/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdio.h" #include "chip.h" #include "firmware.h" #include "core.h" #include "common.h" #include "bcdc.h" #define DCMD_RESP_TIMEOUT msecs_to_jiffies(2500) #define CTL_DONE_TIMEOUT msecs_to_jiffies(2500) #ifdef DEBUG #define BRCMF_TRAP_INFO_SIZE 80 #define CBUF_LEN (128) /* Device console log buffer state */ #define CONSOLE_BUFFER_MAX 2024 struct rte_log_le { __le32 buf; /* Can't be pointer on (64-bit) hosts */ __le32 buf_size; __le32 idx; char *_buf_compat; /* Redundant pointer for backward compat. */ }; struct rte_console { /* Virtual UART * When there is no UART (e.g. Quickturn), * the host should write a complete * input line directly into cbuf and then write * the length into vcons_in. * This may also be used when there is a real UART * (at risk of conflicting with * the real UART). vcons_out is currently unused. */ uint vcons_in; uint vcons_out; /* Output (logging) buffer * Console output is written to a ring buffer log_buf at index log_idx. * The host may read the output when it sees log_idx advance. * Output will be lost if the output wraps around faster than the host * polls. */ struct rte_log_le log_le; /* Console input line buffer * Characters are read one at a time into cbuf * until is received, then * the buffer is processed as a command line. * Also used for virtual UART. */ uint cbuf_idx; char cbuf[CBUF_LEN]; }; #endif /* DEBUG */ #include #include "bus.h" #include "debug.h" #include "tracepoint.h" #define TXQLEN 2048 /* bulk tx queue length */ #define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */ #define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */ #define PRIOMASK 7 #define TXRETRIES 2 /* # of retries for tx frames */ #define BRCMF_RXBOUND 50 /* Default for max rx frames in one scheduling */ #define BRCMF_TXBOUND 20 /* Default for max tx frames in one scheduling */ #define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */ #define MEMBLOCK 2048 /* Block size used for downloading of dongle image */ #define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold biggest possible glom */ #define BRCMF_FIRSTREAD (1 << 6) #define BRCMF_CONSOLE 10 /* watchdog interval to poll console */ /* SBSDIO_DEVICE_CTL */ /* 1: device will assert busy signal when receiving CMD53 */ #define SBSDIO_DEVCTL_SETBUSY 0x01 /* 1: assertion of sdio interrupt is synchronous to the sdio clock */ #define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02 /* 1: mask all interrupts to host except the chipActive (rev 8) */ #define SBSDIO_DEVCTL_CA_INT_ONLY 0x04 /* 1: isolate internal sdio signals, put external pads in tri-state; requires * sdio bus power cycle to clear (rev 9) */ #define SBSDIO_DEVCTL_PADS_ISO 0x08 /* Force SD->SB reset mapping (rev 11) */ #define SBSDIO_DEVCTL_SB_RST_CTL 0x30 /* Determined by CoreControl bit */ #define SBSDIO_DEVCTL_RST_CORECTL 0x00 /* Force backplane reset */ #define SBSDIO_DEVCTL_RST_BPRESET 0x10 /* Force no backplane reset */ #define SBSDIO_DEVCTL_RST_NOBPRESET 0x20 /* direct(mapped) cis space */ /* MAPPED common CIS address */ #define SBSDIO_CIS_BASE_COMMON 0x1000 /* maximum bytes in one CIS */ #define SBSDIO_CIS_SIZE_LIMIT 0x200 /* cis offset addr is < 17 bits */ #define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF /* manfid tuple length, include tuple, link bytes */ #define SBSDIO_CIS_MANFID_TUPLE_LEN 6 #define SD_REG(field) \ (offsetof(struct sdpcmd_regs, field)) /* SDIO function 1 register CHIPCLKCSR */ /* Force ALP request to backplane */ #define SBSDIO_FORCE_ALP 0x01 /* Force HT request to backplane */ #define SBSDIO_FORCE_HT 0x02 /* Force ILP request to backplane */ #define SBSDIO_FORCE_ILP 0x04 /* Make ALP ready (power up xtal) */ #define SBSDIO_ALP_AVAIL_REQ 0x08 /* Make HT ready (power up PLL) */ #define SBSDIO_HT_AVAIL_REQ 0x10 /* Squelch clock requests from HW */ #define SBSDIO_FORCE_HW_CLKREQ_OFF 0x20 /* Status: ALP is ready */ #define SBSDIO_ALP_AVAIL 0x40 /* Status: HT is ready */ #define SBSDIO_HT_AVAIL 0x80 #define SBSDIO_CSR_MASK 0x1F #define SBSDIO_AVBITS (SBSDIO_HT_AVAIL | SBSDIO_ALP_AVAIL) #define SBSDIO_ALPAV(regval) ((regval) & SBSDIO_AVBITS) #define SBSDIO_HTAV(regval) (((regval) & SBSDIO_AVBITS) == SBSDIO_AVBITS) #define SBSDIO_ALPONLY(regval) (SBSDIO_ALPAV(regval) && !SBSDIO_HTAV(regval)) #define SBSDIO_CLKAV(regval, alponly) \ (SBSDIO_ALPAV(regval) && (alponly ? 1 : SBSDIO_HTAV(regval))) /* intstatus */ #define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */ #define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */ #define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */ #define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */ #define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */ #define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */ #define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */ #define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */ #define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */ #define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */ #define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */ #define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */ #define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */ #define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */ #define I_PC (1 << 10) /* descriptor error */ #define I_PD (1 << 11) /* data error */ #define I_DE (1 << 12) /* Descriptor protocol Error */ #define I_RU (1 << 13) /* Receive descriptor Underflow */ #define I_RO (1 << 14) /* Receive fifo Overflow */ #define I_XU (1 << 15) /* Transmit fifo Underflow */ #define I_RI (1 << 16) /* Receive Interrupt */ #define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */ #define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */ #define I_XI (1 << 24) /* Transmit Interrupt */ #define I_RF_TERM (1 << 25) /* Read Frame Terminate */ #define I_WF_TERM (1 << 26) /* Write Frame Terminate */ #define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */ #define I_SBINT (1 << 28) /* sbintstatus Interrupt */ #define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */ #define I_SRESET (1 << 30) /* CCCR RES interrupt */ #define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */ #define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU) #define I_DMA (I_RI | I_XI | I_ERRORS) /* corecontrol */ #define CC_CISRDY (1 << 0) /* CIS Ready */ #define CC_BPRESEN (1 << 1) /* CCCR RES signal */ #define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */ #define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */ #define CC_XMTDATAAVAIL_MODE (1 << 4) #define CC_XMTDATAAVAIL_CTRL (1 << 5) /* SDA_FRAMECTRL */ #define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */ #define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */ #define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */ #define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */ /* * Software allocation of To SB Mailbox resources */ /* tosbmailbox bits corresponding to intstatus bits */ #define SMB_NAK (1 << 0) /* Frame NAK */ #define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */ #define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */ #define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */ /* tosbmailboxdata */ #define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */ /* * Software allocation of To Host Mailbox resources */ /* intstatus bits */ #define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */ #define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */ #define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */ #define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */ /* tohostmailboxdata */ #define HMB_DATA_NAKHANDLED 0x0001 /* retransmit NAK'd frame */ #define HMB_DATA_DEVREADY 0x0002 /* talk to host after enable */ #define HMB_DATA_FC 0x0004 /* per prio flowcontrol update flag */ #define HMB_DATA_FWREADY 0x0008 /* fw ready for protocol activity */ #define HMB_DATA_FWHALT 0x0010 /* firmware halted */ #define HMB_DATA_FCDATA_MASK 0xff000000 #define HMB_DATA_FCDATA_SHIFT 24 #define HMB_DATA_VERSION_MASK 0x00ff0000 #define HMB_DATA_VERSION_SHIFT 16 /* * Software-defined protocol header */ /* Current protocol version */ #define SDPCM_PROT_VERSION 4 /* * Shared structure between dongle and the host. * The structure contains pointers to trap or assert information. */ #define SDPCM_SHARED_VERSION 0x0003 #define SDPCM_SHARED_VERSION_MASK 0x00FF #define SDPCM_SHARED_ASSERT_BUILT 0x0100 #define SDPCM_SHARED_ASSERT 0x0200 #define SDPCM_SHARED_TRAP 0x0400 /* Space for header read, limit for data packets */ #define MAX_HDR_READ (1 << 6) #define MAX_RX_DATASZ 2048 /* Bump up limit on waiting for HT to account for first startup; * if the image is doing a CRC calculation before programming the PMU * for HT availability, it could take a couple hundred ms more, so * max out at a 1 second (1000000us). */ #undef PMU_MAX_TRANSITION_DLY #define PMU_MAX_TRANSITION_DLY 1000000 /* Value for ChipClockCSR during initial setup */ #define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \ SBSDIO_ALP_AVAIL_REQ) /* Flags for SDH calls */ #define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED) #define BRCMF_IDLE_ACTIVE 0 /* Do not request any SD clock change * when idle */ #define BRCMF_IDLE_INTERVAL 1 #define KSO_WAIT_US 50 #define MAX_KSO_ATTEMPTS (PMU_MAX_TRANSITION_DLY/KSO_WAIT_US) #define BRCMF_SDIO_MAX_ACCESS_ERRORS 5 /* * Conversion of 802.1D priority to precedence level */ static uint prio2prec(u32 prio) { return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ? (prio^2) : prio; } #ifdef DEBUG /* Device console log buffer state */ struct brcmf_console { uint count; /* Poll interval msec counter */ uint log_addr; /* Log struct address (fixed) */ struct rte_log_le log_le; /* Log struct (host copy) */ uint bufsize; /* Size of log buffer */ u8 *buf; /* Log buffer (host copy) */ uint last; /* Last buffer read index */ }; struct brcmf_trap_info { __le32 type; __le32 epc; __le32 cpsr; __le32 spsr; __le32 r0; /* a1 */ __le32 r1; /* a2 */ __le32 r2; /* a3 */ __le32 r3; /* a4 */ __le32 r4; /* v1 */ __le32 r5; /* v2 */ __le32 r6; /* v3 */ __le32 r7; /* v4 */ __le32 r8; /* v5 */ __le32 r9; /* sb/v6 */ __le32 r10; /* sl/v7 */ __le32 r11; /* fp/v8 */ __le32 r12; /* ip */ __le32 r13; /* sp */ __le32 r14; /* lr */ __le32 pc; /* r15 */ }; #endif /* DEBUG */ struct sdpcm_shared { u32 flags; u32 trap_addr; u32 assert_exp_addr; u32 assert_file_addr; u32 assert_line; u32 console_addr; /* Address of struct rte_console */ u32 msgtrace_addr; u8 tag[32]; u32 brpt_addr; }; struct sdpcm_shared_le { __le32 flags; __le32 trap_addr; __le32 assert_exp_addr; __le32 assert_file_addr; __le32 assert_line; __le32 console_addr; /* Address of struct rte_console */ __le32 msgtrace_addr; u8 tag[32]; __le32 brpt_addr; }; /* dongle SDIO bus specific header info */ struct brcmf_sdio_hdrinfo { u8 seq_num; u8 channel; u16 len; u16 len_left; u16 len_nxtfrm; u8 dat_offset; bool lastfrm; u16 tail_pad; }; /* * hold counter variables */ struct brcmf_sdio_count { uint intrcount; /* Count of device interrupt callbacks */ uint lastintrs; /* Count as of last watchdog timer */ uint pollcnt; /* Count of active polls */ uint regfails; /* Count of R_REG failures */ uint tx_sderrs; /* Count of tx attempts with sd errors */ uint fcqueued; /* Tx packets that got queued */ uint rxrtx; /* Count of rtx requests (NAK to dongle) */ uint rx_toolong; /* Receive frames too long to receive */ uint rxc_errors; /* SDIO errors when reading control frames */ uint rx_hdrfail; /* SDIO errors on header reads */ uint rx_badhdr; /* Bad received headers (roosync?) */ uint rx_badseq; /* Mismatched rx sequence number */ uint fc_rcvd; /* Number of flow-control events received */ uint fc_xoff; /* Number which turned on flow-control */ uint fc_xon; /* Number which turned off flow-control */ uint rxglomfail; /* Failed deglom attempts */ uint rxglomframes; /* Number of glom frames (superframes) */ uint rxglompkts; /* Number of packets from glom frames */ uint f2rxhdrs; /* Number of header reads */ uint f2rxdata; /* Number of frame data reads */ uint f2txdata; /* Number of f2 frame writes */ uint f1regdata; /* Number of f1 register accesses */ uint tickcnt; /* Number of watchdog been schedule */ ulong tx_ctlerrs; /* Err of sending ctrl frames */ ulong tx_ctlpkts; /* Ctrl frames sent to dongle */ ulong rx_ctlerrs; /* Err of processing rx ctrl frames */ ulong rx_ctlpkts; /* Ctrl frames processed from dongle */ ulong rx_readahead_cnt; /* packets where header read-ahead was used */ }; /* misc chip info needed by some of the routines */ /* Private data for SDIO bus interaction */ struct brcmf_sdio { struct brcmf_sdio_dev *sdiodev; /* sdio device handler */ struct brcmf_chip *ci; /* Chip info struct */ struct brcmf_core *sdio_core; /* sdio core info struct */ u32 hostintmask; /* Copy of Host Interrupt Mask */ atomic_t intstatus; /* Intstatus bits (events) pending */ atomic_t fcstate; /* State of dongle flow-control */ uint blocksize; /* Block size of SDIO transfers */ uint roundup; /* Max roundup limit */ struct pktq txq; /* Queue length used for flow-control */ u8 flowcontrol; /* per prio flow control bitmask */ u8 tx_seq; /* Transmit sequence number (next) */ u8 tx_max; /* Maximum transmit sequence allowed */ u8 *hdrbuf; /* buffer for handling rx frame */ u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */ u8 rx_seq; /* Receive sequence number (expected) */ struct brcmf_sdio_hdrinfo cur_read; /* info of current read frame */ bool rxskip; /* Skip receive (awaiting NAK ACK) */ bool rxpending; /* Data frame pending in dongle */ uint rxbound; /* Rx frames to read before resched */ uint txbound; /* Tx frames to send before resched */ uint txminmax; struct sk_buff *glomd; /* Packet containing glomming descriptor */ struct sk_buff_head glom; /* Packet list for glommed superframe */ u8 *rxbuf; /* Buffer for receiving control packets */ uint rxblen; /* Allocated length of rxbuf */ u8 *rxctl; /* Aligned pointer into rxbuf */ u8 *rxctl_orig; /* pointer for freeing rxctl */ uint rxlen; /* Length of valid data in buffer */ spinlock_t rxctl_lock; /* protection lock for ctrl frame resources */ u8 sdpcm_ver; /* Bus protocol reported by dongle */ bool intr; /* Use interrupts */ bool poll; /* Use polling */ atomic_t ipend; /* Device interrupt is pending */ uint spurious; /* Count of spurious interrupts */ uint pollrate; /* Ticks between device polls */ uint polltick; /* Tick counter */ #ifdef DEBUG uint console_interval; struct brcmf_console console; /* Console output polling support */ uint console_addr; /* Console address from shared struct */ #endif /* DEBUG */ uint clkstate; /* State of sd and backplane clock(s) */ s32 idletime; /* Control for activity timeout */ s32 idlecount; /* Activity timeout counter */ s32 idleclock; /* How to set bus driver when idle */ bool rxflow_mode; /* Rx flow control mode */ bool rxflow; /* Is rx flow control on */ bool alp_only; /* Don't use HT clock (ALP only) */ u8 *ctrl_frame_buf; u16 ctrl_frame_len; bool ctrl_frame_stat; int ctrl_frame_err; spinlock_t txq_lock; /* protect bus->txq */ wait_queue_head_t ctrl_wait; wait_queue_head_t dcmd_resp_wait; struct timer_list timer; struct completion watchdog_wait; struct task_struct *watchdog_tsk; bool wd_active; struct workqueue_struct *brcmf_wq; struct work_struct datawork; bool dpc_triggered; bool dpc_running; bool txoff; /* Transmit flow-controlled */ struct brcmf_sdio_count sdcnt; bool sr_enabled; /* SaveRestore enabled */ bool sleeping; u8 tx_hdrlen; /* sdio bus header length for tx packet */ bool txglom; /* host tx glomming enable flag */ u16 head_align; /* buffer pointer alignment */ u16 sgentry_align; /* scatter-gather buffer alignment */ }; /* clkstate */ #define CLK_NONE 0 #define CLK_SDONLY 1 #define CLK_PENDING 2 #define CLK_AVAIL 3 #ifdef DEBUG static int qcount[NUMPRIO]; #endif /* DEBUG */ #define DEFAULT_SDIO_DRIVE_STRENGTH 6 /* in milliamps */ #define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL) /* Limit on rounding up frames */ static const uint max_roundup = 512; #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT #define ALIGNMENT 8 #else #define ALIGNMENT 4 #endif enum brcmf_sdio_frmtype { BRCMF_SDIO_FT_NORMAL, BRCMF_SDIO_FT_SUPER, BRCMF_SDIO_FT_SUB, }; #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu)) /* SDIO Pad drive strength to select value mappings */ struct sdiod_drive_str { u8 strength; /* Pad Drive Strength in mA */ u8 sel; /* Chip-specific select value */ }; /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */ static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = { {32, 0x6}, {26, 0x7}, {22, 0x4}, {16, 0x5}, {12, 0x2}, {8, 0x3}, {4, 0x0}, {0, 0x1} }; /* SDIO Drive Strength to sel value table for PMU Rev 13 (1.8v) */ static const struct sdiod_drive_str sdiod_drive_strength_tab5_1v8[] = { {6, 0x7}, {5, 0x6}, {4, 0x5}, {3, 0x4}, {2, 0x2}, {1, 0x1}, {0, 0x0} }; /* SDIO Drive Strength to sel value table for PMU Rev 17 (1.8v) */ static const struct sdiod_drive_str sdiod_drvstr_tab6_1v8[] = { {3, 0x3}, {2, 0x2}, {1, 0x1}, {0, 0x0} }; /* SDIO Drive Strength to sel value table for 43143 PMU Rev 17 (3.3V) */ static const struct sdiod_drive_str sdiod_drvstr_tab2_3v3[] = { {16, 0x7}, {12, 0x5}, {8, 0x3}, {4, 0x1} }; BRCMF_FW_DEF(43143, "brcmfmac43143-sdio"); BRCMF_FW_DEF(43241B0, "brcmfmac43241b0-sdio"); BRCMF_FW_DEF(43241B4, "brcmfmac43241b4-sdio"); BRCMF_FW_DEF(43241B5, "brcmfmac43241b5-sdio"); BRCMF_FW_DEF(4329, "brcmfmac4329-sdio"); BRCMF_FW_DEF(4330, "brcmfmac4330-sdio"); BRCMF_FW_DEF(4334, "brcmfmac4334-sdio"); BRCMF_FW_DEF(43340, "brcmfmac43340-sdio"); BRCMF_FW_DEF(4335, "brcmfmac4335-sdio"); BRCMF_FW_DEF(43362, "brcmfmac43362-sdio"); BRCMF_FW_DEF(4339, "brcmfmac4339-sdio"); BRCMF_FW_DEF(43430A0, "brcmfmac43430a0-sdio"); /* Note the names are not postfixed with a1 for backward compatibility */ BRCMF_FW_DEF(43430A1, "brcmfmac43430-sdio"); BRCMF_FW_DEF(43455, "brcmfmac43455-sdio"); BRCMF_FW_DEF(4354, "brcmfmac4354-sdio"); BRCMF_FW_DEF(4356, "brcmfmac4356-sdio"); BRCMF_FW_DEF(4373, "brcmfmac4373-sdio"); static struct brcmf_firmware_mapping brcmf_sdio_fwnames[] = { BRCMF_FW_ENTRY(BRCM_CC_43143_CHIP_ID, 0xFFFFFFFF, 43143), BRCMF_FW_ENTRY(BRCM_CC_43241_CHIP_ID, 0x0000001F, 43241B0), BRCMF_FW_ENTRY(BRCM_CC_43241_CHIP_ID, 0x00000020, 43241B4), BRCMF_FW_ENTRY(BRCM_CC_43241_CHIP_ID, 0xFFFFFFC0, 43241B5), BRCMF_FW_ENTRY(BRCM_CC_4329_CHIP_ID, 0xFFFFFFFF, 4329), BRCMF_FW_ENTRY(BRCM_CC_4330_CHIP_ID, 0xFFFFFFFF, 4330), BRCMF_FW_ENTRY(BRCM_CC_4334_CHIP_ID, 0xFFFFFFFF, 4334), BRCMF_FW_ENTRY(BRCM_CC_43340_CHIP_ID, 0xFFFFFFFF, 43340), BRCMF_FW_ENTRY(BRCM_CC_43341_CHIP_ID, 0xFFFFFFFF, 43340), BRCMF_FW_ENTRY(BRCM_CC_4335_CHIP_ID, 0xFFFFFFFF, 4335), BRCMF_FW_ENTRY(BRCM_CC_43362_CHIP_ID, 0xFFFFFFFE, 43362), BRCMF_FW_ENTRY(BRCM_CC_4339_CHIP_ID, 0xFFFFFFFF, 4339), BRCMF_FW_ENTRY(BRCM_CC_43430_CHIP_ID, 0x00000001, 43430A0), BRCMF_FW_ENTRY(BRCM_CC_43430_CHIP_ID, 0xFFFFFFFE, 43430A1), BRCMF_FW_ENTRY(BRCM_CC_4345_CHIP_ID, 0xFFFFFFC0, 43455), BRCMF_FW_ENTRY(BRCM_CC_4354_CHIP_ID, 0xFFFFFFFF, 4354), BRCMF_FW_ENTRY(BRCM_CC_4356_CHIP_ID, 0xFFFFFFFF, 4356), BRCMF_FW_ENTRY(CY_CC_4373_CHIP_ID, 0xFFFFFFFF, 4373) }; static void pkt_align(struct sk_buff *p, int len, int align) { uint datalign; datalign = (unsigned long)(p->data); datalign = roundup(datalign, (align)) - datalign; if (datalign) skb_pull(p, datalign); __skb_trim(p, len); } /* To check if there's window offered */ static bool data_ok(struct brcmf_sdio *bus) { return (u8)(bus->tx_max - bus->tx_seq) != 0 && ((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0; } static int brcmf_sdio_kso_control(struct brcmf_sdio *bus, bool on) { u8 wr_val = 0, rd_val, cmp_val, bmask; int err = 0; int err_cnt = 0; int try_cnt = 0; brcmf_dbg(TRACE, "Enter: on=%d\n", on); wr_val = (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); /* 1st KSO write goes to AOS wake up core if device is asleep */ brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); if (on) { /* device WAKEUP through KSO: * write bit 0 & read back until * both bits 0 (kso bit) & 1 (dev on status) are set */ cmp_val = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK | SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK; bmask = cmp_val; usleep_range(2000, 3000); } else { /* Put device to sleep, turn off KSO */ cmp_val = 0; /* only check for bit0, bit1(dev on status) may not * get cleared right away */ bmask = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK; } do { /* reliable KSO bit set/clr: * the sdiod sleep write access is