* Read Tx power of Channel 1 ~ 14 from EEPROM. */ /* 92S suupport RF A & B */ for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 3; i++) { /* Read CCK RF A & B Tx power */ rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i]; /* Read OFDM RF A & B Tx power for 1T */ rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i]; /* Read OFDM RF A & B Tx power for 2T */ rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i] = hwinfo[EEPROM_TXPOWERBASE + 12 + rf_path * 3 + i]; } } for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eeprom_chnlarea_txpwr_cck [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eprom_chnl_txpwr_ht40_2sdf [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) { /* Assign dedicated channel tx power */ for (i = 0; i < 14; i++) { /* channel 1~3 use the same Tx Power Level. */ if (i < 3) index = 0; /* Channel 4-8 */ else if (i < 8) index = 1; /* Channel 9-14 */ else index = 2; /* Record A & B CCK /OFDM - 1T/2T Channel area * tx power */ rtlefuse->txpwrlevel_cck[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_cck [rf_path][index]; rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][index]; rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = rtlefuse->eprom_chnl_txpwr_ht40_2sdf [rf_path][index]; } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i], rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); } } for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 3; i++) { /* Read Power diff limit. */ rtlefuse->eeprom_pwrgroup[rf_path][i] = hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i]; } } for (rf_path = 0; rf_path < 2; rf_path++) { /* Fill Pwr group */ for (i = 0; i < 14; i++) { /* Chanel 1-3 */ if (i < 3) index = 0; /* Channel 4-8 */ else if (i < 8) index = 1; /* Channel 9-13 */ else index = 2; rtlefuse->pwrgroup_ht20[rf_path][i] = (rtlefuse->eeprom_pwrgroup[rf_path][index] & 0xf); rtlefuse->pwrgroup_ht40[rf_path][i] = ((rtlefuse->eeprom_pwrgroup[rf_path][index] & 0xf0) >> 4); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht20[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht20[rf_path][i]); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht40[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht40[rf_path][i]); } } for (i = 0; i < 14; i++) { /* Read tx power difference between HT OFDM 20/40 MHZ */ /* channel 1-3 */ if (i < 3) index = 0; /* Channel 4-8 */ else if (i < 8) index = 1; /* Channel 9-14 */ else index = 2; tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff; rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); /* Read OFDM<->HT tx power diff */ /* Channel 1-3 */ if (i < 3) index = 0; /* Channel 4-8 */ else if (i < 8) index = 0x11; /* Channel 9-14 */ else index = 1; tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff; rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); tempval = hwinfo[TX_PWR_SAFETY_CHK]; rtlefuse->txpwr_safetyflag = (tempval & 0x01); } rtlefuse->eeprom_regulatory = 0; if (rtlefuse->eeprom_version >= 2) { /* BIT(0)~2 */ if (rtlefuse->eeprom_version >= 4) rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_REGULATORY] & 0x7); else /* BIT(0) */ rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_REGULATORY] & 0x1); } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag); /* Read RF-indication and Tx Power gain * index diff of legacy to HT OFDM rate. */ tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff; rtlefuse->eeprom_txpowerdiff = tempval; rtlefuse->legacy_httxpowerdiff = rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0]; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff); /* Get TSSI value for each path. */ usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A]; rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8); usvalue = hwinfo[EEPROM_TSSI_B]; rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", rtlefuse->eeprom_tssi[RF90_PATH_A], rtlefuse->eeprom_tssi[RF90_PATH_B]); /* Read antenna tx power offset of B/C/D to A from EEPROM */ /* and read ThermalMeter from EEPROM */ tempval = hwinfo[EEPROM_THERMALMETER]; rtlefuse->eeprom_thermalmeter = tempval; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */ rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f); rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100; /* Read CrystalCap from EEPROM */ tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4; rtlefuse->eeprom_crystalcap = tempval; /* CrystalCap, BIT(12)~15 */ rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap; /* Read IC Version && Channel Plan */ /* Version ID, Channel plan */ rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; rtlefuse->txpwr_fromeprom = true; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan); /* Read Customer ID or Board Type!!! */ tempval = hwinfo[EEPROM_BOARDTYPE]; /* Change RF type definition */ if (tempval == 0) rtlphy->rf_type = RF_2T2R; else if (tempval == 1) rtlphy->rf_type = RF_1T2R; else if (tempval == 2) rtlphy->rf_type = RF_1T2R; else if (tempval == 3) rtlphy->rf_type = RF_1T1R; /* 1T2R but 1SS (1x1 receive combining) */ rtlefuse->b1x1_recvcombine = false; if (rtlphy->rf_type == RF_1T2R) { tempval = rtl_read_byte(rtlpriv, 0x07); if (!(tempval & BIT(0))) { rtlefuse->b1x1_recvcombine = true; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "RF_TYPE=1T2R but only 1SS\n"); } } rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine; rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID]; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); /* set channel paln to world wide 13 */ rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; } void rtl92se_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 tmp_u1b = 0; tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD); if (tmp_u1b & BIT(4)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl92se_read_adapter_info(hw); } else { pr_err("Autoload ERR!!