/****************************************************************************** * * Copyright(c) 2009-2012 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "../rtl8192c/dm_common.h" #include "../rtl8192c/fw_common.h" #include "../rtl8192c/phy_common.h" #include "dm.h" #include "led.h" #include "hw.h" #define LLT_CONFIG 5 static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val); } static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(0); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0); } void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *) (val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfState; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *) (&rfState)); if (rfState == ERFOFF) { *((bool *) (val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *) (val)) = false; else *((bool *) (val)) = true; } break; } case HW_VAR_FW_PSMODE_STATUS: *((bool *) (val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *) (val)) = tsf; break; } case HAL_DEF_WOWLAN: break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case %#x not processed\n", variable); break; } } void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); } break; } case HW_VAR_BASIC_RATE:{ u16 rate_cfg = ((u16 *) val)[0]; u8 rate_index = 0; rate_cfg &= 0x15f; rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff); while (rate_cfg > 0x1) { rate_cfg = (rate_cfg >> 1); rate_index++; } rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); break; } case HW_VAR_BSSID:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); } break; } case HW_VAR_SIFS:{ rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *) val)); break; } case HW_VAR_SLOT_TIME:{ u8 e_aci; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, &e_aci); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)*val; reg_tmp = (mac->cur_40_prime_sc) << 5; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); break; } case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *val; if (min_spacing_to_set <= 7) { sec_min_space = 0; if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *val; mac->min_space_cfg |= (density_to_set << 3); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97}; u8 factor_toset; u8 *p_regtoset = NULL; u8 index = 0; if ((rtlpcipriv->bt_coexist.bt_coexistence) && (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) p_regtoset = regtoset_bt; else p_regtoset = regtoset_normal; factor_toset = *(val); if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 4; index++) { if ((p_regtoset[index] & 0xf0) > (factor_toset << 4)) p_regtoset[index] = (p_regtoset[index] & 0x0f) | (factor_toset << 4); if ((p_regtoset[index] & 0x0f) > factor_toset) p_regtoset[index] = (p_regtoset[index] & 0xf0) | (factor_toset); rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + index), p_regtoset[index]); } RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } break; } case HW_VAR_AC_PARAM:{ u8 e_aci = *(val); rtl92c_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, (&e_aci)); break; } case HW_VAR_ACM_CTRL:{ u8 e_aci = *(val); union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= AcmHw_BeqEn; break; case AC2_VI: acm_ctrl |= AcmHw_ViqEn; break; case AC3_VO: acm_ctrl |= AcmHw_VoqEn; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~AcmHw_BeqEn); break; case AC2_VI: acm_ctrl &= (~AcmHw_ViqEn); break; case AC3_VO: acm_ctrl &= (~AcmHw_VoqEn); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case %#x not processed\n", e_aci); break; } } RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR:{ rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); rtlpci->receive_config = ((u32 *) (val))[0]; break; } case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = val[0]; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); break; } case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *) val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *val; break; case HW_VAR_IO_CMD: rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *val); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val; rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); udelay(1); if (rpwm_val & BIT(7)) { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val); } else { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7)); } break; } case HW_VAR_H2C_FW_PWRMODE:{ u8 psmode = *val; if ((psmode != FW_PS_ACTIVE_MODE) && (!IS_92C_SERIAL(rtlhal->version))) { rtl92c_dm_rf_saving(hw, true); } rtl92c_set_fw_pwrmode_cmd(hw, *val); break; } case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *) val); break; case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = *val; u8 tmp_regcr, tmp_reg422; bool recover = false; if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr | BIT(0))); _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); if (tmp_reg422 & BIT(6)) recover = true; rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); rtl92c_set_fw_rsvdpagepkt(hw, NULL); _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (recover) { rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); } rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0)))); } rtl92c_set_fw_joinbss_report_cmd(hw, *val); break; } case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl92c_set_p2p_ps_offload_cmd(hw, *val); break; case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); break; } case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = val[0]; if (btype_ibss) _rtl92ce_stop_tx_beacon(hw); _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32) (mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32) ((mac->tsf >> 32) & 0xffffffff)); _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl92ce_resume_tx_beacon(hw); break; } case HW_VAR_FW_LPS_ACTION: { bool enter_fwlps = *((bool *)val); u8 rpwm_val, fw_pwrmode; bool fw_current_inps; if (enter_fwlps) { rpwm_val = 0x02; /* RF off */ fw_current_inps = true; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &ppsc->fwctrl_psmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); } else { rpwm_val = 0x0C; /* RF on */ fw_pwrmode = FW_PS_ACTIVE_MODE; fw_current_inps = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &fw_pwrmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } break; } case HW_VAR_KEEP_ALIVE: { u8 array[2]; array[0] = 0xff; array[1] = *((u8 *)val); rtl92c_fill_h2c_cmd(hw, H2C_92C_KEEP_ALIVE_CTRL, 2, array); break; } default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case %d not processed\n", variable); break; } } static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to polling write LLT done at address %d!\n", address); status = false; break; } } while (++count); return status; } static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned short i; u8 txpktbuf_bndy; u8 maxPage; bool status; #if LLT_CONFIG == 1 maxPage = 255; txpktbuf_bndy = 252; #elif LLT_CONFIG == 2 maxPage = 127; txpktbuf_bndy = 124; #elif LLT_CONFIG == 3 maxPage = 255; txpktbuf_bndy = 174; #elif LLT_CONFIG == 4 maxPage = 255; txpktbuf_bndy = 246; #elif LLT_CONFIG == 5 maxPage = 255; txpktbuf_bndy = 246; #endif #if LLT_CONFIG == 1 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c); rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c); #elif LLT_CONFIG == 2 rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010); #elif LLT_CONFIG == 3 rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484); #elif LLT_CONFIG == 4 rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c); #elif LLT_CONFIG == 5 rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000); rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29); #endif rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy)); rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_PBP, 0x11); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _rtl92ce_llt_write(hw, i, i + 1); if (true != status) return status; } status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); if (true != status) return status; for (i = txpktbuf_bndy; i < maxPage; i++) { status = _rtl92ce_llt_write(hw, i, (i + 1)); if (true != status) return status; } status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy); if (true != status) return status; return true; } static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); if (rtlpci->up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl92ce_sw_led_on(hw, pLed0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl92ce_sw_led_on(hw, pLed0); else rtl92ce_sw_led_off(hw, pLed0); } static bool _rtl92ce_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned char bytetmp; unsigned short wordtmp; u16 retry; rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); if (rtlpcipriv->bt_coexist.bt_coexistence) { u32 value32; value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO); value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK); rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32); } rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F); if (rtlpcipriv->bt_coexist.bt_coexistence) { u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL); u4b_tmp &= (~0x00024800); rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp); } bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0); udelay(2); rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); udelay(2); bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); udelay(2); retry = 0; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n", rtl_read_dword(rtlpriv, 0xEC), bytetmp); while ((bytetmp & BIT(0)) && retry < 1000) { retry++; udelay(50); bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n", rtl_read_dword(rtlpriv, 0xEC), bytetmp); udelay(50); } rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012); rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82); udelay(2); if (rtlpcipriv->bt_coexist.bt_coexistence) { bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd; rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp); } rtl_write_word(rtlpriv, REG_CR, 0x2ff); if (!