synced to PMU 32khz clk * just one write attempt may fail, * read it back until it matches written value */ rd_val = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, &err); if (!err) { if ((rd_val & bmask) == cmp_val) break; err_cnt = 0; } /* bail out upon subsequent access errors */ if (err && (err_cnt++ > BRCMF_SDIO_MAX_ACCESS_ERRORS)) break; udelay(KSO_WAIT_US); brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err); } while (try_cnt++ < MAX_KSO_ATTEMPTS); if (try_cnt > 2) brcmf_dbg(SDIO, "try_cnt=%d rd_val=0x%x err=%d\n", try_cnt, rd_val, err); if (try_cnt > MAX_KSO_ATTEMPTS) brcmf_err("max tries: rd_val=0x%x err=%d\n", rd_val, err); return err; } #define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE) /* Turn backplane clock on or off */ static int brcmf_sdio_htclk(struct brcmf_sdio *bus, bool on, bool pendok) { int err; u8 clkctl, clkreq, devctl; unsigned long timeout; brcmf_dbg(SDIO, "Enter\n"); clkctl = 0; if (bus->sr_enabled) { bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY); return 0; } if (on) { /* Request HT Avail */ clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); if (err) { brcmf_err("HT Avail request error: %d\n", err); return -EBADE; } /* Check current status */ clkctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { brcmf_err("HT Avail read error: %d\n", err); return -EBADE; } /* Go to pending and await interrupt if appropriate */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) { /* Allow only clock-available interrupt */ devctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_err("Devctl error setting CA: %d\n", err); return -EBADE; } devctl |= SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); brcmf_dbg(SDIO, "CLKCTL: set PENDING\n"); bus->clkstate = CLK_PENDING; return 0; } else if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); } /* Otherwise, wait here (polling) for HT Avail */ timeout = jiffies + msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000); while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { clkctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (time_after(jiffies, timeout)) break; else usleep_range(5000, 10000); } if (err) { brcmf_err("HT Avail request error: %d\n", err); return -EBADE; } if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { brcmf_err("HT Avail timeout (%d): clkctl 0x%02x\n", PMU_MAX_TRANSITION_DLY, clkctl); return -EBADE; } /* Mark clock available */ bus->clkstate = CLK_AVAIL; brcmf_dbg(SDIO, "CLKCTL: turned ON\n"); #if defined(DEBUG) if (!bus->alp_only) { if (SBSDIO_ALPONLY(clkctl)) brcmf_err("HT Clock should be on\n"); } #endif /* defined (DEBUG) */ } else { clkreq = 0; if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); } bus->clkstate = CLK_SDONLY; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); brcmf_dbg(SDIO, "CLKCTL: turned OFF\n"); if (err) { brcmf_err("Failed access turning clock off: %d\n", err); return -EBADE; } } return 0; } /* Change idle/active SD state */ static int brcmf_sdio_sdclk(struct brcmf_sdio *bus, bool on) { brcmf_dbg(SDIO, "Enter\n"); if (on) bus->clkstate = CLK_SDONLY; else bus->clkstate = CLK_NONE; return 0; } /* Transition SD and backplane clock readiness */ static int brcmf_sdio_clkctl(struct brcmf_sdio *bus, uint target, bool pendok) { #ifdef DEBUG uint oldstate = bus->clkstate; #endif /* DEBUG */ brcmf_dbg(SDIO, "Enter\n"); /* Early exit if we're already there */ if (bus->clkstate == target) return 0; switch (target) { case CLK_AVAIL: /* Make sure SD clock is available */ if (bus->clkstate == CLK_NONE) brcmf_sdio_sdclk(bus, true); /* Now request HT Avail on the backplane */ brcmf_sdio_htclk(bus, true, pendok); break; case CLK_SDONLY: /* Remove HT request, or bring up SD clock */ if (bus->clkstate == CLK_NONE) brcmf_sdio_sdclk(bus, true); else if (bus->clkstate == CLK_AVAIL) brcmf_sdio_htclk(bus, false, false); else brcmf_err("request for %d -> %d\n", bus->clkstate, target); break; case CLK_NONE: /* Make sure to remove HT request */ if (bus->clkstate == CLK_AVAIL) brcmf_sdio_htclk(bus, false, false); /* Now remove the SD clock */ brcmf_sdio_sdclk(bus, false); break; } #ifdef DEBUG brcmf_dbg(SDIO, "%d -> %d\n", oldstate, bus->clkstate); #endif /* DEBUG */ return 0; } static int brcmf_sdio_bus_sleep(struct brcmf_sdio *bus, bool sleep, bool pendok) { int err = 0; u8 clkcsr; brcmf_dbg(SDIO, "Enter: request %s currently %s\n", (sleep ? "SLEEP" : "WAKE"), (bus->sleeping ? "SLEEP" : "WAKE")); /* If SR is enabled control bus state with KSO */ if (bus->sr_enabled) { /* Done if we're already in the requested state */ if (sleep == bus->sleeping) goto end; /* Going to sleep */ if (sleep) { clkcsr = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if ((clkcsr & SBSDIO_CSR_MASK) == 0) { brcmf_dbg(SDIO, "no clock, set ALP\n"); brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_ALP_AVAIL_REQ, &err); } err = brcmf_sdio_kso_control(bus, false); } else { err = brcmf_sdio_kso_control(bus, true); } if (err) { brcmf_err("error while changing bus sleep state %d\n", err); goto done; } } end: /* control clocks */ if (sleep) { if (!bus->sr_enabled) brcmf_sdio_clkctl(bus, CLK_NONE, pendok); } else { brcmf_sdio_clkctl(bus, CLK_AVAIL, pendok); brcmf_sdio_wd_timer(bus, true); } bus->sleeping = sleep; brcmf_dbg(SDIO, "new state %s\n", (sleep ? "SLEEP" : "WAKE")); done: brcmf_dbg(SDIO, "Exit: err=%d\n", err); return err; } #ifdef DEBUG static inline bool brcmf_sdio_valid_shared_address(u32 addr) { return !(addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff)); } static int brcmf_sdio_readshared(struct brcmf_sdio *bus, struct sdpcm_shared *sh) { u32 addr = 0; int rv; u32 shaddr = 0; struct sdpcm_shared_le sh_le; __le32 addr_le; sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_bus_sleep(bus, false, false); /* * Read last word in socram to determine * address of sdpcm_shared structure */ shaddr = bus->ci->rambase + bus->ci->ramsize - 4; if (!bus->ci->rambase && brcmf_chip_sr_capable(bus->ci)) shaddr -= bus->ci->srsize; rv = brcmf_sdiod_ramrw(bus->sdiodev, false, shaddr, (u8 *)&addr_le, 4); if (rv < 0) goto fail; /* * Check if addr is valid. * NVRAM length at the end of memory should have been overwritten. */ addr = le32_to_cpu(addr_le); if (!brcmf_sdio_valid_shared_address(addr)) { brcmf_err("invalid sdpcm_shared address 0x%08X\n", addr); rv = -EINVAL; goto fail; } brcmf_dbg(INFO, "sdpcm_shared address 0x%08X\n", addr); /* Read hndrte_shared structure */ rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_le, sizeof(struct sdpcm_shared_le)); if (rv < 0) goto fail; sdio_release_host(bus->sdiodev->func1); /* Endianness */ sh->flags = le32_to_cpu(sh_le.flags); sh->trap_addr = le32_to_cpu(sh_le.trap_addr); sh->assert_exp_addr = le32_to_cpu(sh_le.assert_exp_addr); sh->assert_file_addr = le32_to_cpu(sh_le.assert_file_addr); sh->assert_line = le32_to_cpu(sh_le.assert_line); sh->console_addr = le32_to_cpu(sh_le.console_addr); sh->msgtrace_addr = le32_to_cpu(sh_le.msgtrace_addr); if ((sh->flags & SDPCM_SHARED_VERSION_MASK) > SDPCM_SHARED_VERSION) { brcmf_err("sdpcm shared version unsupported: dhd %d dongle %d\n", SDPCM_SHARED_VERSION, sh->flags & SDPCM_SHARED_VERSION_MASK); return -EPROTO; } return 0; fail: brcmf_err("unable to obtain sdpcm_shared info: rv=%d (addr=0x%x)\n", rv, addr); sdio_release_host(bus->sdiodev->func1); return rv; } static void brcmf_sdio_get_console_addr(struct brcmf_sdio *bus) { struct sdpcm_shared sh; if (brcmf_sdio_readshared(bus, &sh) == 0) bus->console_addr = sh.console_addr; } #else static void brcmf_sdio_get_console_addr(struct brcmf_sdio *bus) { } #endif /* DEBUG */ static u32 brcmf_sdio_hostmail(struct brcmf_sdio *bus) { struct brcmf_sdio_dev *sdiod = bus->sdiodev; struct brcmf_core *core = bus->sdio_core; u32 intstatus = 0; u32 hmb_data; u8 fcbits; int ret; brcmf_dbg(SDIO, "Enter\n"); /* Read mailbox data and ack that we did so */ hmb_data = brcmf_sdiod_readl(sdiod, core->base + SD_REG(tohostmailboxdata), &ret); if (!ret) brcmf_sdiod_writel(sdiod, core->base + SD_REG(tosbmailbox), SMB_INT_ACK, &ret); bus->sdcnt.f1regdata += 2; /* dongle indicates the firmware has halted/crashed */ if (hmb_data & HMB_DATA_FWHALT) brcmf_err("mailbox indicates firmware halted\n"); /* Dongle recomposed rx frames, accept them again */ if (hmb_data & HMB_DATA_NAKHANDLED) { brcmf_dbg(SDIO, "Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq); if (!bus->rxskip) brcmf_err("unexpected NAKHANDLED!\n"); bus->rxskip = false; intstatus |= I_HMB_FRAME_IND; } /* * DEVREADY does not occur with gSPI. */ if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) { bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT; if (bus->sdpcm_ver != SDPCM_PROT_VERSION) brcmf_err("Version mismatch, dongle reports %d, " "expecting %d\n", bus->sdpcm_ver, SDPCM_PROT_VERSION); else brcmf_dbg(SDIO, "Dongle ready, protocol version %d\n", bus->sdpcm_ver); /* * Retrieve console state address now that firmware should have * updated it. */ brcmf_sdio_get_console_addr(bus); } /* * Flow Control has been moved into the RX headers and this out of band * method isn't used any more. * remaining backward compatible with older dongles. */ if (hmb_data & HMB_DATA_FC) { fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT; if (fcbits & ~bus->flowcontrol) bus->sdcnt.fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->sdcnt.fc_xon++; bus->sdcnt.fc_rcvd++; bus->flowcontrol = fcbits; } /* Shouldn't be any others */ if (hmb_data & ~(HMB_DATA_DEVREADY | HMB_DATA_NAKHANDLED | HMB_DATA_FC | HMB_DATA_FWREADY | HMB_DATA_FWHALT | HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK)) brcmf_err("Unknown mailbox data content: 0x%02x\n", hmb_data); return intstatus; } static void brcmf_sdio_rxfail(struct brcmf_sdio *bus, bool abort, bool rtx) { struct brcmf_sdio_dev *sdiod = bus->sdiodev; struct brcmf_core *core = bus->sdio_core; uint retries = 0; u16 lastrbc; u8 hi, lo; int err; brcmf_err("%sterminate frame%s\n", abort ? "abort command, " : "", rtx ? ", send NAK" : ""); if (abort) brcmf_sdiod_abort(bus->sdiodev, bus->sdiodev->func2); brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err); bus->sdcnt.f1regdata++; /* Wait until the packet has been flushed (device/FIFO stable) */ for (lastrbc = retries = 0xffff; retries > 0; retries--) { hi = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_RFRAMEBCHI, &err); lo = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_RFRAMEBCLO, &err); bus->sdcnt.f1regdata += 2; if ((hi == 0) && (lo == 0)) break; if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) { brcmf_err("count growing: last 0x%04x now 0x%04x\n", lastrbc, (hi << 8) + lo); } lastrbc = (hi << 8) + lo; } if (!retries) brcmf_err("count never zeroed: last 0x%04x\n", lastrbc); else brcmf_dbg(SDIO, "flush took %d iterations\n", 0xffff - retries); if (rtx) { bus->sdcnt.rxrtx++; brcmf_sdiod_writel(sdiod, core->base + SD_REG(tosbmailbox), SMB_NAK, &err); bus->sdcnt.f1regdata++; if (err == 0) bus->rxskip = true; } /* Clear partial in any case */ bus->cur_read.len = 0; } static void brcmf_sdio_txfail(struct brcmf_sdio *bus) { struct brcmf_sdio_dev *sdiodev = bus->sdiodev; u8 i, hi, lo; /* On failure, abort the command and terminate the frame */ brcmf_err("sdio error, abort command and terminate frame\n"); bus->sdcnt.tx_sderrs++; brcmf_sdiod_abort(sdiodev, sdiodev->func2); brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->sdcnt.f1regdata++; for (i = 0; i < 3; i++) { hi = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->sdcnt.f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } /* return total length of buffer chain */ static uint brcmf_sdio_glom_len(struct brcmf_sdio *bus) { struct sk_buff *p; uint total; total = 0; skb_queue_walk(&bus->glom, p) total += p->len; return total; } static void brcmf_sdio_free_glom(struct brcmf_sdio *bus) { struct sk_buff *cur, *next; skb_queue_walk_safe(&bus->glom, cur, next) { skb_unlink(cur, &bus->glom); brcmu_pkt_buf_free_skb(cur); } } /** * brcmfmac sdio bus specific header * This is the lowest layer header wrapped on the packets transmitted between * host and WiFi dongle which contains information needed for SDIO core and * firmware * * It consists of 3 parts: hardware header, hardware extension header and * software header * hardware header (frame tag) - 4 bytes * Byte 0~1: Frame length * Byte 2~3: Checksum, bit-wise inverse of frame length * hardware extension header - 8 bytes * Tx glom mode only, N/A for Rx or normal Tx * Byte 0~1: Packet length excluding hw frame tag * Byte 2: Reserved * Byte 3: Frame flags, bit 0: last frame indication * Byte 4~5: Reserved * Byte 6~7: Tail padding length * software header - 8 bytes * Byte 0: Rx/Tx sequence number * Byte 1: 4 MSB Channel number, 4 LSB arbitrary flag * Byte 2: Length of next data frame, reserved for Tx * Byte 3: Data offset * Byte 4: Flow control bits, reserved for Tx * Byte 5: Maximum Sequence number allowed by firmware for Tx, N/A for Tx packet * Byte 6~7: Reserved */ #define SDPCM_HWHDR_LEN 4 #define SDPCM_HWEXT_LEN 8 #define SDPCM_SWHDR_LEN 8 #define SDPCM_HDRLEN (SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN) /* software header */ #define SDPCM_SEQ_MASK 0x000000ff #define SDPCM_SEQ_WRAP 256 #define SDPCM_CHANNEL_MASK 0x00000f00 #define SDPCM_CHANNEL_SHIFT 8 #define SDPCM_CONTROL_CHANNEL 0 /* Control */ #define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication */ #define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv */ #define SDPCM_GLOM_CHANNEL 3 /* Coalesced packets */ #define SDPCM_TEST_CHANNEL 15 /* Test/debug packets */ #define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80) #define SDPCM_NEXTLEN_MASK 0x00ff0000 #define SDPCM_NEXTLEN_SHIFT 16 #define SDPCM_DOFFSET_MASK 0xff000000 #define SDPCM_DOFFSET_SHIFT 24 #define SDPCM_FCMASK_MASK 0x000000ff #define SDPCM_WINDOW_MASK 0x0000ff00 #define SDPCM_WINDOW_SHIFT 8 static inline u8 brcmf_sdio_getdatoffset(u8 *swheader) { u32 hdrvalue; hdrvalue = *(u32 *)swheader; return (u8)((hdrvalue & SDPCM_DOFFSET_MASK) >> SDPCM_DOFFSET_SHIFT); } static inline bool brcmf_sdio_fromevntchan(u8 *swheader) { u32 hdrvalue; u8 ret; hdrvalue = *(u32 *)swheader; ret = (u8)((hdrvalue & SDPCM_CHANNEL_MASK) >> SDPCM_CHANNEL_SHIFT); return (ret == SDPCM_EVENT_CHANNEL); } static int brcmf_sdio_hdparse(struct brcmf_sdio *bus, u8 *header, struct brcmf_sdio_hdrinfo *rd, enum brcmf_sdio_frmtype type) { u16 len, checksum; u8 rx_seq, fc, tx_seq_max; u32 swheader; trace_brcmf_sdpcm_hdr(SDPCM_RX, header); /* hw header */ len = get_unaligned_le16(header); checksum = get_unaligned_le16(header + sizeof(u16)); /* All zero means no more to read */ if (!(len | checksum)) { bus->rxpending = false; return -ENODATA; } if ((u16)(~(len ^ checksum))) { brcmf_err("HW header checksum error\n"); bus->sdcnt.rx_badhdr++; brcmf_sdio_rxfail(bus, false, false); return -EIO; } if (len < SDPCM_HDRLEN) { brcmf_err("HW header length error\n"); return -EPROTO; } if (type == BRCMF_SDIO_FT_SUPER && (roundup(len, bus->blocksize) != rd->len)) { brcmf_err("HW superframe header length error\n"); return -EPROTO; } if (type == BRCMF_SDIO_FT_SUB && len > rd->len) { brcmf_err("HW subframe header length error\n"); return -EPROTO; } rd->len = len; /* software header */ header += SDPCM_HWHDR_LEN; swheader = le32_to_cpu(*(__le32 *)header); if (type == BRCMF_SDIO_FT_SUPER && SDPCM_GLOMDESC(header)) { brcmf_err("Glom descriptor found in superframe head\n"); rd->len = 0; return -EINVAL; } rx_seq = (u8)(swheader & SDPCM_SEQ_MASK); rd->channel = (swheader & SDPCM_CHANNEL_MASK) >> SDPCM_CHANNEL_SHIFT; if (len > MAX_RX_DATASZ && rd->channel != SDPCM_CONTROL_CHANNEL && type != BRCMF_SDIO_FT_SUPER) { brcmf_err("HW header length too long\n"); bus->sdcnt.rx_toolong++; brcmf_sdio_rxfail(bus, false, false); rd->len = 0; return -EPROTO; } if (type == BRCMF_SDIO_FT_SUPER && rd->channel != SDPCM_GLOM_CHANNEL) { brcmf_err("Wrong channel for superframe\n"); rd->len = 0; return -EINVAL; } if (type == BRCMF_SDIO_FT_SUB && rd->channel != SDPCM_DATA_CHANNEL && rd->channel != SDPCM_EVENT_CHANNEL) { brcmf_err("Wrong channel for subframe\n"); rd->len = 0; return -EINVAL; } rd->dat_offset = brcmf_sdio_getdatoffset(header); if (rd->dat_offset < SDPCM_HDRLEN || rd->dat_offset > rd->len) { brcmf_err("seq %d: bad data offset\n", rx_seq); bus->sdcnt.rx_badhdr++; brcmf_sdio_rxfail(bus, false, false); rd->len = 0; return -ENXIO; } if (rd->seq_num != rx_seq) { brcmf_dbg(SDIO, "seq %d, expected %d\n", rx_seq, rd->seq_num); bus->sdcnt.rx_badseq++; rd->seq_num = rx_seq; } /* no need to check the reset for subframe */ if (type == BRCMF_SDIO_FT_SUB) return 0; rd->len_nxtfrm = (swheader & SDPCM_NEXTLEN_MASK) >> SDPCM_NEXTLEN_SHIFT; if (rd->len_nxtfrm << 4 > MAX_RX_DATASZ) { /* only warm for NON glom packet */ if (rd->channel != SDPCM_GLOM_CHANNEL) brcmf_err("seq %d: next length error\n", rx_seq); rd->len_nxtfrm = 0; } swheader = le32_to_cpu(*(__le32 *)(header + 4)); fc = swheader & SDPCM_FCMASK_MASK; if (bus->flowcontrol != fc) { if (~bus->flowcontrol & fc) bus->sdcnt.fc_xoff++; if (bus->flowcontrol & ~fc) bus->sdcnt.fc_xon++; bus->sdcnt.fc_rcvd++; bus->flowcontrol = fc; } tx_seq_max = (swheader & SDPCM_WINDOW_MASK) >> SDPCM_WINDOW_SHIFT; if ((u8)(tx_seq_max - bus->tx_seq) > 0x40) { brcmf_err("seq %d: max tx seq number error\n", rx_seq); tx_seq_max = bus->tx_seq + 2; } bus->tx_max = tx_seq_max; return 0; } static inline void brcmf_sdio_update_hwhdr(u8 *header, u16 frm_length) { *(__le16 *)header = cpu_to_le16(frm_length); *(((__le16 *)header) + 1) = cpu_to_le16(~frm_length); } static void brcmf_sdio_hdpack(struct brcmf_sdio *bus, u8 *header, struct brcmf_sdio_hdrinfo *hd_info) { u32 hdrval; u8 hdr_offset; brcmf_sdio_update_hwhdr(header, hd_info->len); hdr_offset = SDPCM_HWHDR_LEN; if (bus->txglom) { hdrval = (hd_info->len - hdr_offset) | (hd_info->lastfrm << 24); *((__le32 *)(header + hdr_offset)) = cpu_to_le32(hdrval); hdrval = (u16)hd_info->tail_pad << 16; *(((__le32 *)(header + hdr_offset)) + 1) = cpu_to_le32(hdrval); hdr_offset += SDPCM_HWEXT_LEN; } hdrval = hd_info->seq_num; hdrval |= (hd_info->channel << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK; hdrval |= (hd_info->dat_offset << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK; *((__le32 *)(header + hdr_offset)) = cpu_to_le32(hdrval); *(((__le32 *)(header + hdr_offset)) + 1) = 0; trace_brcmf_sdpcm_hdr(SDPCM_TX + !!(bus->txglom), header); } static u8 brcmf_sdio_rxglom(struct brcmf_sdio *bus, u8 rxseq) { u16 dlen, totlen; u8 *dptr, num = 0; u16 sublen; struct sk_buff *pfirst, *pnext; int errcode; u8 doff, sfdoff; struct brcmf_sdio_hdrinfo rd_new; /* If packets, issue read(s) and send up packet chain */ /* Return sequence numbers consumed? */ brcmf_dbg(SDIO, "start: glomd %p glom %p\n", bus->glomd, skb_peek(&bus->glom)); /* If there's a descriptor, generate the packet chain */ if (bus->glomd) { pfirst = pnext = NULL; dlen = (u16) (bus->glomd->len); dptr = bus->glomd->data; if (!dlen || (dlen & 1)) { brcmf_err("bad glomd len(%d), ignore descriptor\n", dlen); dlen = 0; } for (totlen = num = 0; dlen; num++) { /* Get (and move past) next length */ sublen = get_unaligned_le16(dptr); dlen -= sizeof(u16); dptr += sizeof(u16); if ((sublen < SDPCM_HDRLEN) || ((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) { brcmf_err("descriptor len %d bad: %d\n", num, sublen); pnext = NULL; break; } if (sublen % bus->sgentry_align) { brcmf_err("sublen %d not multiple of %d\n", sublen, bus->sgentry_align); } totlen += sublen; /* For last frame, adjust read len so total is a block multiple */ if (!dlen) { sublen += (roundup(totlen, bus->blocksize) - totlen); totlen = roundup(totlen, bus->blocksize); } /* Allocate/chain packet for next subframe */ pnext = brcmu_pkt_buf_get_skb(sublen + bus->sgentry_align); if (pnext == NULL) { brcmf_err("bcm_pkt_buf_get_skb failed, num %d len %d\n", num, sublen); break; } skb_queue_tail(&bus->glom, pnext); /* Adhere to start alignment requirements */ pkt_align(pnext, sublen, bus->sgentry_align); } /* If all allocations succeeded, save packet chain in bus structure */ if (pnext) { brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n", totlen, num); if (BRCMF_GLOM_ON() && bus->cur_read.len && totlen != bus->cur_read.len) { brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n", bus->cur_read.len, totlen, rxseq); } pfirst = pnext = NULL; } else { brcmf_sdio_free_glom(bus); num = 0; } /* Done with descriptor packet */ brcmu_pkt_buf_free_skb(bus->glomd); bus->glomd = NULL; bus->cur_read.len = 0; } /* Ok -- either we just generated a packet chain, or had one from before */ if (!skb_queue_empty(&bus->glom)) { if (BRCMF_GLOM_ON()) { brcmf_dbg(GLOM, "try superframe read, packet chain:\n"); skb_queue_walk(&bus->glom, pnext) { brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n", pnext, (u8 *) (pnext->data), pnext->len, pnext->len); } } pfirst = skb_peek(&bus->glom); dlen = (u16) brcmf_sdio_glom_len(bus); /* Do an SDIO read for the superframe. Configurable iovar to * read directly into the chained packet, or allocate a large * packet and and copy into the chain. */ sdio_claim_host(bus->sdiodev->func1); errcode = brcmf_sdiod_recv_chain(bus->sdiodev, &bus->glom, dlen); sdio_release_host(bus->sdiodev->func1); bus->sdcnt.f2rxdata++; /* On failure, kill the superframe */ if (errcode < 0) { brcmf_err("glom read of %d bytes failed: %d\n", dlen, errcode); sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_rxfail(bus, true, false); bus->sdcnt.rxglomfail++; brcmf_sdio_free_glom(bus); sdio_release_host(bus->sdiodev->func1); return 0; } brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pfirst->data, min_t(int, pfirst->len, 48), "SUPERFRAME:\n"); rd_new.seq_num = rxseq; rd_new.len = dlen; sdio_claim_host(bus->sdiodev->func1); errcode = brcmf_sdio_hdparse(bus, pfirst->data, &rd_new, BRCMF_SDIO_FT_SUPER); sdio_release_host(bus->sdiodev->func1); bus->cur_read.len = rd_new.len_nxtfrm << 4; /* Remove superframe header, remember offset */ skb_pull(pfirst, rd_new.dat_offset); sfdoff = rd_new.dat_offset; num = 0; /* Validate all the subframe headers */ skb_queue_walk(&bus->glom, pnext) { /* leave when invalid subframe is found */ if (errcode) break; rd_new.len = pnext->len; rd_new.seq_num = rxseq++; sdio_claim_host(bus->sdiodev->func1); errcode = brcmf_sdio_hdparse(bus, pnext->data, &rd_new, BRCMF_SDIO_FT_SUB); sdio_release_host(bus->sdiodev->func1); brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pnext->data, 32, "subframe:\n"); num++; } if (errcode) { /* Terminate frame on error */ sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_rxfail(bus, true, false); bus->sdcnt.rxglomfail++; brcmf_sdio_free_glom(bus); sdio_release_host(bus->sdiodev->func1); bus->cur_read.len = 0; return 0; } /* Basic SD framing looks ok - process each packet (header) */ skb_queue_walk_safe(&bus->glom, pfirst, pnext) { dptr = (u8 *) (pfirst->data); sublen = get_unaligned_le16(dptr); doff = brcmf_sdio_getdatoffset(&dptr[SDPCM_HWHDR_LEN]); brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(), dptr, pfirst->len, "Rx Subframe Data:\n"); __skb_trim(pfirst, sublen); skb_pull(pfirst, doff); if (pfirst->len == 0) { skb_unlink(pfirst, &bus->glom); brcmu_pkt_buf_free_skb(pfirst); continue; } brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pfirst->data, min_t(int, pfirst->len, 32), "subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n", bus->glom.qlen, pfirst, pfirst->data, pfirst->len, pfirst->next, pfirst->prev); skb_unlink(pfirst, &bus->glom); if (brcmf_sdio_fromevntchan(&dptr[SDPCM_HWHDR_LEN])) brcmf_rx_event(bus->sdiodev->dev, pfirst); else brcmf_rx_frame(bus->sdiodev->dev, pfirst, false); bus->sdcnt.rxglompkts++; } bus->sdcnt.rxglomframes++; } return num; } static int brcmf_sdio_dcmd_resp_wait(struct brcmf_sdio *bus, uint *condition, bool *pending) { DECLARE_WAITQUEUE(wait, current); int timeout = DCMD_RESP_TIMEOUT; /* Wait until control frame is available */ add_wait_queue(&bus->dcmd_resp_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); while (!(*condition) && (!signal_pending(current) && timeout)) timeout = schedule_timeout(timeout); if (signal_pending(current)) *pending = true; set_current_state(TASK_RUNNING); remove_wait_queue(&bus->dcmd_resp_wait, &wait); return timeout; } static int brcmf_sdio_dcmd_resp_wake(struct brcmf_sdio *bus) { wake_up_interruptible(&bus->dcmd_resp_wait); return 0; } static void brcmf_sdio_read_control(struct brcmf_sdio *bus, u8 *hdr, uint len, uint doff) { uint rdlen, pad; u8 *buf = NULL, *rbuf; int sdret; brcmf_dbg(SDIO, "Enter\n"); if (bus->rxblen) buf = vzalloc(bus->rxblen); if (!buf) goto done; rbuf = bus->rxbuf; pad = ((unsigned long)rbuf % bus->head_align); if (pad) rbuf += (bus->head_align - pad); /* Copy the already-read portion over */ memcpy(buf, hdr, BRCMF_FIRSTREAD); if (len <= BRCMF_FIRSTREAD) goto gotpkt; /* Raise rdlen to next SDIO block to avoid tail command */ rdlen = len - BRCMF_FIRSTREAD; if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((len + pad) < bus->sdiodev->bus_if->maxctl)) rdlen += pad; } else if (rdlen % bus->head_align) { rdlen += bus->head_align - (rdlen % bus->head_align); } /* Drop if the read is too big or it exceeds our maximum */ if ((rdlen + BRCMF_FIRSTREAD) > bus->sdiodev->bus_if->maxctl) { brcmf_err("%d-byte control read exceeds %d-byte buffer\n", rdlen, bus->sdiodev->bus_if->maxctl); brcmf_sdio_rxfail(bus, false, false); goto done; } if ((len - doff) > bus->sdiodev->bus_if->maxctl) { brcmf_err("%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n", len, len - doff, bus->sdiodev->bus_if->maxctl); bus->sdcnt.rx_toolong++; brcmf_sdio_rxfail(bus, false, false); goto done; } /* Read remain of frame body */ sdret = brcmf_sdiod_recv_buf(bus->sdiodev, rbuf, rdlen); bus->sdcnt.f2rxdata++; /* Control frame failures need retransmission */ if (sdret < 0) { brcmf_err("read %d control bytes failed: %d\n", rdlen, sdret); bus->sdcnt.rxc_errors++; brcmf_sdio_rxfail(bus, true, true); goto done; } else memcpy(buf + BRCMF_FIRSTREAD, rbuf, rdlen); gotpkt: brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(), buf, len, "RxCtrl:\n"); /* Point to valid data and indicate its length */ spin_lock_bh(&bus->rxctl_lock); if (bus->rxctl) { brcmf_err("last control frame is being processed.\n"); spin_unlock_bh(&bus->rxctl_lock); vfree(buf); goto done; } bus->rxctl = buf + doff; bus->rxctl_orig = buf; bus->rxlen = len - doff; spin_unlock_bh(&bus->rxctl_lock); done: /* Awake any waiters */ brcmf_sdio_dcmd_resp_wake(bus); } /* Pad read to blocksize for efficiency */ static void brcmf_sdio_pad(struct brcmf_sdio *bus, u16 *pad, u16 *rdlen) { if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) { *pad = bus->blocksize - (*rdlen % bus->blocksize); if (*pad <= bus->roundup && *pad < bus->blocksize && *rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ) *rdlen += *pad; } else if (*rdlen % bus->head_align) { *rdlen += bus->head_align - (*rdlen % bus->head_align); } } static uint brcmf_sdio_readframes(struct brcmf_sdio *bus, uint maxframes) { struct sk_buff *pkt; /* Packet for event or data frames */ u16 pad; /* Number of pad bytes to read */ uint rxleft = 0; /* Remaining number of frames allowed */ int ret; /* Return code from calls */ uint rxcount = 0; /* Total frames read */ struct brcmf_sdio_hdrinfo *rd = &bus->cur_read, rd_new; u8 head_read = 0; brcmf_dbg(SDIO, "Enter\n"); /* Not finished unless we encounter no more frames indication */ bus->rxpending = true; for (rd->seq_num = bus->rx_seq, rxleft = maxframes; !bus->rxskip && rxleft && bus->sdiodev->state == BRCMF_SDIOD_DATA; rd->seq_num++, rxleft--) { /* Handle glomming separately */ if (bus->glomd || !skb_queue_empty(&bus->glom)) { u8 cnt; brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n", bus->glomd, skb_peek(&bus->glom)); cnt = brcmf_sdio_rxglom(bus, rd->seq_num); brcmf_dbg(GLOM, "rxglom returned %d\n", cnt); rd->seq_num += cnt - 1; rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1; continue; } rd->len_left = rd->len; /* read header first for unknow frame length */ sdio_claim_host(bus->sdiodev->func1); if (!rd->len) { ret = brcmf_sdiod_recv_buf(bus->sdiodev, bus->rxhdr, BRCMF_FIRSTREAD); bus->sdcnt.f2rxhdrs++; if (ret < 0) { brcmf_err("RXHEADER FAILED: %d\n", ret); bus->sdcnt.rx_hdrfail++; brcmf_sdio_rxfail(bus, true, true); sdio_release_host(bus->sdiodev->func1); continue; } brcmf_dbg_hex_dump(BRCMF_BYTES_ON() || BRCMF_HDRS_ON(), bus->rxhdr, SDPCM_HDRLEN, "RxHdr:\n"); if (brcmf_sdio_hdparse(bus, bus->rxhdr, rd, BRCMF_SDIO_FT_NORMAL)) { sdio_release_host(bus->sdiodev->func1); if (!bus->rxpending) break; else continue; } if (rd->channel == SDPCM_CONTROL_CHANNEL) { brcmf_sdio_read_control(bus, bus->rxhdr, rd->len, rd->dat_offset); /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; sdio_release_host(bus->sdiodev->func1); continue; } rd->len_left = rd->len > BRCMF_FIRSTREAD ? rd->len - BRCMF_FIRSTREAD : 0; head_read = BRCMF_FIRSTREAD; } brcmf_sdio_pad(bus, &pad, &rd->len_left); pkt = brcmu_pkt_buf_get_skb(rd->len_left + head_read + bus->head_align); if (!pkt) { /* Give up on data, request rtx of events */ brcmf_err("brcmu_pkt_buf_get_skb failed\n"); brcmf_sdio_rxfail(bus, false, RETRYCHAN(rd->channel)); sdio_release_host(bus->sdiodev->func1); continue; } skb_pull(pkt, head_read); pkt_align(pkt, rd->len_left, bus->head_align); ret = brcmf_sdiod_recv_pkt(bus->sdiodev, pkt); bus->sdcnt.f2rxdata++; sdio_release_host(bus->sdiodev->func1); if (ret < 0) { brcmf_err("read %d bytes from channel %d failed: %d\n", rd->len, rd->channel, ret); brcmu_pkt_buf_free_skb(pkt); sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_rxfail(bus, true, RETRYCHAN(rd->channel)); sdio_release_host(bus->sdiodev->func1); continue; } if (head_read) { skb_push(pkt, head_read); memcpy(pkt->data, bus->rxhdr, head_read); head_read = 0; } else { memcpy(bus->rxhdr, pkt->data, SDPCM_HDRLEN); rd_new.seq_num = rd->seq_num; sdio_claim_host(bus->sdiodev->func1); if (brcmf_sdio_hdparse(bus, bus->rxhdr, &rd_new, BRCMF_SDIO_FT_NORMAL)) { rd->len = 0; brcmu_pkt_buf_free_skb(pkt); } bus->sdcnt.rx_readahead_cnt++; if (rd->len != roundup(rd_new.len, 16)) { brcmf_err("frame length mismatch:read %d, should be %d\n", rd->len, roundup(rd_new.len, 16) >> 4); rd->len = 0; brcmf_sdio_rxfail(bus, true, true); sdio_release_host(bus->sdiodev->func1); brcmu_pkt_buf_free_skb(pkt); continue; } sdio_release_host(bus->sdiodev->func1); rd->len_nxtfrm = rd_new.len_nxtfrm; rd->channel = rd_new.channel; rd->dat_offset = rd_new.dat_offset; brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_DATA_ON()) && BRCMF_HDRS_ON(), bus->rxhdr, SDPCM_HDRLEN, "RxHdr:\n"); if (rd_new.channel == SDPCM_CONTROL_CHANNEL) { brcmf_err("readahead on control packet %d?