\n"); rtlefuse->autoload_failflag = true; } } static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 nmode = mac->ht_enable; u8 mimo_ps = IEEE80211_SMPS_OFF; u16 shortgi_rate = 0; u32 tmp_ratr_value = 0; u8 curtxbw_40mhz = mac->bw_40; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->supp_rates[1] << 4; else ratr_value = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_value = 0xfff; ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_value &= 0x0000000D; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: nmode = 1; if (mimo_ps == IEEE80211_SMPS_STATIC) { ratr_value &= 0x0007F005; } else { u32 ratr_mask; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) { if (curtxbw_40mhz) ratr_mask = 0x000ff015; else ratr_mask = 0x000ff005; } else { if (curtxbw_40mhz) ratr_mask = 0x0f0ff015; else ratr_mask = 0x0f0ff005; } ratr_value &= ratr_mask; } break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) ratr_value &= 0x0FFFFFFF; else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) ratr_value &= 0x0FFFFFF0; if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); } rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value); if (ratr_value & 0xfffff000) rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N); else rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG); rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, ARFR0)); } static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index = 0; u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u32 ratr_value = 0; u8 shortgi_rate = 0; u32 mask = 0; u32 band = 0; bool bmulticast = false; u8 macid = 0; u8 mimo_ps = IEEE80211_SMPS_OFF; sta_entry = (struct rtl_sta_info *) sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->supp_rates[1] << 4; else ratr_bitmap = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: band |= WIRELESS_11B; ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: band |= (WIRELESS_11G | WIRELESS_11B); ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: band |= WIRELESS_11A; ratr_index = RATR_INX_WIRELESS_A; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); ratr_index = RATR_INX_WIRELESS_NGB; if (mimo_ps == IEEE80211_SMPS_STATIC) { if (rssi_level == 1) ratr_bitmap &= 0x00070000; else if (rssi_level == 2) ratr_bitmap &= 0x0007f000; else ratr_bitmap &= 0x0007f005; } else { if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (rssi_level == 1) { ratr_bitmap &= 0x000f0000; } else if (rssi_level == 3) { ratr_bitmap &= 0x000fc000; } else if (rssi_level == 5) { ratr_bitmap &= 0x000ff000; } else { if (curtxbw_40mhz) ratr_bitmap &= 0x000ff015; else ratr_bitmap &= 0x000ff005; } } else { if (rssi_level == 1) { ratr_bitmap &= 0x0f8f0000; } else if (rssi_level == 3) { ratr_bitmap &= 0x0f8fc000; } else if (rssi_level == 5) { ratr_bitmap &= 0x0f8ff000; } else { if (curtxbw_40mhz) ratr_bitmap &= 0x0f8ff015; else ratr_bitmap &= 0x0f8ff005; } } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f8ff0ff; break; } sta_entry->ratr_index = ratr_index; if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) ratr_bitmap &= 0x0FFFFFFF; else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) ratr_bitmap &= 0x0FFFFFF0; if (shortgi) { ratr_bitmap |= 0x10000000; /* Get MAX MCS available. */ ratr_value = (ratr_bitmap >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); } mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf); rtl_dbg(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n", mask, ratr_bitmap); rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap); rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8))); if (macid != 0) sta_entry->ratr_index = ratr_index; } void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw); else rtl92se_update_hal_rate_table(hw, sta); } void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); sifs_timer = 0x0e0e; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } /* this ifunction is for RFKILL, it's different with windows, * because UI will disable wireless when GPIO Radio Off. * And here we not check or Disable/Enable ASPM like windows*/ bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); enum rf_pwrstate rfpwr_toset /*, cur_rfstate */; unsigned long flag = 0; bool actuallyset = false; bool turnonbypowerdomain = false; /* just 8191se can check gpio before firstup, 92c/92d have fixed it */ if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter)) return false; if (ppsc->swrf_processing) return false; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); if (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } /* cur_rfstate = ppsc->rfpwr_state;*/ /* because after _rtl92s_phy_set_rfhalt, all power * closed, so we must open some power for GPIO check, * or we will always check GPIO RFOFF here, * And we should close power after GPIO check */ if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { _rtl92se_power_domain_init(hw); turnonbypowerdomain = true; } rfpwr_toset = _rtl92se_rf_onoff_detect(hw); if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "RFKILL-HW Radio ON, RF ON\n"); rfpwr_toset = ERFON; ppsc->hwradiooff = false; actuallyset = true; } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n"); rfpwr_toset = ERFOFF; ppsc->hwradiooff = true; actuallyset = true; } if (actuallyset) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); /* this not include ifconfig wlan0 down case */ /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */ } else { /* because power_domain_init may be happen when * _rtl92s_phy_set_rfhalt, this will open some powers * and cause current increasing about 40 mA for ips, * rfoff and ifconfig down, so we set * _rtl92s_phy_set_rfhalt again here */ if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC && turnonbypowerdomain) { _rtl92s_phy_set_rfhalt(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } *valid = 1; return !ppsc->hwradiooff; } /* Is_wepkey just used for WEP used as group & pairwise key * if pairwise is AES ang group is WEP Is_wepkey == false.*/ void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: pr_err("switch case %#x not processed\n", enc_algo); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { pr_err("Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[key_index]); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } void rtl92se_suspend(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtlpci->up_first_time = true; } void rtl92se_resume(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 val; pci_read_config_dword(rtlpci->pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(rtlpci->pdev, 0x40, val & 0xffff00ff); }