_rtl92ce_llt_table_init(hw)) return false; rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_byte(rtlpriv, REG_HISRE, 0xff); rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff); wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xF771; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); rtl_write_byte(rtlpriv, 0x4d0, 0x0); rtl_write_dword(rtlpriv, REG_BCNQ_DESA, ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_MGQ_DESA, (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VOQ_DESA, (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VIQ_DESA, (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BEQ_DESA, (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BKQ_DESA, (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_HQ_DESA, (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_RX_DESA, (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & DMA_BIT_MASK(32)); if (IS_92C_SERIAL(rtlhal->version)) rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77); else rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22); rtl_write_dword(rtlpriv, REG_INT_MIG, 0); bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); do { retry++; bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); } while ((retry < 200) && (bytetmp & BIT(7))); _rtl92ce_gen_refresh_led_state(hw); rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); return true; } static void _rtl92ce_hw_configure(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); u8 reg_bw_opmode; u32 reg_prsr; reg_bw_opmode = BW_OPMODE_20MHZ; reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr); rtl_write_byte(rtlpriv, REG_SLOT, 0x09); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); rtl_write_word(rtlpriv, REG_RL, 0x0707); rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); if ((rtlpcipriv->bt_coexist.bt_coexistence) && (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431); else rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); rtlpci->reg_bcn_ctrl_val = 0x1f; rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); if ((rtlpcipriv->bt_coexist.bt_coexistence) && (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) { rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402); } else { rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); } if ((rtlpcipriv->bt_coexist.bt_coexistence) && (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666); else rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666); rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); } static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); rtl_write_byte(rtlpriv, 0x34b, 0x93); rtl_write_word(rtlpriv, 0x350, 0x870c); rtl_write_byte(rtlpriv, 0x352, 0x1); if (ppsc->support_backdoor) rtl_write_byte(rtlpriv, 0x349, 0x1b); else rtl_write_byte(rtlpriv, 0x349, 0x03); rtl_write_word(rtlpriv, 0x350, 0x2718); rtl_write_byte(rtlpriv, 0x352, 0x1); } void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TxUseDK; sec_reg_value |= SCR_RxUseDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } int rtl92ce_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool rtstatus = true; bool is92c; int err; u8 tmp_u1b; unsigned long flags; rtlpci->being_init_adapter = true; /* Since this function can take a very long time (up to 350 ms) * and can be called with irqs disabled, reenable the irqs * to let the other devices continue being serviced. * * It is safe doing so since our own interrupts will only be enabled * in a subsequent step. */ local_save_flags(flags); local_irq_enable(); rtlhal->fw_ready = false; rtlpriv->intf_ops->disable_aspm(hw); rtstatus = _rtl92ce_init_mac(hw); if (!rtstatus) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n"); err = 1; goto exit; } err = rtl92c_download_fw(hw); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; goto exit; } rtlhal->fw_ready = true; rtlhal->last_hmeboxnum = 0; rtl92c_phy_mac_config(hw); /* because last function modify RCR, so we update * rcr var here, or TP will unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/ rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl92c_phy_bb_config(hw); rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; rtl92c_phy_rf_config(hw); if (IS_VENDOR_UMC_A_CUT(rtlhal->version) && !IS_92C_SERIAL(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255); rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00); } else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE); rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31); rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425); rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200); rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053); rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201); } rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); _rtl92ce_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl92ce_enable_hw_security_config(hw); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl92ce_enable_aspm_back_door(hw); rtlpriv->intf_ops->enable_aspm(hw); rtl8192ce_bt_hw_init(hw); if (ppsc->rfpwr_state == ERFON) { rtl92c_phy_set_rfpath_switch(hw, 1); if (rtlphy->iqk_initialized) { rtl92c_phy_iq_calibrate(hw, true); } else { rtl92c_phy_iq_calibrate(hw, false); rtlphy->iqk_initialized = true; } rtl92c_dm_check_txpower_tracking(hw); rtl92c_phy_lc_calibrate(hw); } is92c = IS_92C_SERIAL(rtlhal->version); tmp_u1b = efuse_read_1byte(hw, 0x1FA); if (!