\n", rd_new.seq_num); /* Force retry w/normal header read */ rd->len = 0; sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_rxfail(bus, false, true); sdio_release_host(bus->sdiodev->func1); brcmu_pkt_buf_free_skb(pkt); continue; } } brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(), pkt->data, rd->len, "Rx Data:\n"); /* Save superframe descriptor and allocate packet frame */ if (rd->channel == SDPCM_GLOM_CHANNEL) { if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_HWHDR_LEN])) { brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n", rd->len); brcmf_dbg_hex_dump(BRCMF_GLOM_ON(), pkt->data, rd->len, "Glom Data:\n"); __skb_trim(pkt, rd->len); skb_pull(pkt, SDPCM_HDRLEN); bus->glomd = pkt; } else { brcmf_err("%s: glom superframe w/o " "descriptor!\n", __func__); sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_rxfail(bus, false, false); sdio_release_host(bus->sdiodev->func1); } /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; continue; } /* Fill in packet len and prio, deliver upward */ __skb_trim(pkt, rd->len); skb_pull(pkt, rd->dat_offset); if (pkt->len == 0) brcmu_pkt_buf_free_skb(pkt); else if (rd->channel == SDPCM_EVENT_CHANNEL) brcmf_rx_event(bus->sdiodev->dev, pkt); else brcmf_rx_frame(bus->sdiodev->dev, pkt, false); /* prepare the descriptor for the next read */ rd->len = rd->len_nxtfrm << 4; rd->len_nxtfrm = 0; /* treat all packet as event if we don't know */ rd->channel = SDPCM_EVENT_CHANNEL; } rxcount = maxframes - rxleft; /* Message if we hit the limit */ if (!rxleft) brcmf_dbg(DATA, "hit rx limit of %d frames\n", maxframes); else brcmf_dbg(DATA, "processed %d frames\n", rxcount); /* Back off rxseq if awaiting rtx, update rx_seq */ if (bus->rxskip) rd->seq_num--; bus->rx_seq = rd->seq_num; return rxcount; } static void brcmf_sdio_wait_event_wakeup(struct brcmf_sdio *bus) { wake_up_interruptible(&bus->ctrl_wait); return; } static int brcmf_sdio_txpkt_hdalign(struct brcmf_sdio *bus, struct sk_buff *pkt) { struct brcmf_bus_stats *stats; u16 head_pad; u8 *dat_buf; dat_buf = (u8 *)(pkt->data); /* Check head padding */ head_pad = ((unsigned long)dat_buf % bus->head_align); if (head_pad) { if (skb_headroom(pkt) < head_pad) { stats = &bus->sdiodev->bus_if->stats; atomic_inc(&stats->pktcowed); if (skb_cow_head(pkt, head_pad)) { atomic_inc(&stats->pktcow_failed); return -ENOMEM; } head_pad = 0; } skb_push(pkt, head_pad); dat_buf = (u8 *)(pkt->data); } memset(dat_buf, 0, head_pad + bus->tx_hdrlen); return head_pad; } /* * struct brcmf_skbuff_cb reserves first two bytes in sk_buff::cb for * bus layer usage. */ /* flag marking a dummy skb added for DMA alignment requirement */ #define ALIGN_SKB_FLAG 0x8000 /* bit mask of data length chopped from the previous packet */ #define ALIGN_SKB_CHOP_LEN_MASK 0x7fff static int brcmf_sdio_txpkt_prep_sg(struct brcmf_sdio *bus, struct sk_buff_head *pktq, struct sk_buff *pkt, u16 total_len) { struct brcmf_sdio_dev *sdiodev; struct sk_buff *pkt_pad; u16 tail_pad, tail_chop, chain_pad; unsigned int blksize; bool lastfrm; int ntail, ret; sdiodev = bus->sdiodev; blksize = sdiodev->func2->cur_blksize; /* sg entry alignment should be a divisor of block size */ WARN_ON(blksize % bus->sgentry_align); /* Check tail padding */ lastfrm = skb_queue_is_last(pktq, pkt); tail_pad = 0; tail_chop = pkt->len % bus->sgentry_align; if (tail_chop) tail_pad = bus->sgentry_align - tail_chop; chain_pad = (total_len + tail_pad) % blksize; if (lastfrm && chain_pad) tail_pad += blksize - chain_pad; if (skb_tailroom(pkt) < tail_pad && pkt->len > blksize) { pkt_pad = brcmu_pkt_buf_get_skb(tail_pad + tail_chop + bus->head_align); if (pkt_pad == NULL) return -ENOMEM; ret = brcmf_sdio_txpkt_hdalign(bus, pkt_pad); if (unlikely(ret < 0)) { kfree_skb(pkt_pad); return ret; } memcpy(pkt_pad->data, pkt->data + pkt->len - tail_chop, tail_chop); *(u16 *)(pkt_pad->cb) = ALIGN_SKB_FLAG + tail_chop; skb_trim(pkt, pkt->len - tail_chop); skb_trim(pkt_pad, tail_pad + tail_chop); __skb_queue_after(pktq, pkt, pkt_pad); } else { ntail = pkt->data_len + tail_pad - (pkt->end - pkt->tail); if (skb_cloned(pkt) || ntail > 0) if (pskb_expand_head(pkt, 0, ntail, GFP_ATOMIC)) return -ENOMEM; if (skb_linearize(pkt)) return -ENOMEM; __skb_put(pkt, tail_pad); } return tail_pad; } /** * brcmf_sdio_txpkt_prep - packet preparation for transmit * @bus: brcmf_sdio structure pointer * @pktq: packet list pointer * @chan: virtual channel to transmit the packet * * Processes to be applied to the packet * - Align data buffer pointer * - Align data buffer length * - Prepare header * Return: negative value if there is error */ static int brcmf_sdio_txpkt_prep(struct brcmf_sdio *bus, struct sk_buff_head *pktq, uint chan) { u16 head_pad, total_len; struct sk_buff *pkt_next; u8 txseq; int ret; struct brcmf_sdio_hdrinfo hd_info = {0}; txseq = bus->tx_seq; total_len = 0; skb_queue_walk(pktq, pkt_next) { /* alignment packet inserted in previous * loop cycle can be skipped as it is * already properly aligned and does not * need an sdpcm header. */ if (*(u16 *)(pkt_next->cb) & ALIGN_SKB_FLAG) continue; /* align packet data pointer */ ret = brcmf_sdio_txpkt_hdalign(bus, pkt_next); if (ret < 0) return ret; head_pad = (u16)ret; if (head_pad) memset(pkt_next->data + bus->tx_hdrlen, 0, head_pad); total_len += pkt_next->len; hd_info.len = pkt_next->len; hd_info.lastfrm = skb_queue_is_last(pktq, pkt_next); if (bus->txglom && pktq->qlen > 1) { ret = brcmf_sdio_txpkt_prep_sg(bus, pktq, pkt_next, total_len); if (ret < 0) return ret; hd_info.tail_pad = (u16)ret; total_len += (u16)ret; } hd_info.channel = chan; hd_info.dat_offset = head_pad + bus->tx_hdrlen; hd_info.seq_num = txseq++; /* Now fill the header */ brcmf_sdio_hdpack(bus, pkt_next->data, &hd_info); if (BRCMF_BYTES_ON() && ((BRCMF_CTL_ON() && chan == SDPCM_CONTROL_CHANNEL) || (BRCMF_DATA_ON() && chan != SDPCM_CONTROL_CHANNEL))) brcmf_dbg_hex_dump(true, pkt_next->data, hd_info.len, "Tx Frame:\n"); else if (BRCMF_HDRS_ON()) brcmf_dbg_hex_dump(true, pkt_next->data, head_pad + bus->tx_hdrlen, "Tx Header:\n"); } /* Hardware length tag of the first packet should be total * length of the chain (including padding) */ if (bus->txglom) brcmf_sdio_update_hwhdr(pktq->next->data, total_len); return 0; } /** * brcmf_sdio_txpkt_postp - packet post processing for transmit * @bus: brcmf_sdio structure pointer * @pktq: packet list pointer * * Processes to be applied to the packet * - Remove head padding * - Remove tail padding */ static void brcmf_sdio_txpkt_postp(struct brcmf_sdio *bus, struct sk_buff_head *pktq) { u8 *hdr; u32 dat_offset; u16 tail_pad; u16 dummy_flags, chop_len; struct sk_buff *pkt_next, *tmp, *pkt_prev; skb_queue_walk_safe(pktq, pkt_next, tmp) { dummy_flags = *(u16 *)(pkt_next->cb); if (dummy_flags & ALIGN_SKB_FLAG) { chop_len = dummy_flags & ALIGN_SKB_CHOP_LEN_MASK; if (chop_len) { pkt_prev = pkt_next->prev; skb_put(pkt_prev, chop_len); } __skb_unlink(pkt_next, pktq); brcmu_pkt_buf_free_skb(pkt_next); } else { hdr = pkt_next->data + bus->tx_hdrlen - SDPCM_SWHDR_LEN; dat_offset = le32_to_cpu(*(__le32 *)hdr); dat_offset = (dat_offset & SDPCM_DOFFSET_MASK) >> SDPCM_DOFFSET_SHIFT; skb_pull(pkt_next, dat_offset); if (bus->txglom) { tail_pad = le16_to_cpu(*(__le16 *)(hdr - 2)); skb_trim(pkt_next, pkt_next->len - tail_pad); } } } } /* Writes a HW/SW header into the packet and sends it. */ /* Assumes: (a) header space already there, (b) caller holds lock */ static int brcmf_sdio_txpkt(struct brcmf_sdio *bus, struct sk_buff_head *pktq, uint chan) { int ret; struct sk_buff *pkt_next, *tmp; brcmf_dbg(TRACE, "Enter\n"); ret = brcmf_sdio_txpkt_prep(bus, pktq, chan); if (ret) goto done; sdio_claim_host(bus->sdiodev->func1); ret = brcmf_sdiod_send_pkt(bus->sdiodev, pktq); bus->sdcnt.f2txdata++; if (ret < 0) brcmf_sdio_txfail(bus); sdio_release_host(bus->sdiodev->func1); done: brcmf_sdio_txpkt_postp(bus, pktq); if (ret == 0) bus->tx_seq = (bus->tx_seq + pktq->qlen) % SDPCM_SEQ_WRAP; skb_queue_walk_safe(pktq, pkt_next, tmp) { __skb_unlink(pkt_next, pktq); brcmf_proto_bcdc_txcomplete(bus->sdiodev->dev, pkt_next, ret == 0); } return ret; } static uint brcmf_sdio_sendfromq(struct brcmf_sdio *bus, uint maxframes) { struct sk_buff *pkt; struct sk_buff_head pktq; u32 intstat_addr = bus->sdio_core->base + SD_REG(intstatus); u32 intstatus = 0; int ret = 0, prec_out, i; uint cnt = 0; u8 tx_prec_map, pkt_num; brcmf_dbg(TRACE, "Enter\n"); tx_prec_map = ~bus->flowcontrol; /* Send frames until the limit or some other event */ for (cnt = 0; (cnt < maxframes) && data_ok(bus);) { pkt_num = 1; if (bus->txglom) pkt_num = min_t(u8, bus->tx_max - bus->tx_seq, bus->sdiodev->txglomsz); pkt_num = min_t(u32, pkt_num, brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol)); __skb_queue_head_init(&pktq); spin_lock_bh(&bus->txq_lock); for (i = 0; i < pkt_num; i++) { pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map, &prec_out); if (pkt == NULL) break; __skb_queue_tail(&pktq, pkt); } spin_unlock_bh(&bus->txq_lock); if (i == 0) break; ret = brcmf_sdio_txpkt(bus, &pktq, SDPCM_DATA_CHANNEL); cnt += i; /* In poll mode, need to check for other events */ if (!bus->intr) { /* Check device status, signal pending interrupt */ sdio_claim_host(bus->sdiodev->func1); intstatus = brcmf_sdiod_readl(bus->sdiodev, intstat_addr, &ret); sdio_release_host(bus->sdiodev->func1); bus->sdcnt.f2txdata++; if (ret != 0) break; if (intstatus & bus->hostintmask) atomic_set(&bus->ipend, 1); } } /* Deflow-control stack if needed */ if ((bus->sdiodev->state == BRCMF_SDIOD_DATA) && bus->txoff && (pktq_len(&bus->txq) < TXLOW)) { bus->txoff = false; brcmf_proto_bcdc_txflowblock(bus->sdiodev->dev, false); } return cnt; } static int brcmf_sdio_tx_ctrlframe(struct brcmf_sdio *bus, u8 *frame, u16 len) { u8 doff; u16 pad; uint retries = 0; struct brcmf_sdio_hdrinfo hd_info = {0}; int ret; brcmf_dbg(SDIO, "Enter\n"); /* Back the pointer to make room for bus header */ frame -= bus->tx_hdrlen; len += bus->tx_hdrlen; /* Add alignment padding (optional for ctl frames) */ doff = ((unsigned long)frame % bus->head_align); if (doff) { frame -= doff; len += doff; memset(frame + bus->tx_hdrlen, 0, doff); } /* Round send length to next SDIO block */ pad = 0; if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { pad = bus->blocksize - (len % bus->blocksize); if ((pad > bus->roundup) || (pad >= bus->blocksize)) pad = 0; } else if (len % bus->head_align) { pad = bus->head_align - (len % bus->head_align); } len += pad; hd_info.len = len - pad; hd_info.channel = SDPCM_CONTROL_CHANNEL; hd_info.dat_offset = doff + bus->tx_hdrlen; hd_info.seq_num = bus->tx_seq; hd_info.lastfrm = true; hd_info.tail_pad = pad; brcmf_sdio_hdpack(bus, frame, &hd_info); if (bus->txglom) brcmf_sdio_update_hwhdr(frame, len); brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(), frame, len, "Tx Frame:\n"); brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_CTL_ON()) && BRCMF_HDRS_ON(), frame, min_t(u16, len, 16), "TxHdr:\n"); do { ret = brcmf_sdiod_send_buf(bus->sdiodev, frame, len); if (ret < 0) brcmf_sdio_txfail(bus); else bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQ_WRAP; } while (ret < 0 && retries++ < TXRETRIES); return ret; } static void brcmf_sdio_bus_stop(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; struct brcmf_core *core = bus->sdio_core; u32 local_hostintmask; u8 saveclk; int err; brcmf_dbg(TRACE, "Enter\n"); if (bus->watchdog_tsk) { send_sig(SIGTERM, bus->watchdog_tsk, 1); kthread_stop(bus->watchdog_tsk); bus->watchdog_tsk = NULL; } if (sdiodev->state != BRCMF_SDIOD_NOMEDIUM) { sdio_claim_host(sdiodev->func1); /* Enable clock for device interrupts */ brcmf_sdio_bus_sleep(bus, false, false); /* Disable and clear interrupts at the chip level also */ brcmf_sdiod_writel(sdiodev, core->base + SD_REG(hostintmask), 0, NULL); local_hostintmask = bus->hostintmask; bus->hostintmask = 0; /* Force backplane clocks to assure F2 interrupt propagates */ saveclk = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); if (err) brcmf_err("Failed to force clock for F2: err %d\n", err); /* Turn off the bus (F2), free any pending packets */ brcmf_dbg(INTR, "disable SDIO interrupts\n"); sdio_disable_func(sdiodev->func2); /* Clear any pending interrupts now that F2 is disabled */ brcmf_sdiod_writel(sdiodev, core->base + SD_REG(intstatus), local_hostintmask, NULL); sdio_release_host(sdiodev->func1); } /* Clear the data packet queues */ brcmu_pktq_flush(&bus->txq, true, NULL, NULL); /* Clear any held glomming stuff */ brcmu_pkt_buf_free_skb(bus->glomd); brcmf_sdio_free_glom(bus); /* Clear rx control and wake any waiters */ spin_lock_bh(&bus->rxctl_lock); bus->rxlen = 0; spin_unlock_bh(&bus->rxctl_lock); brcmf_sdio_dcmd_resp_wake(bus); /* Reset some F2 state stuff */ bus->rxskip = false; bus->tx_seq = bus->rx_seq = 0; } static inline void brcmf_sdio_clrintr(struct brcmf_sdio *bus) { struct brcmf_sdio_dev *sdiodev; unsigned long flags; sdiodev = bus->sdiodev; if (sdiodev->oob_irq_requested) { spin_lock_irqsave(&sdiodev->irq_en_lock, flags); if (!sdiodev->irq_en && !atomic_read(&bus->ipend)) { enable_irq(sdiodev->settings->bus.sdio.oob_irq_nr); sdiodev->irq_en = true; } spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags); } } static int brcmf_sdio_intr_rstatus(struct brcmf_sdio *bus) { struct brcmf_core *core = bus->sdio_core; u32 addr; unsigned long val; int ret; addr = core->base + SD_REG(intstatus); val = brcmf_sdiod_readl(bus->sdiodev, addr, &ret); bus->sdcnt.f1regdata++; if (ret != 0) return ret; val &= bus->hostintmask; atomic_set(&bus->fcstate, !!(val & I_HMB_FC_STATE)); /* Clear interrupts */ if (val) { brcmf_sdiod_writel(bus->sdiodev, addr, val, &ret); bus->sdcnt.f1regdata++; atomic_or(val, &bus->intstatus); } return ret; } static void brcmf_sdio_dpc(struct brcmf_sdio *bus) { struct brcmf_sdio_dev *sdiod = bus->sdiodev; u32 newstatus = 0; u32 intstat_addr = bus->sdio_core->base + SD_REG(intstatus); unsigned long intstatus; uint txlimit = bus->txbound; /* Tx frames to send before resched */ uint framecnt; /* Temporary counter of tx/rx frames */ int err = 0; brcmf_dbg(SDIO, "Enter\n"); sdio_claim_host(bus->sdiodev->func1); /* If waiting for HTAVAIL, check status */ if (!bus->sr_enabled && bus->clkstate == CLK_PENDING) { u8 clkctl, devctl = 0; #ifdef DEBUG /* Check for inconsistent device control */ devctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); #endif /* DEBUG */ /* Read CSR, if clock on switch to AVAIL, else ignore */ clkctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); brcmf_dbg(SDIO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl); if (SBSDIO_HTAV(clkctl)) { devctl = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_DEVICE_CTL, devctl, &err); bus->clkstate = CLK_AVAIL; } } /* Make sure backplane clock is on */ brcmf_sdio_bus_sleep(bus, false, true); /* Pending interrupt indicates new device status */ if (atomic_read(&bus->ipend) > 0) { atomic_set(&bus->ipend, 0); err = brcmf_sdio_intr_rstatus(bus); } /* Start with leftover status bits */ intstatus = atomic_xchg(&bus->intstatus, 0); /* Handle flow-control change: read new state in case our ack * crossed another change interrupt. If change still set, assume * FC ON for safety, let next loop through do the debounce. */ if (intstatus & I_HMB_FC_CHANGE) { intstatus &= ~I_HMB_FC_CHANGE; brcmf_sdiod_writel(sdiod, intstat_addr, I_HMB_FC_CHANGE, &err); newstatus = brcmf_sdiod_readl(sdiod, intstat_addr, &err); bus->sdcnt.f1regdata += 2; atomic_set(&bus->fcstate, !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE))); intstatus |= (newstatus & bus->hostintmask); } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { intstatus &= ~I_HMB_HOST_INT; intstatus |= brcmf_sdio_hostmail(bus); } sdio_release_host(bus->sdiodev->func1); /* Generally don't ask for these, can get CRC errors... */ if (intstatus & I_WR_OOSYNC) { brcmf_err("Dongle reports WR_OOSYNC\n"); intstatus &= ~I_WR_OOSYNC; } if (intstatus & I_RD_OOSYNC) { brcmf_err("Dongle reports RD_OOSYNC\n"); intstatus &= ~I_RD_OOSYNC; } if (intstatus & I_SBINT) { brcmf_err("Dongle reports SBINT\n"); intstatus &= ~I_SBINT; } /* Would be active due to wake-wlan in gSPI */ if (intstatus & I_CHIPACTIVE) { brcmf_dbg(SDIO, "Dongle reports CHIPACTIVE\n"); intstatus &= ~I_CHIPACTIVE; } /* Ignore frame indications if rxskip is set */ if (bus->rxskip) intstatus &= ~I_HMB_FRAME_IND; /* On frame indication, read available frames */ if ((intstatus & I_HMB_FRAME_IND) && (bus->clkstate == CLK_AVAIL)) { brcmf_sdio_readframes(bus, bus->rxbound); if (!bus->rxpending) intstatus &= ~I_HMB_FRAME_IND; } /* Keep still-pending events for next scheduling */ if (intstatus) atomic_or(intstatus, &bus->intstatus); brcmf_sdio_clrintr(bus); if (bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL) && data_ok(bus)) { sdio_claim_host(bus->sdiodev->func1); if (bus->ctrl_frame_stat) { err = brcmf_sdio_tx_ctrlframe(bus, bus->ctrl_frame_buf, bus->ctrl_frame_len); bus->ctrl_frame_err = err; wmb(); bus->ctrl_frame_stat = false; } sdio_release_host(bus->sdiodev->func1); brcmf_sdio_wait_event_wakeup(bus); } /* Send queued frames (limit 1 if rx may still be pending) */ if ((bus->clkstate == CLK_AVAIL) && !atomic_read(&bus->fcstate) && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && data_ok(bus)) { framecnt = bus->rxpending ? min(txlimit, bus->txminmax) : txlimit; brcmf_sdio_sendfromq(bus, framecnt); } if ((bus->sdiodev->state != BRCMF_SDIOD_DATA) || (err != 0)) { brcmf_err("failed backplane access over SDIO, halting operation\n"); atomic_set(&bus->intstatus, 0); if (bus->ctrl_frame_stat) { sdio_claim_host(bus->sdiodev->func1); if (bus->ctrl_frame_stat) { bus->ctrl_frame_err = -ENODEV; wmb(); bus->ctrl_frame_stat = false; brcmf_sdio_wait_event_wakeup(bus); } sdio_release_host(bus->sdiodev->func1); } } else if (atomic_read(&bus->intstatus) || atomic_read(&bus->ipend) > 0 || (!atomic_read(&bus->fcstate) && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && data_ok(bus))) { bus->dpc_triggered = true; } } static struct pktq *brcmf_sdio_bus_gettxq(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; return &bus->txq; } static bool brcmf_sdio_prec_enq(struct pktq *q, struct sk_buff *pkt, int prec) { struct sk_buff *p; int eprec = -1; /* precedence to evict from */ /* Fast case, precedence queue is not full and we are also not * exceeding total queue length */ if (!pktq_pfull(q, prec) && !pktq_full(q)) { brcmu_pktq_penq(q, prec, pkt); return true; } /* Determine precedence from which to evict packet, if any */ if (pktq_pfull(q, prec)) { eprec = prec; } else if (pktq_full(q)) { p = brcmu_pktq_peek_tail(q, &eprec); if (eprec > prec) return false; } /* Evict if needed */ if (eprec >= 0) { /* Detect queueing to unconfigured precedence */ if (eprec == prec) return false; /* refuse newer (incoming) packet */ /* Evict packet according to discard policy */ p = brcmu_pktq_pdeq_tail(q, eprec); if (p == NULL) brcmf_err("brcmu_pktq_pdeq_tail() failed\n"); brcmu_pkt_buf_free_skb(p); } /* Enqueue */ p = brcmu_pktq_penq(q, prec, pkt); if (p == NULL) brcmf_err("brcmu_pktq_penq() failed\n"); return p != NULL; } static int brcmf_sdio_bus_txdata(struct device *dev, struct sk_buff *pkt) { int ret = -EBADE; uint prec; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter: pkt: data %p len %d\n", pkt->data, pkt->len); if (sdiodev->state != BRCMF_SDIOD_DATA) return -EIO; /* Add space for the header */ skb_push(pkt, bus->tx_hdrlen); /* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */ prec = prio2prec((pkt->priority & PRIOMASK)); /* Check for existing queue, current flow-control, pending event, or pending clock */ brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq)); bus->sdcnt.fcqueued++; /* Priority based enq */ spin_lock_bh(&bus->txq_lock); /* reset bus_flags in packet cb */ *(u16 *)(pkt->cb) = 0; if (!brcmf_sdio_prec_enq(&bus->txq, pkt, prec)) { skb_pull(pkt, bus->tx_hdrlen); brcmf_err("out of bus->txq !!!