/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #ifndef __iwl_trans_h__ #define __iwl_trans_h__ #include #include /* for page_address */ #include #include "iwl-debug.h" #include "iwl-config.h" #include "iwl-fw.h" #include "iwl-op-mode.h" /** * DOC: Transport layer - what is it ? * * The tranport layer is the layer that deals with the HW directly. It provides * an abstraction of the underlying HW to the upper layer. The transport layer * doesn't provide any policy, algorithm or anything of this kind, but only * mechanisms to make the HW do something.It is not completely stateless but * close to it. * We will have an implementation for each different supported bus. */ /** * DOC: Life cycle of the transport layer * * The transport layer has a very precise life cycle. * * 1) A helper function is called during the module initialization and * registers the bus driver's ops with the transport's alloc function. * 2) Bus's probe calls to the transport layer's allocation functions. * Of course this function is bus specific. * 3) This allocation functions will spawn the upper layer which will * register mac80211. * * 4) At some point (i.e. mac80211's start call), the op_mode will call * the following sequence: * start_hw * start_fw * * 5) Then when finished (or reset): * stop_device * * 6) Eventually, the free function will be called. */ /** * DOC: Host command section * * A host command is a commaned issued by the upper layer to the fw. There are * several versions of fw that have several APIs. The transport layer is * completely agnostic to these differences. * The transport does provide helper functionnality (i.e. SYNC / ASYNC mode), */ #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f) #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8) #define SEQ_TO_INDEX(s) ((s) & 0xff) #define INDEX_TO_SEQ(i) ((i) & 0xff) #define SEQ_RX_FRAME cpu_to_le16(0x8000) /** * struct iwl_cmd_header * * This header format appears in the beginning of each command sent from the * driver, and each response/notification received from uCode. */ struct iwl_cmd_header { u8 cmd; /* Command ID: REPLY_RXON, etc. */ u8 flags; /* 0:5 reserved, 6 abort, 7 internal */ /* * The driver sets up the sequence number to values of its choosing. * uCode does not use this value, but passes it back to the driver * when sending the response to each driver-originated command, so * the driver can match the response to the command. Since the values * don't get used by uCode, the driver may set up an arbitrary format. * * There is one exception: uCode sets bit 15 when it originates * the response/notification, i.e. when the response/notification * is not a direct response to a command sent by the driver. For * example, uCode issues REPLY_RX when it sends a received frame * to the driver; it is not a direct response to any driver command. * * The Linux driver uses the following format: * * 0:7 tfd index - position within TX queue * 8:12 TX queue id * 13:14 reserved * 15 unsolicited RX or uCode-originated notification */ __le16 sequence; } __packed; /* iwl_cmd_header flags value */ #define IWL_CMD_FAILED_MSK 0x40 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ #define FH_RSCSR_FRAME_INVALID 0x55550000 #define FH_RSCSR_FRAME_ALIGN 0x40 struct iwl_rx_packet { /* * The first 4 bytes of the RX frame header contain both the RX frame * size and some flags. * Bit fields: * 31: flag flush RB request * 30: flag ignore TC (terminal counter) request * 29: flag fast IRQ request * 28-14: Reserved * 13-00: RX frame size */ __le32 len_n_flags; struct iwl_cmd_header hdr; u8 data[]; } __packed; static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) { return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; } static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) { return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); } /** * enum CMD_MODE - how to send the host commands ? * * @CMD_ASYNC: Return right away and don't wait for the response * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of * the response. The caller needs to call iwl_free_resp when done. * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the * command queue, but after other high priority commands. valid only * with CMD_ASYNC. * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle. * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle. * @CMD_WAKE_UP_TRANS: The command response should wake up the trans * (i.e. mark it as non-idle). */ enum CMD_MODE { CMD_ASYNC = BIT(0), CMD_WANT_SKB = BIT(1), CMD_SEND_IN_RFKILL = BIT(2), CMD_HIGH_PRIO = BIT(3), CMD_SEND_IN_IDLE = BIT(4), CMD_MAKE_TRANS_IDLE = BIT(5), CMD_WAKE_UP_TRANS = BIT(6), }; #define DEF_CMD_PAYLOAD_SIZE 320 /** * struct iwl_device_cmd * * For allocation of the command and tx queues, this establishes the overall * size of the largest