(tmp_u1b & BIT(0))) { rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n"); } if (!(tmp_u1b & BIT(1)) && is92c) { rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n"); } if (!(tmp_u1b & BIT(4))) { tmp_u1b = rtl_read_byte(rtlpriv, 0x16); tmp_u1b &= 0x0F; rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80); udelay(10); rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n"); } rtl92c_dm_init(hw); exit: local_irq_restore(flags); rtlpci->being_init_adapter = false; return err; } static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum version_8192c version = VERSION_UNKNOWN; u32 value32; const char *versionid; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); if (value32 & TRP_VAUX_EN) { version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C : VERSION_A_CHIP_88C; } else { version = (enum version_8192c) (CHIP_VER_B | ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) | ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0)); if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 & CHIP_VER_RTL_MASK)) { version = (enum version_8192c)(version | ((((value32 & CHIP_VER_RTL_MASK) == BIT(12)) ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) | CHIP_VENDOR_UMC)); } if (IS_92C_SERIAL(version)) { value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM); version = (enum version_8192c)(version | ((CHIP_BONDING_IDENTIFIER(value32) == CHIP_BONDING_92C_1T2R) ? RF_TYPE_1T2R : 0)); } } switch (version) { case VERSION_B_CHIP_92C: versionid = "B_CHIP_92C"; break; case VERSION_B_CHIP_88C: versionid = "B_CHIP_88C"; break; case VERSION_A_CHIP_92C: versionid = "A_CHIP_92C"; break; case VERSION_A_CHIP_88C: versionid = "A_CHIP_88C"; break; case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT: versionid = "A_CUT_92C_1T2R"; break; case VERSION_NORMAL_UMC_CHIP_92C_A_CUT: versionid = "A_CUT_92C"; break; case VERSION_NORMAL_UMC_CHIP_88C_A_CUT: versionid = "A_CUT_88C"; break; case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT: versionid = "B_CUT_92C_1T2R"; break; case VERSION_NORMAL_UMC_CHIP_92C_B_CUT: versionid = "B_CUT_92C"; break; case VERSION_NORMAL_UMC_CHIP_88C_B_CUT: versionid = "B_CUT_88C"; break; default: versionid = "Unknown. Bug?"; break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Chip Version ID: %s\n", versionid); switch (version & 0x3) { case CHIP_88C: rtlphy->rf_type = RF_1T1R; break; case CHIP_92C: rtlphy->rf_type = RF_2T2R; break; case CHIP_92C_1T2R: rtlphy->rf_type = RF_1T2R; break; default: rtlphy->rf_type = RF_1T1R; RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ERROR RF_Type is set!!\n"); break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R"); return version; } static int _rtl92ce_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR); enum led_ctl_mode ledaction = LED_CTL_NO_LINK; u8 mode = MSR_NOLINK; bt_msr &= 0xfc; switch (type) { case NL80211_IFTYPE_UNSPECIFIED: mode = MSR_NOLINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: mode = MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: mode = MSR_INFRA; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: mode = MSR_AP; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; case NL80211_IFTYPE_MESH_POINT: mode = MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Mesh Point!\n"); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Network type %d not supported!\n", type); return 1; } /* MSR_INFRA == Link in infrastructure network; * MSR_ADHOC == Link in ad hoc network; * Therefore, check link state is necessary. * * MSR_AP == AP mode; link state does not matter here. */ if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) { mode = MSR_NOLINK; ledaction = LED_CTL_NO_LINK; } if (mode == MSR_NOLINK || mode == MSR_INFRA) { _rtl92ce_stop_tx_beacon(hw); _rtl92ce_enable_bcn_sub_func(hw); } else if (mode == MSR_ADHOC || mode == MSR_AP) { _rtl92ce_resume_tx_beacon(hw); _rtl92ce_disable_bcn_sub_func(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", mode); } rtl_write_byte(rtlpriv, MSR, bt_msr | mode); rtlpriv->cfg->ops->led_control(hw, ledaction); if (mode == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 reg_rcr; if (rtlpriv->psc.rfpwr_state != ERFON) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); if (check_bssid) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *) (®_rcr)); _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else if (!check_bssid) { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *) (®_rcr)); } } int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl92ce_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP && type != NL80211_IFTYPE_MESH_POINT) rtl92ce_set_check_bssid(hw, true); } else { rtl92ce_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl92c_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); break; case AC0_BE: /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */ break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); break; default: RT_ASSERT(false, "invalid aci: %d !