// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2012-2014, 2018-2024 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH */ #include #include #include "iwl-trans.h" #include "mvm.h" #include "fw-api.h" #include "time-sync.h" static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, int queue, struct ieee80211_sta *sta) { struct iwl_mvm_sta *mvmsta; struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); struct iwl_mvm_key_pn *ptk_pn; int res; u8 tid, keyidx; u8 pn[IEEE80211_CCMP_PN_LEN]; u8 *extiv; /* do PN checking */ /* multicast and non-data only arrives on default queue */ if (!ieee80211_is_data(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return 0; /* do not check PN for open AP */ if (!(stats->flag & RX_FLAG_DECRYPTED)) return 0; /* * avoid checking for default queue - we don't want to replicate * all the logic that's necessary for checking the PN on fragmented * frames, leave that to mac80211 */ if (queue == 0) return 0; /* if we are here - this for sure is either CCMP or GCMP */ if (IS_ERR_OR_NULL(sta)) { IWL_DEBUG_DROP(mvm, "expected hw-decrypted unicast frame for station\n"); return -1; } mvmsta = iwl_mvm_sta_from_mac80211(sta); extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); keyidx = extiv[3] >> 6; ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); if (!ptk_pn) return -1; if (ieee80211_is_data_qos(hdr->frame_control)) tid = ieee80211_get_tid(hdr); else tid = 0; /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ if (tid >= IWL_MAX_TID_COUNT) return -1; /* load pn */ pn[0] = extiv[7]; pn[1] = extiv[6]; pn[2] = extiv[5]; pn[3] = extiv[4]; pn[4] = extiv[1]; pn[5] = extiv[0]; res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); if (res < 0) return -1; if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) return -1; memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); stats->flag |= RX_FLAG_PN_VALIDATED; return 0; } /* iwl_mvm_create_skb Adds the rxb to a new skb */ static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, struct iwl_rx_cmd_buffer *rxb) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; unsigned int headlen, fraglen, pad_len = 0; unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); u8 mic_crc_len = u8_get_bits(desc->mac_flags1, IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { len -= 2; pad_len = 2; } /* * For non monitor interface strip the bytes the RADA might not have * removed (it might be disabled, e.g. for mgmt frames). As a monitor * interface cannot exist with other interfaces, this removal is safe * and sufficient, in monitor mode there's no decryption being done. */ if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) len -= mic_crc_len; /* If frame is small enough to fit in skb->head, pull it completely. * If not, only pull ieee80211_hdr (including crypto if present, and * an additional 8 bytes for SNAP/ethertype, see below) so that * splice() or TCP coalesce are more efficient. * * Since, in addition, ieee80211_data_to_8023() always pull in at * least 8 bytes (possibly more for mesh) we can do the same here * to save the cost of doing it later. That still doesn't pull in * the actual IP header since the typical case has a SNAP header. * If the latter changes (there are efforts in the standards group * to do so) we should revisit this and ieee80211_data_to_8023(). */ headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8; /* The firmware may align the packet to DWORD. * The padding is inserted after the IV. * After copying the header + IV skip the padding if * present before copying packet data. */ hdrlen += crypt_len; if (unlikely(headlen < hdrlen)) return -EINVAL; /* Since data doesn't move data while putting data on skb and that is * the only way we use, data + len is the next place that hdr would be put */ skb_set_mac_header(skb, skb->len); skb_put_data(skb, hdr, hdrlen); skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); /* * If we did CHECKSUM_COMPLETE, the hardware only does it right for * certain cases and starts the checksum after the SNAP. Check if * this is the case - it's easier to just bail out to CHECKSUM_NONE * in the cases the hardware didn't handle, since it's rare to see * such packets, even though the hardware did calculate the checksum * in this case, just starting after the MAC header instead. * * Starting from Bz hardware, it calculates starting directly after * the MAC header, so that matches mac80211's expectation. */ if (skb->ip_summed == CHECKSUM_COMPLETE) { struct { u8 hdr[6]; __be16 type; } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); if (unlikely(headlen - hdrlen < sizeof(*shdr) || !ether_addr_equal(shdr->hdr, rfc1042_header) || (shdr->type != htons(ETH_P_IP) && shdr->type != htons(ETH_P_ARP) && shdr->type != htons(ETH_P_IPV6) && shdr->type != htons(ETH_P_8021Q) && shdr->type != htons(ETH_P_PAE) && shdr->type != htons(ETH_P_TDLS)))) skb->ip_summed = CHECKSUM_NONE; else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) /* mac80211 assumes full CSUM including SNAP header */ skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); } fraglen = len - headlen; if (fraglen) { int offset = (u8 *)hdr + headlen + pad_len - (u8 *)rxb_addr(rxb) + rxb_offset(rxb); skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, fraglen, rxb->truesize); } return 0; } /* put a TLV on the skb and return data pointer * * Also pad to 4 the len and zero out all data part */ static void * iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) { struct ieee80211_radiotap_tlv *tlv; tlv = skb_put(skb, sizeof(*tlv)); tlv->type = cpu_to_le16(type); tlv->len = cpu_to_le16(len); return skb_put_zero(skb, ALIGN(len, 4)); } static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_vendor_content *radiotap; const u16 vendor_data_len = sizeof(mvm->cur_aid); if (!mvm->cur_aid) return; radiotap = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_VENDOR_NAMESPACE, sizeof(*radiotap) + vendor_data_len); /* Intel OUI */ radiotap->oui[0] = 0xf6; radiotap->oui[1] = 0x54; radiotap->oui[2] = 0x25; /* radiotap sniffer config sub-namespace */ radiotap->oui_subtype = 1; radiotap->vendor_type = 0; /* fill the data now */ memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; } /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, struct napi_struct *napi, struct sk_buff *skb, int queue, struct ieee80211_sta *sta, struct ieee80211_link_sta *link_sta) { if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { kfree_skb(skb); return; } if (sta && sta->valid_links && link_sta) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); rx_status->link_valid = 1; rx_status->link_id = link_sta->link_id; } ieee80211_rx_napi(mvm->hw, sta, skb, napi); } static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, struct ieee80211_rx_status *rx_status, u32 rate_n_flags, int energy_a, int energy_b) { int max_energy; u32 rate_flags = rate_n_flags; energy_a = energy_a ? -energy_a : S8_MIN; energy_b = energy_b ? -energy_b : S8_MIN; max_energy = max(energy_a, energy_b); IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", energy_a, energy_b, max_energy); rx_status->signal = max_energy; rx_status->chains = (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; rx_status->chain_signal[0] = energy_a; rx_status->chain_signal[1] = energy_b; } static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, struct ieee80211_hdr *hdr, struct iwl_rx_mpdu_desc *desc, u32 status, struct ieee80211_rx_status *stats) { struct wireless_dev *wdev; struct iwl_mvm_sta *mvmsta; struct iwl_mvm_vif *mvmvif; u8 keyid; struct ieee80211_key_conf *key; u32 len = le16_to_cpu(desc->mpdu_len); const u8 *frame = (void *)hdr; if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) return 0; /* * For non-beacon, we don't really care. But beacons may * be filtered out, and we thus need the firmware's replay * detection, otherwise beacons the firmware previously * filtered could be replayed, or something like that, and * it can filter a lot - though usually only if nothing has * changed. */ if (!ieee80211_is_beacon(hdr->frame_control)) return 0; if (!sta) return -1; mvmsta = iwl_mvm_sta_from_mac80211(sta); mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); /* key mismatch - will also report !MIC_OK but we shouldn't count it */ if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) goto report; /* good cases */ if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { stats->flag |= RX_FLAG_DECRYPTED; return 0; } /* * both keys will have the same cipher and MIC length, use * whichever one is available */ key = rcu_dereference(mvmvif->bcn_prot.keys[0]); if (!key) { key = rcu_dereference(mvmvif->bcn_prot.keys[1]); if (!key) goto report; } if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) goto report; /* get the real key ID */ keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; /* and if that's the other key, look it up */ if (keyid != key->keyidx) { /* * shouldn't happen since firmware checked, but be safe * in case the MIC length is wrong too, for example */ if (keyid != 6 && keyid != 7) return -1; key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); if (!key) goto report; } /* Report status to mac80211 */ if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) ieee80211_key_mic_failure(key); else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) ieee80211_key_replay(key); report: wdev = ieee80211_vif_to_wdev(mvmsta->vif); if (wdev->netdev) cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); return -1; } static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct ieee80211_hdr *hdr, struct ieee80211_rx_status *stats, u16 phy_info, struct iwl_rx_mpdu_desc *desc, u32 pkt_flags, int queue, u8 *crypt_len) { u32 status = le32_to_cpu(desc->status); /* * Drop UNKNOWN frames in aggregation, unless in monitor mode * (where we don't have the keys). * We limit this to aggregation because in TKIP this is a valid * scenario, since we may not have the (correct) TTAK (phase 1 * key) in the firmware. */ if (phy_info & IWL_RX_MPDU_PHY_AMPDU && (status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); return -1; } if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_has_protected(hdr->frame_control))) return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); if (!ieee80211_has_protected(hdr->frame_control) || (status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) return 0; /* TODO: handle packets encrypted with unknown alg */ switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { case IWL_RX_MPDU_STATUS_SEC_CCM: case IWL_RX_MPDU_STATUS_SEC_GCM: BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); /* alg is CCM: check MIC only */ if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { IWL_DEBUG_DROP(mvm, "Dropping packet, bad MIC (CCM/GCM)\n"); return -1; } stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; *crypt_len = IEEE80211_CCMP_HDR_LEN; return 0; case IWL_RX_MPDU_STATUS_SEC_TKIP: /* Don't drop the frame and decrypt it in SW */ if (!fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_DEPRECATE_TTAK) && !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) return 0; if (mvm->trans->trans_cfg->gen2 && !(status & RX_MPDU_RES_STATUS_MIC_OK)) stats->flag |= RX_FLAG_MMIC_ERROR; *crypt_len = IEEE80211_TKIP_IV_LEN; fallthrough; case IWL_RX_MPDU_STATUS_SEC_WEP: if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) return -1; stats->flag |= RX_FLAG_DECRYPTED; if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_WEP) *crypt_len = IEEE80211_WEP_IV_LEN; if (pkt_flags & FH_RSCSR_RADA_EN) { stats->flag |= RX_FLAG_ICV_STRIPPED; if (mvm->trans->trans_cfg->gen2) stats->flag |= RX_FLAG_MMIC_STRIPPED; } return 0; case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) return -1; stats->flag |= RX_FLAG_DECRYPTED; return 0; case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: break; default: /* * Sometimes we can get frames that were not decrypted * because the firmware didn't have the keys yet. This can * happen after connection where we can get multicast frames * before the GTK is installed. * Silently drop those frames. * Also drop un-decrypted frames in monitor mode. */ if (!is_multicast_ether_addr(hdr->addr1) && !mvm->monitor_on && net_ratelimit()) IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); } return 0; } static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct sk_buff *skb, struct iwl_rx_packet *pkt) { struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = csum_unfold(~(__force __sum16)hwsum); } } else { struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct iwl_mvm_vif *mvmvif; u16 flags = le16_to_cpu(desc->l3l4_flags); u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> IWL_RX_L3_PROTO_POS); mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); if (mvmvif->features & NETIF_F_RXCSUM && flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || l3_prot == IWL_RX_L3_TYPE_IPV6 || l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) skb->ip_summed = CHECKSUM_UNNECESSARY; } } /* * returns true if a packet is a duplicate or invalid tid and should be dropped. * Updates AMSDU PN tracking info */ static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, struct ieee80211_rx_status *rx_status, struct ieee80211_hdr *hdr, struct iwl_rx_mpdu_desc *desc) { struct iwl_mvm_sta *mvm_sta; struct iwl_mvm_rxq_dup_data *dup_data; u8 tid, sub_frame_idx; if (WARN_ON(IS_ERR_OR_NULL(sta))) return false; mvm_sta = iwl_mvm_sta_from_mac80211(sta); if (WARN_ON_ONCE(!mvm_sta->dup_data)) return false; dup_data = &mvm_sta->dup_data[queue]; /* * Drop duplicate 802.11 retransmissions * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") */ if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_any_nullfunc(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return false; if (ieee80211_is_data_qos(hdr->frame_control)) { /* frame has qos control */ tid = ieee80211_get_tid(hdr); if (tid >= IWL_MAX_TID_COUNT) return true; } else { tid = IWL_MAX_TID_COUNT; } /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ sub_frame_idx = desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; if (unlikely(ieee80211_has_retry(hdr->frame_control) && dup_data->last_seq[tid] == hdr->seq_ctrl && dup_data->last_sub_frame[tid] >= sub_frame_idx)) return true; /* Allow same PN as the first subframe for following sub frames */ if (dup_data->last_seq[tid] == hdr->seq_ctrl && sub_frame_idx > dup_data->last_sub_frame[tid] && desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; dup_data->last_seq[tid] = hdr->seq_ctrl; dup_data->last_sub_frame[tid] = sub_frame_idx; rx_status->flag |= RX_FLAG_DUP_VALIDATED; return false; } static void iwl_mvm_release_frames(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct napi_struct *napi, struct iwl_mvm_baid_data *baid_data, struct iwl_mvm_reorder_buffer *reorder_buf, u16 nssn) { struct iwl_mvm_reorder_buf_entry *entries = &baid_data->entries[reorder_buf->queue * baid_data->entries_per_queue]; u16 ssn = reorder_buf->head_sn; lockdep_assert_held(&reorder_buf->lock); while (ieee80211_sn_less(ssn, nssn)) { int index = ssn % reorder_buf->buf_size; struct sk_buff_head *skb_list = &entries[index].frames; struct sk_buff *skb; ssn = ieee80211_sn_inc(ssn); /* * Empty the list. Will have more than one frame for A-MSDU. * Empty list is valid as well since nssn indicates frames were * received. */ while ((skb = __skb_dequeue(skb_list))) { iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, reorder_buf->queue, sta, NULL /* FIXME */); reorder_buf->num_stored--; } } reorder_buf->head_sn = nssn; } static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, struct iwl_mvm_delba_data *data) { struct iwl_mvm_baid_data *ba_data; struct ieee80211_sta *sta; struct iwl_mvm_reorder_buffer *reorder_buf; u8 baid = data->baid; u32 sta_id; if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) return; rcu_read_lock(); ba_data = rcu_dereference(mvm->baid_map[baid]); if (WARN_ON_ONCE(!ba_data)) goto out; /* pick any STA ID to find the pointer */ sta_id = ffs(ba_data->sta_mask) - 1; sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) goto out; reorder_buf = &ba_data->reorder_buf[queue]; /* release all frames that are in the reorder buffer to the stack */ spin_lock_bh(&reorder_buf->lock); iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, ieee80211_sn_add(reorder_buf->head_sn, reorder_buf->buf_size)); spin_unlock_bh(&reorder_buf->lock); out: rcu_read_unlock(); } static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, struct napi_struct *napi, u8 baid, u16 nssn, int queue) { struct ieee80211_sta *sta; struct iwl_mvm_reorder_buffer *reorder_buf; struct iwl_mvm_baid_data *ba_data; u32 sta_id; IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", baid, nssn); if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || baid >= ARRAY_SIZE(mvm->baid_map))) return; rcu_read_lock(); ba_data = rcu_dereference(mvm->baid_map[baid]); if (WARN(!ba_data, "BAID %d not found in map\n", baid)) goto out; /* pick any STA ID to find the pointer */ sta_id = ffs(ba_data->sta_mask) - 1; sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) goto out; reorder_buf = &ba_data->reorder_buf[queue]; spin_lock_bh(&reorder_buf->lock); iwl_mvm_release_frames(mvm, sta, napi, ba_data, reorder_buf, nssn); spin_unlock_bh(&reorder_buf->lock); out: rcu_read_unlock(); } void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_rxq_sync_notification *notif; struct iwl_mvm_internal_rxq_notif *internal_notif; u32 len = iwl_rx_packet_payload_len(pkt); notif = (void *)pkt->data; internal_notif = (void *)notif->payload; if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), "invalid notification size %d (%d)", len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) return; len -= sizeof(*notif) + sizeof(*internal_notif); if (WARN_ONCE(internal_notif->sync && mvm->queue_sync_cookie != internal_notif->cookie, "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", internal_notif->cookie, mvm->queue_sync_cookie, queue)) return; switch (internal_notif->type) { case IWL_MVM_RXQ_EMPTY: WARN_ONCE(len, "invalid empty notification size %d", len); break; case IWL_MVM_RXQ_NOTIF_DEL_BA: if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), "invalid delba notification size %d (%d)", len, (int)sizeof(struct iwl_mvm_delba_data))) break; iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); break; default: WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); } if (internal_notif->sync) { WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), "queue sync: queue %d responded a second time!\n", queue); if (READ_ONCE(mvm->queue_sync_state) == 0) wake_up(&mvm->rx_sync_waitq); } } /* * Returns true if the MPDU was buffered\dropped, false if it should be passed * to upper layer. */ static bool iwl_mvm_reorder(struct iwl_mvm *mvm, struct napi_struct *napi, int queue, struct ieee80211_sta *sta, struct sk_buff *skb, struct iwl_rx_mpdu_desc *desc) { struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); struct iwl_mvm_baid_data *baid_data; struct iwl_mvm_reorder_buffer *buffer; u32 reorder = le32_to_cpu(desc->reorder_data); bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; bool last_subframe = desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; u8 tid = ieee80211_get_tid(hdr); u8 sub_frame_idx = desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; struct iwl_mvm_reorder_buf_entry *entries; u32 sta_mask; int index; u16 nssn, sn; u8 baid; baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> IWL_RX_MPDU_REORDER_BAID_SHIFT; if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) return false; /* * This also covers the case of receiving a Block Ack Request * outside a BA session; we'll pass it to mac80211 and that * then sends a delBA action frame. * This also covers pure monitor mode, in which case we won't * have any BA sessions. */ if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) return false; /* no sta yet */ if (WARN_ONCE(IS_ERR_OR_NULL(sta), "Got valid BAID without a valid station assigned\n")) return false; /* not a data packet or a bar */ if (!ieee80211_is_back_req(hdr->frame_control) && (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1))) return false; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return false; baid_data = rcu_dereference(mvm->baid_map[baid]); if (!baid_data) { IWL_DEBUG_RX(mvm, "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", baid, reorder); return false; } rcu_read_lock(); sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); rcu_read_unlock(); if (IWL_FW_CHECK(mvm, tid != baid_data->tid || !