command we send to uCode, except for commands that * aren't fully copied and use other TFD space. */ struct iwl_device_cmd { struct iwl_cmd_header hdr; /* uCode API */ u8 payload[DEF_CMD_PAYLOAD_SIZE]; } __packed; #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) /* * number of transfer buffers (fragments) per transmit frame descriptor; * this is just the driver's idea, the hardware supports 20 */ #define IWL_MAX_CMD_TBS_PER_TFD 2 /** * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command * * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's * ring. The transport layer doesn't map the command's buffer to DMA, but * rather copies it to a previously allocated DMA buffer. This flag tells * the transport layer not to copy the command, but to map the existing * buffer (that is passed in) instead. This saves the memcpy and allows * commands that are bigger than the fixed buffer to be submitted. * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this * chunk internally and free it again after the command completes. This * can (currently) be used only once per command. * Note that a TFD entry after a DUP one cannot be a normal copied one. */ enum iwl_hcmd_dataflag { IWL_HCMD_DFL_NOCOPY = BIT(0), IWL_HCMD_DFL_DUP = BIT(1), }; /** * struct iwl_host_cmd - Host command to the uCode * * @data: array of chunks that composes the data of the host command * @resp_pkt: response packet, if %CMD_WANT_SKB was set * @_rx_page_order: (internally used to free response packet) * @_rx_page_addr: (internally used to free response packet) * @handler_status: return value of the handler of the command * (put in setup_rx_handlers) - valid for SYNC mode only * @flags: can be CMD_* * @len: array of the lengths of the chunks in data * @dataflags: IWL_HCMD_DFL_* * @id: id of the host command */ struct iwl_host_cmd { const void *data[IWL_MAX_CMD_TBS_PER_TFD]; struct iwl_rx_packet *resp_pkt; unsigned long _rx_page_addr; u32 _rx_page_order; int handler_status; u32 flags; u16 len[IWL_MAX_CMD_TBS_PER_TFD]; u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; u8 id; }; static inline void iwl_free_resp(struct iwl_host_cmd *cmd) { free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); } struct iwl_rx_cmd_buffer { struct page *_page; int _offset; bool _page_stolen; u32 _rx_page_order; unsigned int truesize; }; static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) { return (void *)((unsigned long)page_address(r->_page) + r->_offset); } static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) { return r->_offset; } static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) { r->_page_stolen = true; get_page(r->_page); return r->_page; } static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) { __free_pages(r->_page, r->_rx_page_order); } #define MAX_NO_RECLAIM_CMDS 6 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) /* * Maximum number of HW queues the transport layer * currently supports */ #define IWL_MAX_HW_QUEUES 32 #define IWL_MAX_TID_COUNT 8 #define IWL_FRAME_LIMIT 64 /** * enum iwl_wowlan_status - WoWLAN image/device status * @IWL_D3_STATUS_ALIVE: firmware is still running after resume * @IWL_D3_STATUS_RESET: device was reset while suspended */ enum iwl_d3_status { IWL_D3_STATUS_ALIVE, IWL_D3_STATUS_RESET, }; /** * enum iwl_trans_status: transport status flags * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed * @STATUS_DEVICE_ENABLED: APM is enabled * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) * @STATUS_INT_ENABLED: interrupts are enabled * @STATUS_RFKILL: the HW RFkill switch is in KILL position * @STATUS_FW_ERROR: the fw is in error state * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands * are sent * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent */ enum iwl_trans_status { STATUS_SYNC_HCMD_ACTIVE, STATUS_DEVICE_ENABLED, STATUS_TPOWER_PMI, STATUS_INT_ENABLED, STATUS_RFKILL, STATUS_FW_ERROR, STATUS_TRANS_GOING_IDLE, STATUS_TRANS_IDLE, }; /** * struct iwl_trans_config - transport configuration * * @op_mode: pointer to the upper layer. * @cmd_queue: the index of the command queue. * Must be set before start_fw. * @cmd_fifo: the fifo for host commands * @no_reclaim_cmds: Some devices erroneously don't set the * SEQ_RX_FRAME bit on some notifications, this is the * list of such notifications to filter. Max length is * %MAX_NO_RECLAIM_CMDS. * @n_no_reclaim_cmds: # of commands in list * @rx_buf_size_8k: 8 kB RX buffer size needed for A-MSDUs, * if unset 4k will be the RX buffer size * @bc_table_dword: set to true if the BC table expects the byte count to be * in DWORD (as opposed to bytes) * @queue_watchdog_timeout: time (in ms) after which queues * are considered stuck and will trigger device restart * @command_names: array of command names, must be 256 entries * (one for each command); for debugging