\n", aci); break; } } void rtl92ce_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; } void rtl92ce_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); rtlpci->irq_enabled = false; } static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u8 u1b_tmp; u32 u4b_tmp; rtlpriv->intf_ops->enable_aspm(hw); rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0); if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) rtl92c_firmware_selfreset(hw); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51); rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000); u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL); if ((rtlpcipriv->bt_coexist.bt_coexistence) && ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) || (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) { rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 | (u1b_tmp << 8)); } else { rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 | (u1b_tmp << 8)); } rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790); rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); if (!IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); if (rtlpcipriv->bt_coexist.bt_coexistence) { u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL); u4b_tmp |= 0x03824800; rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp); } else { rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e); } rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10); } void rtl92ce_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl92ce_set_media_status(hw, opmode); if (rtlpci->driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); _rtl92ce_poweroff_adapter(hw); /* after power off we should do iqk again */ rtlpriv->phy.iqk_initialized = false; } void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, u32 *p_intb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, *p_inta); /* * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; * rtl_write_dword(rtlpriv, ISR + 4, *p_intb); */ } void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl92ce_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); rtl_write_byte(rtlpriv, 0x606, 0x30); rtl92ce_enable_interrupt(hw); } void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl92ce_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl92ce_enable_interrupt(hw); } void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl92ce_disable_interrupt(hw); rtl92ce_enable_interrupt(hw); } static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 rf_path, index, tempval; u16 i; for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i] = hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i]; rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 + i]; } else { rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; } } } for (i = 0; i < 3; i++) { if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i]; else tempval = EEPROM_DEFAULT_HT40_2SDIFF; rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] = (tempval & 0xf); rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] = ((tempval & 0xf0) >> 4); } for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eeprom_chnlarea_txpwr_cck[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", rf_path, i, rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = rtl92c_get_chnl_group((u8)i); rtlefuse->txpwrlevel_cck[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index]; rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][index]; if ((rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] - rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path][index]) > 0) { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = rtlefuse-> eeprom_chnlarea_txpwr_ht40_1s[rf_path] [index] - rtlefuse-> eprom_chnl_txpwr_ht40_2sdf[rf_path] [index]; } else { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0; } } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i], rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); } } for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse->eeprom_pwrlimit_ht40[i] = hwinfo[EEPROM_TXPWR_GROUP + i]; rtlefuse->eeprom_pwrlimit_ht20[i] = hwinfo[EEPROM_TXPWR_GROUP + 3 + i]; } else { rtlefuse->eeprom_pwrlimit_ht40[i] = 0; rtlefuse->eeprom_pwrlimit_ht20[i] = 0; } } for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = rtl92c_get_chnl_group((u8)i); if (rf_path == RF90_PATH_A) { rtlefuse->pwrgroup_ht20[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf); rtlefuse->pwrgroup_ht40[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf); } else if (rf_path == RF90_PATH_B) { rtlefuse->pwrgroup_ht20[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf0) >> 4); rtlefuse->pwrgroup_ht40[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf0) >> 4); } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht20[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht20[rf_path][i]); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht40[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht40[rf_path][i]); } } for (i = 0; i < 14; i++) { index = rtl92c_get_chnl_group((u8)i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index]; else tempval = EEPROM_DEFAULT_HT20_DIFF; rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0; if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0; index = rtl92c_get_chnl_group((u8)i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index]; else tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); } rtlefuse->legacy_ht_txpowerdiff = rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7]; for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); if (!autoload_fail) rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7); else rtlefuse->eeprom_regulatory = 0; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); if (!autoload_fail) { rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A]; rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B]; } else { rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI; rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI; } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", rtlefuse->eeprom_tssi[RF90_PATH_A], rtlefuse->eeprom_tssi[RF90_PATH_B]); if (!autoload_fail) tempval = hwinfo[EEPROM_THERMAL_METER]; else tempval = EEPROM_DEFAULT_THERMALMETER; rtlefuse->eeprom_thermalmeter = (tempval & 0x1f); if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail) rtlefuse->apk_thermalmeterignore = true; rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); } static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID, EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR, EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, COUNTRY_CODE_WORLD_WIDE_13}; u8 *hwinfo; hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); if (!hwinfo) return; if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) goto exit; _rtl92ce_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtl8192ce_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); if (rtlhal->oem_id == RT_CID_DEFAULT) { switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: if (rtlefuse->eeprom_did == 0x8176) { if ((rtlefuse->eeprom_svid == 0x103C && rtlefuse->eeprom_smid == 0x1629)) rtlhal->oem_id = RT_CID_819X_HP; else rtlhal->oem_id = RT_CID_DEFAULT; } else { rtlhal->oem_id = RT_CID_DEFAULT; } break; case EEPROM_CID_TOSHIBA: rtlhal->oem_id = RT_CID_TOSHIBA; break; case EEPROM_CID_QMI: rtlhal->oem_id = RT_CID_819X_QMI; break; case EEPROM_CID_WHQL: default: rtlhal->oem_id = RT_CID_DEFAULT; break; } } exit: kfree(hwinfo); } static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); switch (rtlhal->oem_id) { case RT_CID_819X_HP: pcipriv->ledctl.led_opendrain = true; break; case RT_CID_819X_LENOVO: case RT_CID_DEFAULT: case RT_CID_TOSHIBA: case RT_CID_CCX: case RT_CID_819X_ACER: case RT_CID_WHQL: default: break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; rtlhal->version = _rtl92ce_read_chip_version(hw); if (get_rf_type(rtlphy) == RF_1T1R) rtlpriv->dm.rfpath_rxenable[0] = true; else rtlpriv->dm.rfpath_rxenable[0] = rtlpriv->dm.rfpath_rxenable[1] = true; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); if (tmp_u1b & BIT(4)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl92ce_read_adapter_info(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); } _rtl92ce_hal_customized_behavior(hw); } static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 nmode = mac->ht_enable; u16 shortgi_rate; u32 tmp_ratr_value; u8 curtxbw_40mhz = mac->bw_40; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; u32 ratr_mask; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->supp_rates[1] << 4; else ratr_value = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_value = 0xfff; ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: if (ratr_value & 0x0000000c) ratr_value &= 0x0000000d; else ratr_value &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: nmode = 1; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) ratr_mask = 0x000ff005; else ratr_mask = 0x0f0ff005; ratr_value &= ratr_mask; break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } if ((rtlpcipriv->bt_coexist.bt_coexistence) && (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) && (rtlpcipriv->bt_coexist.bt_cur_state) && (rtlpcipriv->bt_coexist.bt_ant_isolation) && ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) || (rtlpcipriv->bt_coexist.bt_service == BT_BUSY))) ratr_value &= 0x0fffcfc0; else ratr_value &= 0x0FFFFFFF; if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); } rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); } static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u8 rate_mask[5]; u8 macid = 0; sta_entry = (struct rtl_sta_info *) sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->supp_rates[1] << 4; else ratr_bitmap = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: ratr_index = RATR_INX_WIRELESS_A; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff005; } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } sta_entry->ratr_index = ratr_index; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %5phC\n", ratr_index, ratr_bitmap, rate_mask); rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask); } void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl92ce_update_hal_rate_mask(hw, sta, rssi_level); else rtl92ce_update_hal_rate_table(hw, sta); } void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x1010; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); enum rf_pwrstate