(sta_mask & baid_data->sta_mask), "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", baid, baid_data->sta_mask, baid_data->tid, sta_mask, tid)) return false; nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> IWL_RX_MPDU_REORDER_SN_SHIFT; buffer = &baid_data->reorder_buf[queue]; entries = &baid_data->entries[queue * baid_data->entries_per_queue]; spin_lock_bh(&buffer->lock); if (!buffer->valid) { if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { spin_unlock_bh(&buffer->lock); return false; } buffer->valid = true; } /* drop any duplicated packets */ if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) goto drop; /* drop any oudated packets */ if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) goto drop; /* release immediately if allowed by nssn and no stored frames */ if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { if (!amsdu || last_subframe) buffer->head_sn = nssn; /* No need to update AMSDU last SN - we are moving the head */ spin_unlock_bh(&buffer->lock); return false; } /* * release immediately if there are no stored frames, and the sn is * equal to the head. * This can happen due to reorder timer, where NSSN is behind head_sn. * When we released everything, and we got the next frame in the * sequence, according to the NSSN we can't release immediately, * while technically there is no hole and we can move forward. */ if (!buffer->num_stored && sn == buffer->head_sn) { if (!amsdu || last_subframe) buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); /* No need to update AMSDU last SN - we are moving the head */ spin_unlock_bh(&buffer->lock); return false; } /* put in reorder buffer */ index = sn % buffer->buf_size; __skb_queue_tail(&entries[index].frames, skb); buffer->num_stored++; if (amsdu) { buffer->last_amsdu = sn; buffer->last_sub_index = sub_frame_idx; } /* * We cannot trust NSSN for AMSDU sub-frames that are not the last. * The reason is that NSSN advances on the first sub-frame, and may * cause the reorder buffer to advance before all the sub-frames arrive. * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with * SN 1. NSSN for first sub frame will be 3 with the result of driver * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is * already ahead and it will be dropped. * If the last sub-frame is not on this queue - we will get frame * release notification with up to date NSSN. */ if (!amsdu || last_subframe) iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn); spin_unlock_bh(&buffer->lock); return true; drop: kfree_skb(skb); spin_unlock_bh(&buffer->lock); return true; } static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, u32 reorder_data, u8 baid) { unsigned long now = jiffies; unsigned long timeout; struct iwl_mvm_baid_data *data; rcu_read_lock(); data = rcu_dereference(mvm->baid_map[baid]); if (!data) { IWL_DEBUG_RX(mvm, "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", baid, reorder_data); goto out; } if (!data->timeout) goto out; timeout = data->timeout; /* * Do not update last rx all the time to avoid cache bouncing * between the rx queues. * Update it every timeout. Worst case is the session will * expire after ~ 2 * timeout, which doesn't matter that much. */ if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) /* Update is atomic */ data->last_rx = now; out: rcu_read_unlock(); } static void iwl_mvm_flip_address(u8 *addr) { int i; u8 mac_addr[ETH_ALEN]; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = addr[ETH_ALEN - i - 1]; ether_addr_copy(addr, mac_addr); } struct iwl_mvm_rx_phy_data { enum iwl_rx_phy_info_type info_type; __le32 d0, d1, d2, d3, eht_d4, d5; __le16 d4; bool with_data; bool first_subframe; __le32 rx_vec[4]; u32 rate_n_flags; u32 gp2_on_air_rise; u16 phy_info; u8 energy_a, energy_b; u8 channel; }; static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_radiotap_he_mu *he_mu) { u32 phy_data2 = le32_to_cpu(phy_data->d2); u32 phy_data3 = le32_to_cpu(phy_data->d3); u16 phy_data4 = le16_to_cpu(phy_data->d4); u32 rate_n_flags = phy_data->rate_n_flags; if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); he_mu->flags1 |= le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, phy_data4), IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, phy_data2); he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, phy_data3); he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, phy_data2); he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, phy_data3); } if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); he_mu->flags2 |= le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, phy_data4), IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, phy_data2); he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, phy_data3); he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, phy_data2); he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, phy_data3); } } static void iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_radiotap_he *he, struct ieee80211_radiotap_he_mu *he_mu, struct ieee80211_rx_status *rx_status) { /* * Unfortunately, we have to leave the mac80211 data * incorrect for the case that we receive an HE-MU * transmission and *don't* have the HE phy data (due * to the bits being used for TSF). This shouldn't * happen though as management frames where we need * the TSF/timers are not be transmitted in HE-MU. */ u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; u8 offs = 0; rx_status->bw = RATE_INFO_BW_HE_RU; he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); switch (ru) { case 0 ... 36: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; offs = ru; break; case 37 ... 52: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; offs = ru - 37; break; case 53 ... 60: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; offs = ru - 53; break; case 61 ... 64: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; offs = ru - 61; break; case 65 ... 66: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; offs = ru - 65; break; case 67: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; break; case 68: rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; break; } he->data2 |= le16_encode_bits(offs, IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); #define CHECK_BW(bw) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) CHECK_BW(20); CHECK_BW(40); CHECK_BW(80); CHECK_BW(160); if (he_mu) he_mu->flags2 |= le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, rate_n_flags), IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) he->data6 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, rate_n_flags), IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); } static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_radiotap_he *he, struct ieee80211_radiotap_he_mu *he_mu, struct ieee80211_rx_status *rx_status, int queue) { switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_NONE: case IWL_RX_PHY_INFO_TYPE_CCK: case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: case IWL_RX_PHY_INFO_TYPE_HT: case IWL_RX_PHY_INFO_TYPE_VHT_SU: case IWL_RX_PHY_INFO_TYPE_VHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: return; case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_SU: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_TB: /* HE common */ he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_UPLINK), IEEE80211_RADIOTAP_HE_DATA3_UL_DL); } he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), IEEE80211_RADIOTAP_HE_DATA6_TXOP); he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_DOPPLER), IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); break; } switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_SU: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); break; default: /* nothing here */ break; } switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: he_mu->flags1 |= le16_encode_bits(le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); he_mu->flags1 |= le16_encode_bits(le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); he_mu->flags2 |= le16_encode_bits(le16_get_bits(phy_data->d4, IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_MU: he_mu->flags2 |= le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); he_mu->flags2 |= le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); fallthrough; case