only */ struct iwl_trans_config { struct iwl_op_mode *op_mode; u8 cmd_queue; u8 cmd_fifo; const u8 *no_reclaim_cmds; unsigned int n_no_reclaim_cmds; bool rx_buf_size_8k; bool bc_table_dword; unsigned int queue_watchdog_timeout; const char *const *command_names; }; struct iwl_trans; /** * struct iwl_trans_ops - transport specific operations * * All the handlers MUST be implemented * * @start_hw: starts the HW- from that point on, the HW can send interrupts * May sleep * @op_mode_leave: Turn off the HW RF kill indication if on * May sleep * @start_fw: allocates and inits all the resources for the transport * layer. Also kick a fw image. * May sleep * @fw_alive: called when the fw sends alive notification. If the fw provides * the SCD base address in SRAM, then provide it here, or 0 otherwise. * May sleep * @stop_device: stops the whole device (embedded CPU put to reset) and stops * the HW. From that point on, the HW will be in low power but will still * issue interrupt if the HW RF kill is triggered. This callback must do * the right thing and not crash even if start_hw() was called but not * start_fw(). May sleep * @d3_suspend: put the device into the correct mode for WoWLAN during * suspend. This is optional, if not implemented WoWLAN will not be * supported. This callback may sleep. * @d3_resume: resume the device after WoWLAN, enabling the opmode to * talk to the WoWLAN image to get its status. This is optional, if not * implemented WoWLAN will not be supported. This callback may sleep. * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. * If RFkill is asserted in the middle of a SYNC host command, it must * return -ERFKILL straight away. * May sleep only if CMD_ASYNC is not set * @tx: send an skb * Must be atomic * @reclaim: free packet until ssn. Returns a list of freed packets. * Must be atomic * @txq_enable: setup a queue. To setup an AC queue, use the * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before * this one. The op_mode must not configure the HCMD queue. May sleep. * @txq_disable: de-configure a Tx queue to send AMPDUs * Must be atomic * @wait_tx_queue_empty: wait until tx queues are empty. May sleep. * @dbgfs_register: add the dbgfs files under this directory. Files will be * automatically deleted. * @write8: write a u8 to a register at offset ofs from the BAR * @write32: write a u32 to a register at offset ofs from the BAR * @read32: read a u32 register at offset ofs from the BAR * @read_prph: read a DWORD from a periphery register * @write_prph: write a DWORD to a periphery register * @read_mem: read device's SRAM in DWORD * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory * will be zeroed. * @configure: configure parameters required by the transport layer from * the op_mode. May be called several times before start_fw, can't be * called after that. * @set_pmi: set the power pmi state * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. * Sleeping is not allowed between grab_nic_access and * release_nic_access. * @release_nic_access: let the NIC go to sleep. The "flags" parameter * must be the same one that was sent before to the grab_nic_access. * @set_bits_mask - set SRAM register according to value and mask. * @ref: grab a reference to the transport/FW layers, disallowing * certain low power states * @unref: release a reference previously taken with @ref. Note that * initially the reference count is 1, making an initial @unref * necessary to allow low power states. * @dump_data: fill a data dump with debug data, maybe containing last * TX'ed commands and similar. When called with a NULL buffer and * zero buffer length, provide only the (estimated) required buffer * length. Return the used buffer length. * Note that the transport must fill in the proper file headers. */ struct iwl_trans_ops { int (*start_hw)(struct iwl_trans *iwl_trans); void (*op_mode_leave)(struct iwl_trans *iwl_trans); int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill); void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); void (*stop_device)(struct iwl_trans *trans); void (*d3_suspend)(struct iwl_trans *trans, bool test); int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, bool test); int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_cmd *dev_cmd, int queue); void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, struct sk_buff_head *skbs); void (*txq_enable)(struct iwl_trans *trans, int queue, int fifo, int sta_id, int tid, int frame_limit, u16 ssn); void (*txq_disable)(struct iwl_trans *trans, int queue); int (*dbgfs_register)(struct iwl_trans *trans, struct dentry* dir); int (*wait_tx_queue_empty)(struct iwl_trans *trans, u32 txq_bm); void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); u32 (*read32)(struct iwl_trans *trans, u32 ofs); u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); int (*read_mem)(struct iwl_trans *trans, u32 addr, void *buf, int dwords); int (*write_mem)(struct iwl_trans *trans, u32 addr, const void *buf, int dwords); void (*configure)(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg); void (*set_pmi)(struct iwl_trans *trans, bool state); bool (*grab_nic_access)(struct iwl_trans *trans, bool silent, unsigned long *flags); void (*release_nic_access)(struct iwl_trans *trans, unsigned long *flags); void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, u32 value); void (*ref)(struct iwl_trans *trans); void (*unref)(struct iwl_trans *trans); #ifdef CONFIG_IWLWIFI_DEBUGFS u32 (*dump_data)(struct iwl_trans *trans, void *buf, u32 buflen); #endif }; /** * enum iwl_trans_state - state of the transport layer * * @IWL_TRANS_NO_FW: no fw has sent an alive response * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response */ enum iwl_trans_state { IWL_TRANS_NO_FW = 0, IWL_TRANS_FW_ALIVE = 1, }; /** * struct iwl_trans - transport common data * * @ops - pointer to iwl_trans_ops * @op_mode - pointer to the op_mode * @cfg - pointer to the configuration * @status: a bit-mask of transport status flags * @dev - pointer to struct device * that represents the device * @hw_id: a u32 with the ID of the device / subdevice. * Set during transport allocation. * @hw_id_str: a string with info about HW ID. Set during transport allocation. * @pm_support: set to true in start_hw if link pm is supported * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. * The user should use iwl_trans_{alloc,free}_tx_cmd. * @dev_cmd_headroom: room needed for the transport's private use before the * device_cmd for Tx - for internal use only * The user should use iwl_trans_{alloc,free}_tx_cmd. * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before * starting the firmware, used for tracing * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the * start of the 802.11 header in the @rx_mpdu_cmd * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) */ struct iwl_trans { const struct iwl_trans_ops *ops; struct iwl_op_mode *op_mode; const struct iwl_cfg *cfg; enum iwl_trans_state state; unsigned long status; struct device *dev; u32 hw_rev; u32 hw_id; char hw_id_str[52]; u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; bool pm_support; /* The following fields are internal only */ struct kmem_cache *dev_cmd_pool; size_t dev_cmd_headroom; char dev_cmd_pool_name[50]; struct dentry *dbgfs_dir; #ifdef CONFIG_LOCKDEP struct lockdep_map sync_cmd_lockdep_map; #endif u64 dflt_pwr_limit; /* pointer to trans specific struct */ /*Ensure that this pointer will always be aligned to sizeof pointer */ char trans_specific[0] __aligned(sizeof(void *)); }; static inline void iwl_trans_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg) { trans->op_mode = trans_cfg->op_mode; trans->ops->configure(trans, trans_cfg); } static inline int iwl_trans_start_hw(struct iwl_trans *trans) { might_sleep(); return trans->ops->start_hw(trans); } static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) { might_sleep(); if (trans->ops->op_mode_leave) trans->ops->op_mode_leave(trans); trans->op_mode = NULL; trans->state = IWL_TRANS_NO_FW; } static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) { might_sleep(); trans->state = IWL_TRANS_FW_ALIVE; trans->ops->fw_alive(trans, scd_addr); } static inline int iwl_trans_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill) { might_sleep(); WARN_ON_ONCE(!trans->rx_mpdu_cmd); clear_bit(STATUS_FW_ERROR, &trans->status); return trans->ops->start_fw(trans, fw, run_in_rfkill); } static inline void iwl_trans_stop_device(struct iwl_trans *trans) { might_sleep(); trans->ops->stop_device(trans); trans->state = IWL_TRANS_NO_FW; } static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test) { might_sleep(); trans->ops->d3_suspend(trans, test); } static inline int iwl_trans_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test) { might_sleep(); return trans->ops->d3_resume(trans, status, test); } static inline void iwl_trans_ref(struct iwl_trans *trans) { if (trans->ops->ref) trans->ops->ref(trans); } static inline void iwl_trans_unref(struct iwl_trans *trans) { if (trans->ops->unref) trans->ops->unref(trans); } #ifdef CONFIG_IWLWIFI_DEBUGFS static inline u32 iwl_trans_dump_data(struct iwl_trans *trans, void *buf, u32 buflen) { if (!trans->ops->dump_data) return 0; return trans->ops->dump_data(trans, buf, buflen); } #endif static inline int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { int ret; if (unlikely(!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL, &trans->status))) return -ERFKILL; if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) return -EIO; if (unlikely(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return -EIO; } if (!