e_rfpowerstate_toset; u8 u1tmp; bool actuallyset = false; unsigned long flag; if (rtlpci->being_init_adapter) return false; if (ppsc->swrf_processing) return false; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); if (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, REG_MAC_PINMUX_CFG)&~(BIT(3))); u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio ON, RF ON\n"); e_rfpowerstate_toset = ERFON; ppsc->hwradiooff = false; actuallyset = true; } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio OFF, RF OFF\n"); e_rfpowerstate_toset = ERFOFF; ppsc->hwradiooff = true; actuallyset = true; } if (actuallyset) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } else { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } *valid = 1; return !ppsc->hwradiooff; } void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case %#x not processed\n", enc_algo); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { RT_TRACE(rtlpriv, COMP_SEC, DBG_EMERG, "Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY length is %d\n", rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY is %x %x\n", rtlpriv->sec.key_buf[0][0], rtlpriv->sec.key_buf[0][1]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, "Pairwise Key content", rtlpriv->sec.pairwise_key, rtlpriv->sec. key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec. key_buf[key_index]); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf [entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw) { struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); rtlpcipriv->bt_coexist.bt_coexistence = rtlpcipriv->bt_coexist.eeprom_bt_coexist; rtlpcipriv->bt_coexist.bt_ant_num = rtlpcipriv->bt_coexist.eeprom_bt_ant_num; rtlpcipriv->bt_coexist.bt_coexist_type = rtlpcipriv->bt_coexist.eeprom_bt_type; if (rtlpcipriv->bt_coexist.reg_bt_iso == 2) rtlpcipriv->bt_coexist.bt_ant_isolation = rtlpcipriv->bt_coexist.eeprom_bt_ant_isol; else rtlpcipriv->bt_coexist.bt_ant_isolation = rtlpcipriv->bt_coexist.reg_bt_iso; rtlpcipriv->bt_coexist.bt_radio_shared_type = rtlpcipriv->bt_coexist.eeprom_bt_radio_shared; if (rtlpcipriv->bt_coexist.bt_coexistence) { if (rtlpcipriv->bt_coexist.reg_bt_sco == 1) rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION; else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2) rtlpcipriv->bt_coexist.bt_service = BT_SCO; else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4) rtlpcipriv->bt_coexist.bt_service = BT_BUSY; else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5) rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY; else rtlpcipriv->bt_coexist.bt_service = BT_IDLE; rtlpcipriv->bt_coexist.bt_edca_ul = 0; rtlpcipriv->bt_coexist.bt_edca_dl = 0; rtlpcipriv->bt_coexist.bt_rssi_state = 0xff; } } void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, bool auto_load_fail, u8 *hwinfo) { struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); u8 val; if (!auto_load_fail) { rtlpcipriv->bt_coexist.eeprom_bt_coexist = ((hwinfo[RF_OPTION1] & 0xe0) >> 5); val = hwinfo[RF_OPTION4]; rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1); rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1); rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4); rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = ((val & 0x20) >> 5); } else { rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0; rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE; rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2; rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0; rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED; } rtl8192ce_bt_var_init(hw); } void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw) { struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); /* 0:Low, 1:High, 2:From Efuse. */ rtlpcipriv->bt_coexist.reg_bt_iso = 2; /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ rtlpcipriv->bt_coexist.reg_bt_sco = 3; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ rtlpcipriv->bt_coexist.reg_bt_sco = 0; } void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); u8 u1_tmp; if (rtlpcipriv->bt_coexist.bt_coexistence && ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) || rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) { if (rtlpcipriv->bt_coexist.bt_ant_isolation) rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0); u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) & BIT_OFFSET_LEN_MASK_32(0, 1); u1_tmp = u1_tmp | ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ? 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) | ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ? 0 : BIT_OFFSET_LEN_MASK_32(2, 1)); rtl_write_byte(rtlpriv, 0x4fd, u1_tmp); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010); /* Config to 1T1R. */ if (rtlphy->rf_type == RF_1T1R) { u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE); u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp); u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE); u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp); } } } void rtl92ce_suspend(struct ieee80211_hw *hw) { } void rtl92ce_resume(struct ieee80211_hw *hw) { }