IWL_RX_PHY_INFO_TYPE_HE_TB: case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); break; case IWL_RX_PHY_INFO_TYPE_HE_SU: he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, IWL_RX_PHY_DATA0_HE_BEAM_CHNG), IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); break; default: /* nothing */ break; } } #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ typeof(enc_bits) _enc_bits = enc_bits; \ typeof(usig) _usig = usig; \ (_usig)->mask |= cpu_to_le32(_enc_bits); \ (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ } while (0) #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ eht->data[(rt_data)] |= \ (cpu_to_le32 \ (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ LE32_DEC_ENC(data ## fw_data, \ IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 #define IWL_RX_RU_DATA_A1 2 #define IWL_RX_RU_DATA_A2 2 #define IWL_RX_RU_DATA_B1 2 #define IWL_RX_RU_DATA_B2 4 #define IWL_RX_RU_DATA_C1 3 #define IWL_RX_RU_DATA_C2 3 #define IWL_RX_RU_DATA_D1 4 #define IWL_RX_RU_DATA_D2 4 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ rt_ru, \ IWL_RX_RU_DATA_ ## fw_ru, \ fw_ru) static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { if (phy_data->with_data) { __le32 data1 = phy_data->d1; __le32 data2 = phy_data->d2; __le32 data3 = phy_data->d3; __le32 data4 = phy_data->eht_d4; __le32 data5 = phy_data->d5; u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); IWL_MVM_ENC_USIG_VALUE_MASK (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); eht->data[7] |= LE32_DEC_ENC (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); /* * Hardware labels the content channels/RU allocation values * as follows: * Content Channel 1 Content Channel 2 * 20 MHz: A1 * 40 MHz: A1 B1 * 80 MHz: A1 C1 B1 D1 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 * * However firmware can only give us A1-D2, so the higher * frequencies are missing. */ switch (phy_bw) { case RATE_MCS_CHAN_WIDTH_320: /* additional values are missing in RX metadata */ case RATE_MCS_CHAN_WIDTH_160: /* content channel 1 */ IWL_MVM_ENC_EHT_RU(1_2_1, A2); IWL_MVM_ENC_EHT_RU(1_2_2, C2); /* content channel 2 */ IWL_MVM_ENC_EHT_RU(2_2_1, B2); IWL_MVM_ENC_EHT_RU(2_2_2, D2); fallthrough; case RATE_MCS_CHAN_WIDTH_80: /* content channel 1 */ IWL_MVM_ENC_EHT_RU(1_1_2, C1); /* content channel 2 */ IWL_MVM_ENC_EHT_RU(2_1_2, D1); fallthrough; case RATE_MCS_CHAN_WIDTH_40: /* content channel 2 */ IWL_MVM_ENC_EHT_RU(2_1_1, B1); fallthrough; case RATE_MCS_CHAN_WIDTH_20: IWL_MVM_ENC_EHT_RU(1_1_1, A1); break; } } else { __le32 usig_a1 = phy_data->rx_vec[0]; __le32 usig_a2 = phy_data->rx_vec[1]; IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_VALIDATE, IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PPDU_TYPE, IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_MCS, IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); IWL_MVM_ENC_USIG_VALUE_MASK (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_CRC_OK, IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); } } static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { if (phy_data->with_data) { __le32 data5 = phy_data->d5; IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); } else { __le32 usig_a1 = phy_data->rx_vec[0]; __le32 usig_a2 = phy_data->rx_vec[1]; IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, IWL_RX_USIG_A1_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_PPDU_TYPE, IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, IWL_RX_USIG_A2_EHT_CRC_OK, IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); } } static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht) { u32 ru = le32_get_bits(eht->data[8], IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); enum nl80211_eht_ru_alloc nl_ru; /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields * in an EHT variant User Info field */ switch (ru) { case 0 ... 36: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; break; case 37 ... 52: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; break; case 53 ... 60: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; break; case 61 ... 64: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; break; case 65 ... 66: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; break; case 67: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; break; case 68: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; break; case 69: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; break; case 70 ... 81: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; break; case 82 ... 89: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; break; case 90 ... 93: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; break; case 94 ... 95: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; break; case 96 ... 99: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; break; case 100 ... 103: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; break; case 104: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; break; case 105 ... 106: nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; break; default: return; } rx_status->bw = RATE_INFO_BW_EHT_RU; rx_status->eht.ru = nl_ru; } static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, struct iwl_mvm_rx_phy_data *phy_data, struct ieee80211_rx_status *rx_status, struct ieee80211_radiotap_eht *eht, struct ieee80211_radiotap_eht_usig *usig) { __le32 data0 = phy_data->d0; __le32 data1 = phy_data->d1; __le32 usig_a1 = phy_data->rx_vec[0]; u8 info_type = phy_data->info_type; /* Not in EHT range */ if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) return; usig->common |= cpu_to_le32 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); if (phy_data->with_data) { usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_UPLINK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); } else { usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_UL_FLAG, IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_BSS_COLOR, IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); } if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); } eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); /* All RU allocating size/index is in TB format */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); iwl_mvm_decode_eht_ru(mvm, rx_status, eht); /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set * which is on only in case of monitor mode so no need to check monitor * mode */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); eht->data[1] |= le32_encode_bits(mvm->monitor_p80, IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); if (phy_data->with_data) usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); else usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); /* * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS */ eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); } static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, struct iwl_mvm_rx_phy_data *phy_data, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_eht *eht; struct ieee80211_radiotap_eht_usig *usig; size_t eht_len = sizeof(*eht); u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; /* EHT and HE have the same valus for LTF */ u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; u16 