(cmd->flags & CMD_ASYNC)) lock_map_acquire_read(&trans->sync_cmd_lockdep_map); ret = trans->ops->send_cmd(trans, cmd); if (!(cmd->flags & CMD_ASYNC)) lock_map_release(&trans->sync_cmd_lockdep_map); return ret; } static inline struct iwl_device_cmd * iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) { u8 *dev_cmd_ptr = kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC); if (unlikely(dev_cmd_ptr == NULL)) return NULL; return (struct iwl_device_cmd *) (dev_cmd_ptr + trans->dev_cmd_headroom); } static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, struct iwl_device_cmd *dev_cmd) { u8 *dev_cmd_ptr = (u8 *)dev_cmd - trans->dev_cmd_headroom; kmem_cache_free(trans->dev_cmd_pool, dev_cmd_ptr); } static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_cmd *dev_cmd, int queue) { if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) return -EIO; if (unlikely(trans->state != IWL_TRANS_FW_ALIVE)) IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return trans->ops->tx(trans, skb, dev_cmd, queue); } static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, int ssn, struct sk_buff_head *skbs) { if (unlikely(trans->state != IWL_TRANS_FW_ALIVE)) IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); trans->ops->reclaim(trans, queue, ssn, skbs); } static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue) { trans->ops->txq_disable(trans, queue); } static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, int fifo, int sta_id, int tid, int frame_limit, u16 ssn) { might_sleep(); if (unlikely((trans->state != IWL_TRANS_FW_ALIVE))) IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); trans->ops->txq_enable(trans, queue, fifo, sta_id, tid, frame_limit, ssn); } static inline void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo) { iwl_trans_txq_enable(trans, queue, fifo, -1, IWL_MAX_TID_COUNT, IWL_FRAME_LIMIT, 0); } static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans, u32 txq_bm) { if (unlikely(trans->state != IWL_TRANS_FW_ALIVE)) IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return trans->ops->wait_tx_queue_empty(trans, txq_bm); } static inline int iwl_trans_dbgfs_register(struct iwl_trans *trans, struct dentry *dir) { return trans->ops->dbgfs_register(trans, dir); } static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) { trans->ops->write8(trans, ofs, val); } static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) { trans->ops->write32(trans, ofs, val); } static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) { return trans->ops->read32(trans, ofs); } static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) { return trans->ops->read_prph(trans, ofs); } static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, u32 val) { return trans->ops->write_prph(trans, ofs, val); } static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords) { return trans->ops->read_mem(trans, addr, buf, dwords); } #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ do { \ if (__builtin_constant_p(bufsize)) \ BUILD_BUG_ON((bufsize) % sizeof(u32)); \ iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ } while (0) static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) { u32 value; if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) return 0xa5a5a5a5; return value; } static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords) { return trans->ops->write_mem(trans, addr, buf, dwords); } static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, u32 val) { return iwl_trans_write_mem(trans, addr, &val, 1); } static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) { if (trans->ops->set_pmi) trans->ops->set_pmi(trans, state); } static inline void iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { trans->ops->set_bits_mask(trans, reg, mask, value); } #define iwl_trans_grab_nic_access(trans, silent, flags) \ __cond_lock(nic_access, \ likely((trans)->ops->grab_nic_access(trans, silent, flags))) static inline void __releases(nic_access) iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags) { trans->ops->release_nic_access(trans, flags); __release(nic_access); } static inline void iwl_trans_fw_error(struct iwl_trans *trans) { if (WARN_ON_ONCE(!trans->op_mode)) return; /* prevent double restarts due to the same erroneous FW */ if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) iwl_op_mode_nic_error(trans->op_mode); } /***************************************************** * driver (transport) register/unregister functions ******************************************************/ int __must_check iwl_pci_register_driver(void); void iwl_pci_unregister_driver(void); static inline void trans_lockdep_init(struct iwl_trans *trans) { #ifdef CONFIG_LOCKDEP static struct lock_class_key __key; lockdep_init_map(&trans->sync_cmd_lockdep_map, "sync_cmd_lockdep_map", &__key, 0); #endif } #endif /* __iwl_trans_h__ */