phy_info = phy_data->phy_info; u32 bw; /* u32 for 1 user_info */ if (phy_data->with_data) eht_len += sizeof(u32); eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, sizeof(*usig)); rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); /* specific handling for 320MHz */ bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, le32_to_cpu(phy_data->d0)); usig->common |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); /* report the AMPDU-EOF bit on single frames */ if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { rx_status->flag |= RX_FLAG_AMPDU_DETAILS; rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } /* update aggregation data for monitor sake on default queue */ if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); #define CHECK_TYPE(F) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) CHECK_TYPE(SU); CHECK_TYPE(EXT_SU); CHECK_TYPE(MU); CHECK_TYPE(TRIG); switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { case 0: if (he_type == RATE_MCS_HE_TYPE_TRIG) { rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; } else { rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; } break; case 1: rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; break; case 2: ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; else rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; break; case 3: if (he_type != RATE_MCS_HE_TYPE_TRIG) { ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; } break; default: /* nothing here */ break; } if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); eht->data[0] |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, ltf) | FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, rx_status->eht.gi)); } if (!phy_data->with_data) { eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); eht->data[7] |= le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); if (rate_n_flags & RATE_MCS_BF_MSK) eht->data[7] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); } else { eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); if (rate_n_flags & RATE_MCS_BF_MSK) eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); if (rate_n_flags & RATE_MCS_LDPC_MSK) eht->user_info[0] |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); eht->user_info[0] |= cpu_to_le32 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, rate_n_flags)) | FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); } } static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, struct iwl_mvm_rx_phy_data *phy_data, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_he *he = NULL; struct ieee80211_radiotap_he_mu *he_mu = NULL; u32 rate_n_flags = phy_data->rate_n_flags; u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; u8 ltf; static const struct ieee80211_radiotap_he known = { .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), }; static const struct ieee80211_radiotap_he_mu mu_known = { .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), }; u16 phy_info = phy_data->phy_info; he = skb_put_data(skb, &known, sizeof(known)); rx_status->flag |= RX_FLAG_RADIOTAP_HE; if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; } /* report the AMPDU-EOF bit on single frames */ if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { rx_status->flag |= RX_FLAG_AMPDU_DETAILS; rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, queue); /* update aggregation data for monitor sake on default queue */ if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; } if (he_type == RATE_MCS_HE_TYPE_EXT_SU && rate_n_flags & RATE_MCS_HE_106T_MSK) { rx_status->bw = RATE_INFO_BW_HE_RU; rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; } /* actually data is filled in mac80211 */ if (he_type == RATE_MCS_HE_TYPE_SU || he_type == RATE_MCS_HE_TYPE_EXT_SU) he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); #define CHECK_TYPE(F) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) CHECK_TYPE(SU); CHECK_TYPE(EXT_SU); CHECK_TYPE(MU); CHECK_TYPE(TRIG); he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); if (rate_n_flags & RATE_MCS_BF_MSK) he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> RATE_MCS_HE_GI_LTF_POS) { case 0: if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; else rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; if (he_type == RATE_MCS_HE_TYPE_MU) ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; else ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; break; case 1: if (he_type == RATE_MCS_HE_TYPE_TRIG) rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; else rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; break; case 2: if (he_type == RATE_MCS_HE_TYPE_TRIG) { rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; } else { rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; } break; case 3: rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; break; case 4: rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; break; default: ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; } he->data5 |= le16_encode_bits(ltf, IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); } static void iwl_mvm_decode_lsig(struct sk_buff *skb, struct iwl_mvm_rx_phy_data *phy_data) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_lsig *lsig; switch (phy_data->info_type) { case IWL_RX_PHY_INFO_TYPE_HT: case IWL_RX_PHY_INFO_TYPE_VHT_SU: case IWL_RX_PHY_INFO_TYPE_VHT_MU: case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: case IWL_RX_PHY_INFO_TYPE_HE_SU: case IWL_RX_PHY_INFO_TYPE_HE_MU: case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: case IWL_RX_PHY_INFO_TYPE_HE_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU: case IWL_RX_PHY_INFO_TYPE_EHT_TB: case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: lsig = skb_put(skb, sizeof(*lsig)); lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_LSIG_LEN_MASK), IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; break; default: break; } } static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) { switch (phy_band) { case PHY_BAND_24: return NL80211_BAND_2GHZ; case PHY_BAND_5: return NL80211_BAND_5GHZ; case PHY_BAND_6: return NL80211_BAND_6GHZ; default: WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); return NL80211_BAND_5GHZ; } } struct iwl_rx_sta_csa { bool all_sta_unblocked; struct ieee80211_vif *vif; }; static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) { struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct iwl_rx_sta_csa *rx_sta_csa = data; if (mvmsta->vif != rx_sta_csa->vif) return; if (mvmsta->disable_tx) rx_sta_csa->all_sta_unblocked = false; } /* * Note: requires also rx_status->band to be prefilled, as well * as phy_data (apart from phy_data->info_type) */ static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, struct sk_buff *skb, struct iwl_mvm_rx_phy_data *phy_data, int queue) { struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); u32 rate_n_flags = phy_data->rate_n_flags; u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; bool is_sgi; phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) phy_data->info_type = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_INFO_TYPE_MASK); /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { case RATE_MCS_CHAN_WIDTH_20: break; case RATE_MCS_CHAN_WIDTH_40: rx_status->bw = RATE_INFO_BW_40; break; case RATE_MCS_CHAN_WIDTH_80: rx_status->bw = RATE_INFO_BW_80; break; case RATE_MCS_CHAN_WIDTH_160: rx_status->bw = RATE_INFO_BW_160; break; case RATE_MCS_CHAN_WIDTH_320: rx_status->bw = RATE_INFO_BW_320; break; } /* must be before L-SIG data */ if (format == RATE_MCS_HE_MSK) iwl_mvm_rx_he(mvm, skb, phy_data, queue); iwl_mvm_decode_lsig(skb, phy_data); rx_status->device_timestamp = phy_data->gp2_on_air_rise; rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, rx_status->band); iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, phy_data->energy_a, phy_data->energy_b); /* using TLV format and must be after all fixed len fields */ if (format == RATE_MCS_EHT_MSK) iwl_mvm_rx_eht(mvm, skb, phy_data, queue); if (unlikely(mvm->monitor_on)) iwl_mvm_add_rtap_sniffer_config(mvm, skb); is_sgi = format == RATE_MCS_HE_MSK ? iwl_he_is_sgi(rate_n_flags) : rate_n_flags & RATE_MCS_SGI_MSK; if (!(format == RATE_MCS_CCK_MSK) && is_sgi) rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rate_n_flags & RATE_MCS_LDPC_MSK) rx_status->enc_flags |= RX_ENC_FLAG_LDPC; switch (format) { case RATE_MCS_VHT_MSK: rx_status->encoding = RX_ENC_VHT; break; case RATE_MCS_HE_MSK: rx_status->encoding = RX_ENC_HE; rx_status->he_dcm = !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); break; case RATE_MCS_EHT_MSK: rx_status->encoding = RX_ENC_EHT; break; } switch (format) { case RATE_MCS_HT_MSK: rx_status->encoding = RX_ENC_HT; rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; break; case RATE_MCS_VHT_MSK: case RATE_MCS_HE_MSK: case RATE_MCS_EHT_MSK: rx_status->nss = u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; break; default: { int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, rx_status->band); rx_status->rate_idx = rate; if ((rate < 0 || rate > 0xFF)) { rx_status->rate_idx = 0; if (net_ratelimit()) IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", rate_n_flags, rx_status->band); } break; } } } void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct ieee80211_rx_status *rx_status; struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; struct ieee80211_hdr *hdr; u32 len; u32 pkt_len = iwl_rx_packet_payload_len(pkt); struct ieee80211_sta *sta = NULL; struct ieee80211_link_sta *link_sta = NULL; struct sk_buff *skb; u8 crypt_len = 0; size_t desc_size; struct iwl_mvm_rx_phy_data phy_data = {}; u32 format; if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) return; if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) desc_size = sizeof(*desc); else desc_size = IWL_RX_DESC_SIZE_V1; if (unlikely(pkt_len < desc_size)) { IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); return; } if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); phy_data.channel = desc->v3.channel; phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); phy_data.energy_a = desc->v3.energy_a; phy_data.energy_b = desc->v3.energy_b; phy_data.d0 = desc->v3.phy_data0; phy_data.d1 = desc->v3.phy_data1; phy_data.d2 = desc->v3.phy_data2; phy_data.d3 = desc->v3.phy_data3; phy_data.eht_d4 = desc->phy_eht_data4; phy_data.d5 = desc->v3.phy_data5; } else { phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); phy_data.channel = desc->v1.channel; phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); phy_data.energy_a = desc->v1.energy_a; phy_data.energy_b = desc->v1.energy_b; phy_data.d0 = desc->v1.phy_data0; phy_data.d1 = desc->v1.phy_data1; phy_data.d2 = desc->v1.phy_data2; phy_data.d3 = desc->v1.phy_data3; } if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, REPLY_RX_MPDU_CMD, 0) < 4) { phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", phy_data.rate_n_flags); } format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; len = le16_to_cpu(desc->mpdu_len); if (unlikely(len + desc_size > pkt_len)) { IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); return; } phy_data.with_data = true; phy_data.phy_info = le16_to_cpu(desc->phy_info); phy_data.d4 = desc->phy_data4; hdr = (void *)(pkt->data + desc_size); /* Dont use dev_alloc_skb(), we'll have enough headroom once * ieee80211_hdr pulled. */ skb = alloc_skb(128, GFP_ATOMIC); if (!skb) { IWL_ERR(mvm, "alloc_skb failed\n"); return; } if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { /* * If the device inserted padding it means that (it thought) * the 802.11 header wasn't a multiple of 4 bytes long. In * this case, reserve two bytes at the start of the SKB to * align the payload properly in case we end up copying it. */ skb_reserve(skb, 2); } rx_status = IEEE80211_SKB_RXCB(skb); /* * Keep packets with CRC errors (and with overrun) for monitor mode * (otherwise the firmware discards them) but mark them as bad. */ if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", le32_to_cpu(desc->status)); rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; } /* set the preamble flag if appropriate */ if (format == RATE_MCS_CCK_MSK && phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { u64 tsf_on_air_rise; if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); else tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); rx_status->mactime = tsf_on_air_rise; /* TSF as indicated by the firmware is at INA time */ rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; } if (iwl_mvm_is_band_in_rx_supported(mvm)) { u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); } else { rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ; } /* update aggregation data for monitor sake on default queue */ if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { bool toggle_bit; toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; rx_status->flag |= RX_FLAG_AMPDU_DETAILS; /* * Toggle is switched whenever new aggregation starts. Make * sure ampdu_reference is never 0 so we can later use it to * see if the frame was really part of an A-MPDU or not. */ if (toggle_bit != mvm->ampdu_toggle) { mvm->ampdu_ref++; if (mvm->ampdu_ref == 0) mvm->ampdu_ref++; mvm->ampdu_toggle = toggle_bit; phy_data.first_subframe = true; } rx_status->ampdu_reference = mvm->ampdu_ref; } rcu_read_lock(); if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); if (IS_ERR(sta)) sta = NULL; link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); } } else if (!is_multicast_ether_addr(hdr->addr2)) { /* * This is fine since we prevent two stations with the same * address from being added. */ sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); } if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, le32_to_cpu(pkt->len_n_flags), queue, &crypt_len)) { kfree_skb(skb); goto out; } iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); if (sta) { struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct ieee80211_vif *tx_blocked_vif = rcu_dereference(mvm->csa_tx_blocked_vif); u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & IWL_RX_MPDU_REORDER_BAID_MASK) >> IWL_RX_MPDU_REORDER_BAID_SHIFT); struct iwl_fw_dbg_trigger_tlv *trig; struct ieee80211_vif *vif = mvmsta->vif; if (!mvm->tcm.paused && len >= sizeof(*hdr) && !is_multicast_ether_addr(hdr->addr1) && ieee80211_is_data(hdr->frame_control) && time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) schedule_delayed_work(&mvm->tcm.work, 0); /* * We have tx blocked stations (with CS bit). If we heard * frames from a blocked station on a new channel we can * TX to it again. */ if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(tx_blocked_vif); struct iwl_rx_sta_csa rx_sta_csa = { .all_sta_unblocked = true, .vif = tx_blocked_vif, }; if (mvmvif->csa_target_freq == rx_status->freq) iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, false); ieee80211_iterate_stations_atomic(mvm->hw, iwl_mvm_rx_get_sta_block_tx, &rx_sta_csa); if (rx_sta_csa.all_sta_unblocked) { RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); /* Unblock BCAST / MCAST station */ iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); cancel_delayed_work(&mvm->cs_tx_unblock_dwork); } } rs_update_last_rssi(mvm, mvmsta, rx_status); trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), FW_DBG_TRIGGER_RSSI); if (trig && ieee80211_is_beacon(hdr->frame_control)) { struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; s32 rssi; rssi_trig = (void *)trig->data; rssi = le32_to_cpu(rssi_trig->rssi); if (rx_status->signal < rssi) iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, NULL); } if (ieee80211_is_data(hdr->frame_control)) iwl_mvm_rx_csum(mvm, sta, skb, pkt); if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", le16_to_cpu(hdr->seq_ctrl)); kfree_skb(skb); goto out; } /* * Our hardware de-aggregates AMSDUs but copies the mac header * as it to the de-aggregated MPDUs. We need to turn off the * AMSDU bit in the QoS control ourselves. * In addition, HW reverses addr3 and addr4 - reverse it back. */ if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { u8 *qc = ieee80211_get_qos_ctl(hdr); *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) { iwl_mvm_flip_address(hdr->addr3); if (ieee80211_has_a4(hdr->frame_control)) iwl_mvm_flip_address(hdr->addr4); } } if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { u32 reorder_data = le32_to_cpu(desc->reorder_data); iwl_mvm_agg_rx_received(mvm, reorder_data, baid); } } /* management stuff on default queue */ if (!queue) { if (unlikely((ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) && mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_ENABLED)) mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; if (unlikely(ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control))) rx_status->boottime_ns = ktime_get_boottime_ns(); } if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { kfree_skb(skb); goto out; } if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) rx_status->flag |= RX_FLAG_AMSDU_MORE; iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, link_sta); } out: rcu_read_unlock(); } void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct ieee80211_rx_status *rx_status; struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; u32 rssi; u32 info_type; struct ieee80211_sta *sta = NULL; struct sk_buff *skb; struct iwl_mvm_rx_phy_data phy_data; u32 format; if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) return; if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) return; rssi = le32_to_cpu(desc->rssi); info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; phy_data.d0 = desc->phy_info[0]; phy_data.d1 = desc->phy_info[1]; phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); phy_data.rate_n_flags = le32_to_cpu(desc->rate); phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); phy_data.with_data = false; phy_data.rx_vec[0] = desc->rx_vec[0]; phy_data.rx_vec[1] = desc->rx_vec[1]; if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, RX_NO_DATA_NOTIF, 0) < 2) { IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", phy_data.rate_n_flags); phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", phy_data.rate_n_flags); } format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, RX_NO_DATA_NOTIF, 0) >= 3) { if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data_ver_3))) /* invalid len for ver 3 */ return; phy_data.rx_vec[2] = desc->rx_vec[2]; phy_data.rx_vec[3] = desc->rx_vec[3]; } else { if (format == RATE_MCS_EHT_MSK) /* no support for EHT before version 3 API */ return; } /* Dont use dev_alloc_skb(), we'll have enough headroom once * ieee80211_hdr pulled. */ skb = alloc_skb(128, GFP_ATOMIC); if (!skb) { IWL_ERR(mvm, "alloc_skb failed\n"); return; } rx_status = IEEE80211_SKB_RXCB(skb); /* 0-length PSDU */ rx_status->flag |= RX_FLAG_NO_PSDU; switch (info_type) { case RX_NO_DATA_INFO_TYPE_NDP: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; break; case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; break; default: rx_status->zero_length_psdu_type = IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; break; } rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : NL80211_BAND_2GHZ; iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); /* no more radio tap info should be put after this point. * * We mark it as mac header, for upper layers to know where * all radio tap header ends. */ skb_reset_mac_header(skb); /* * Override the nss from the rx_vec since the rate_n_flags has * only 2 bits for the nss which gives a max of 4 ss but there * may be up to 8 spatial streams. */ switch (format) { case RATE_MCS_VHT_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; break; case RATE_MCS_HE_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[0], RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; break; case RATE_MCS_EHT_MSK: rx_status->nss = le32_get_bits(desc->rx_vec[2], RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; } rcu_read_lock(); ieee80211_rx_napi(mvm->hw, sta, skb, napi); rcu_read_unlock(); } void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_frame_release *release = (void *)pkt->data; if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) return; iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, le16_to_cpu(release->nssn), queue); } void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, struct iwl_rx_cmd_buffer *rxb, int queue) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_bar_frame_release *release = (void *)pkt->data; unsigned int baid = le32_get_bits(release->ba_info, IWL_BAR_FRAME_RELEASE_BAID_MASK); unsigned int nssn = le32_get_bits(release->ba_info, IWL_BAR_FRAME_RELEASE_NSSN_MASK); unsigned int sta_id = le32_get_bits(release->sta_tid, IWL_BAR_FRAME_RELEASE_STA_MASK); unsigned int tid = le32_get_bits(release->sta_tid, IWL_BAR_FRAME_RELEASE_TID_MASK); struct iwl_mvm_baid_data *baid_data; if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) return; if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || baid >= ARRAY_SIZE(mvm->baid_map))) return; rcu_read_lock(); baid_data = rcu_dereference(mvm->baid_map[baid]); if (!baid_data) { IWL_DEBUG_RX(mvm, "Got valid BAID %d but not allocated, invalid BAR release!\n", baid); goto out; } if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || !(baid_data->sta_mask & BIT(sta_id)), "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", baid, baid_data->sta_mask, baid_data->tid, sta_id, tid)) goto out; IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", nssn); iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); out: rcu_read_unlock(); }