\n"); ret = -ENOSR; } else { ret = 0; } if (pktq_len(&bus->txq) >= TXHI) { bus->txoff = true; brcmf_proto_bcdc_txflowblock(dev, true); } spin_unlock_bh(&bus->txq_lock); #ifdef DEBUG if (pktq_plen(&bus->txq, prec) > qcount[prec]) qcount[prec] = pktq_plen(&bus->txq, prec); #endif brcmf_sdio_trigger_dpc(bus); return ret; } #ifdef DEBUG #define CONSOLE_LINE_MAX 192 static int brcmf_sdio_readconsole(struct brcmf_sdio *bus) { struct brcmf_console *c = &bus->console; u8 line[CONSOLE_LINE_MAX], ch; u32 n, idx, addr; int rv; /* Don't do anything until FWREADY updates console address */ if (bus->console_addr == 0) return 0; /* Read console log struct */ addr = bus->console_addr + offsetof(struct rte_console, log_le); rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&c->log_le, sizeof(c->log_le)); if (rv < 0) return rv; /* Allocate console buffer (one time only) */ if (c->buf == NULL) { c->bufsize = le32_to_cpu(c->log_le.buf_size); c->buf = kmalloc(c->bufsize, GFP_ATOMIC); if (c->buf == NULL) return -ENOMEM; } idx = le32_to_cpu(c->log_le.idx); /* Protect against corrupt value */ if (idx > c->bufsize) return -EBADE; /* Skip reading the console buffer if the index pointer has not moved */ if (idx == c->last) return 0; /* Read the console buffer */ addr = le32_to_cpu(c->log_le.buf); rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, c->buf, c->bufsize); if (rv < 0) return rv; while (c->last != idx) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { if (c->last == idx) { /* This would output a partial line. * Instead, back up * the buffer pointer and output this * line next time around. */ if (c->last >= n) c->last -= n; else c->last = c->bufsize - n; goto break2; } ch = c->buf[c->last]; c->last = (c->last + 1) % c->bufsize; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; pr_debug("CONSOLE: %s\n", line); } } break2: return 0; } #endif /* DEBUG */ static int brcmf_sdio_bus_txctl(struct device *dev, unsigned char *msg, uint msglen) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; int ret; brcmf_dbg(TRACE, "Enter\n"); if (sdiodev->state != BRCMF_SDIOD_DATA) return -EIO; /* Send from dpc */ bus->ctrl_frame_buf = msg; bus->ctrl_frame_len = msglen; wmb(); bus->ctrl_frame_stat = true; brcmf_sdio_trigger_dpc(bus); wait_event_interruptible_timeout(bus->ctrl_wait, !bus->ctrl_frame_stat, CTL_DONE_TIMEOUT); ret = 0; if (bus->ctrl_frame_stat) { sdio_claim_host(bus->sdiodev->func1); if (bus->ctrl_frame_stat) { brcmf_dbg(SDIO, "ctrl_frame timeout\n"); bus->ctrl_frame_stat = false; ret = -ETIMEDOUT; } sdio_release_host(bus->sdiodev->func1); } if (!ret) { brcmf_dbg(SDIO, "ctrl_frame complete, err=%d\n", bus->ctrl_frame_err); rmb(); ret = bus->ctrl_frame_err; } if (ret) bus->sdcnt.tx_ctlerrs++; else bus->sdcnt.tx_ctlpkts++; return ret; } #ifdef DEBUG static int brcmf_sdio_dump_console(struct seq_file *seq, struct brcmf_sdio *bus, struct sdpcm_shared *sh) { u32 addr, console_ptr, console_size, console_index; char *conbuf = NULL; __le32 sh_val; int rv; /* obtain console information from device memory */ addr = sh->console_addr + offsetof(struct rte_console, log_le); rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_ptr = le32_to_cpu(sh_val); addr = sh->console_addr + offsetof(struct rte_console, log_le.buf_size); rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_size = le32_to_cpu(sh_val); addr = sh->console_addr + offsetof(struct rte_console, log_le.idx); rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_val, sizeof(u32)); if (rv < 0) return rv; console_index = le32_to_cpu(sh_val); /* allocate buffer for console data */ if (console_size <= CONSOLE_BUFFER_MAX) conbuf = vzalloc(console_size+1); if (!conbuf) return -ENOMEM; /* obtain the console data from device */ conbuf[console_size] = '\0'; rv = brcmf_sdiod_ramrw(bus->sdiodev, false, console_ptr, (u8 *)conbuf, console_size); if (rv < 0) goto done; rv = seq_write(seq, conbuf + console_index, console_size - console_index); if (rv < 0) goto done; if (console_index > 0) rv = seq_write(seq, conbuf, console_index - 1); done: vfree(conbuf); return rv; } static int brcmf_sdio_trap_info(struct seq_file *seq, struct brcmf_sdio *bus, struct sdpcm_shared *sh) { int error; struct brcmf_trap_info tr; if ((sh->flags & SDPCM_SHARED_TRAP) == 0) { brcmf_dbg(INFO, "no trap in firmware\n"); return 0; } error = brcmf_sdiod_ramrw(bus->sdiodev, false, sh->trap_addr, (u8 *)&tr, sizeof(struct brcmf_trap_info)); if (error < 0) return error; seq_printf(seq, "dongle trap info: type 0x%x @ epc 0x%08x\n" " cpsr 0x%08x spsr 0x%08x sp 0x%08x\n" " lr 0x%08x pc 0x%08x offset 0x%x\n" " r0 0x%08x r1 0x%08x r2 0x%08x r3 0x%08x\n" " r4 0x%08x r5 0x%08x r6 0x%08x r7 0x%08x\n", le32_to_cpu(tr.type), le32_to_cpu(tr.epc), le32_to_cpu(tr.cpsr), le32_to_cpu(tr.spsr), le32_to_cpu(tr.r13), le32_to_cpu(tr.r14), le32_to_cpu(tr.pc), sh->trap_addr, le32_to_cpu(tr.r0), le32_to_cpu(tr.r1), le32_to_cpu(tr.r2), le32_to_cpu(tr.r3), le32_to_cpu(tr.r4), le32_to_cpu(tr.r5), le32_to_cpu(tr.r6), le32_to_cpu(tr.r7)); return 0; } static int brcmf_sdio_assert_info(struct seq_file *seq, struct brcmf_sdio *bus, struct sdpcm_shared *sh) { int error = 0; char file[80] = "?"; char expr[80] = ""; if ((sh->flags & SDPCM_SHARED_ASSERT_BUILT) == 0) { brcmf_dbg(INFO, "firmware not built with -assert\n"); return 0; } else if ((sh->flags & SDPCM_SHARED_ASSERT) == 0) { brcmf_dbg(INFO, "no assert in dongle\n"); return 0; } sdio_claim_host(bus->sdiodev->func1); if (sh->assert_file_addr != 0) { error = brcmf_sdiod_ramrw(bus->sdiodev, false, sh->assert_file_addr, (u8 *)file, 80); if (error < 0) return error; } if (sh->assert_exp_addr != 0) { error = brcmf_sdiod_ramrw(bus->sdiodev, false, sh->assert_exp_addr, (u8 *)expr, 80); if (error < 0) return error; } sdio_release_host(bus->sdiodev->func1); seq_printf(seq, "dongle assert: %s:%d: assert(%s)\n", file, sh->assert_line, expr); return 0; } static int brcmf_sdio_checkdied(struct brcmf_sdio *bus) { int error; struct sdpcm_shared sh; error = brcmf_sdio_readshared(bus, &sh); if (error < 0) return error; if ((sh.flags & SDPCM_SHARED_ASSERT_BUILT) == 0) brcmf_dbg(INFO, "firmware not built with -assert\n"); else if (sh.flags & SDPCM_SHARED_ASSERT) brcmf_err("assertion in dongle\n"); if (sh.flags & SDPCM_SHARED_TRAP) brcmf_err("firmware trap in dongle\n"); return 0; } static int brcmf_sdio_died_dump(struct seq_file *seq, struct brcmf_sdio *bus) { int error = 0; struct sdpcm_shared sh; error = brcmf_sdio_readshared(bus, &sh); if (error < 0) goto done; error = brcmf_sdio_assert_info(seq, bus, &sh); if (error < 0) goto done; error = brcmf_sdio_trap_info(seq, bus, &sh); if (error < 0) goto done; error = brcmf_sdio_dump_console(seq, bus, &sh); done: return error; } static int brcmf_sdio_forensic_read(struct seq_file *seq, void *data) { struct brcmf_bus *bus_if = dev_get_drvdata(seq->private); struct brcmf_sdio *bus = bus_if->bus_priv.sdio->bus; return brcmf_sdio_died_dump(seq, bus); } static int brcmf_debugfs_sdio_count_read(struct seq_file *seq, void *data) { struct brcmf_bus *bus_if = dev_get_drvdata(seq->private); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio_count *sdcnt = &sdiodev->bus->sdcnt; seq_printf(seq, "intrcount: %u\nlastintrs: %u\n" "pollcnt: %u\nregfails: %u\n" "tx_sderrs: %u\nfcqueued: %u\n" "rxrtx: %u\nrx_toolong: %u\n" "rxc_errors: %u\nrx_hdrfail: %u\n" "rx_badhdr: %u\nrx_badseq: %u\n" "fc_rcvd: %u\nfc_xoff: %u\n" "fc_xon: %u\nrxglomfail: %u\n" "rxglomframes: %u\nrxglompkts: %u\n" "f2rxhdrs: %u\nf2rxdata: %u\n" "f2txdata: %u\nf1regdata: %u\n" "tickcnt: %u\ntx_ctlerrs: %lu\n" "tx_ctlpkts: %lu\nrx_ctlerrs: %lu\n" "rx_ctlpkts: %lu\nrx_readahead: %lu\n", sdcnt->intrcount, sdcnt->lastintrs, sdcnt->pollcnt, sdcnt->regfails, sdcnt->tx_sderrs, sdcnt->fcqueued, sdcnt->rxrtx, sdcnt->rx_toolong, sdcnt->rxc_errors, sdcnt->rx_hdrfail, sdcnt->rx_badhdr, sdcnt->rx_badseq, sdcnt->fc_rcvd, sdcnt->fc_xoff, sdcnt->fc_xon, sdcnt->rxglomfail, sdcnt->rxglomframes, sdcnt->rxglompkts, sdcnt->f2rxhdrs, sdcnt->f2rxdata, sdcnt->f2txdata, sdcnt->f1regdata, sdcnt->tickcnt, sdcnt->tx_ctlerrs, sdcnt->tx_ctlpkts, sdcnt->rx_ctlerrs, sdcnt->rx_ctlpkts, sdcnt->rx_readahead_cnt); return 0; } static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus) { struct brcmf_pub *drvr = bus->sdiodev->bus_if->drvr; struct dentry *dentry = brcmf_debugfs_get_devdir(drvr); if (IS_ERR_OR_NULL(dentry)) return; bus->console_interval = BRCMF_CONSOLE; brcmf_debugfs_add_entry(drvr, "forensics", brcmf_sdio_forensic_read); brcmf_debugfs_add_entry(drvr, "counters", brcmf_debugfs_sdio_count_read); debugfs_create_u32("console_interval", 0644, dentry, &bus->console_interval); } #else static int brcmf_sdio_checkdied(struct brcmf_sdio *bus) { return 0; } static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus) { } #endif /* DEBUG */ static int brcmf_sdio_bus_rxctl(struct device *dev, unsigned char *msg, uint msglen) { int timeleft; uint rxlen = 0; bool pending; u8 *buf; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); if (sdiodev->state != BRCMF_SDIOD_DATA) return -EIO; /* Wait until control frame is available */ timeleft = brcmf_sdio_dcmd_resp_wait(bus, &bus->rxlen, &pending); spin_lock_bh(&bus->rxctl_lock); rxlen = bus->rxlen; memcpy(msg, bus->rxctl, min(msglen, rxlen)); bus->rxctl = NULL; buf = bus->rxctl_orig; bus->rxctl_orig = NULL; bus->rxlen = 0; spin_unlock_bh(&bus->rxctl_lock); vfree(buf); if (rxlen) { brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n", rxlen, msglen); } else if (timeleft == 0) { brcmf_err("resumed on timeout\n"); brcmf_sdio_checkdied(bus); } else if (pending) { brcmf_dbg(CTL, "cancelled\n"); return -ERESTARTSYS; } else { brcmf_dbg(CTL, "resumed for unknown reason?\n"); brcmf_sdio_checkdied(bus); } if (rxlen) bus->sdcnt.rx_ctlpkts++; else bus->sdcnt.rx_ctlerrs++; return rxlen ? (int)rxlen : -ETIMEDOUT; } #ifdef DEBUG static bool brcmf_sdio_verifymemory(struct brcmf_sdio_dev *sdiodev, u32 ram_addr, u8 *ram_data, uint ram_sz) { char *ram_cmp; int err; bool ret = true; int address; int offset; int len; /* read back and verify */ brcmf_dbg(INFO, "Compare RAM dl & ul at 0x%08x; size=%d\n", ram_addr, ram_sz); ram_cmp = kmalloc(MEMBLOCK, GFP_KERNEL); /* do not proceed while no memory but */ if (!ram_cmp) return true; address = ram_addr; offset = 0; while (offset < ram_sz) { len = ((offset + MEMBLOCK) < ram_sz) ? MEMBLOCK : ram_sz - offset; err = brcmf_sdiod_ramrw(sdiodev, false, address, ram_cmp, len); if (err) { brcmf_err("error %d on reading %d membytes at 0x%08x\n", err, len, address); ret = false; break; } else if (memcmp(ram_cmp, &ram_data[offset], len)) { brcmf_err("Downloaded RAM image is corrupted, block offset is %d, len is %d\n", offset, len); ret = false; break; } offset += len; address += len; } kfree(ram_cmp); return ret; } #else /* DEBUG */ static bool brcmf_sdio_verifymemory(struct brcmf_sdio_dev *sdiodev, u32 ram_addr, u8 *ram_data, uint ram_sz) { return true; } #endif /* DEBUG */ static int brcmf_sdio_download_code_file(struct brcmf_sdio *bus, const struct firmware *fw) { int err; brcmf_dbg(TRACE, "Enter\n"); err = brcmf_sdiod_ramrw(bus->sdiodev, true, bus->ci->rambase, (u8 *)fw->data, fw->size); if (err) brcmf_err("error %d on writing %d membytes at 0x%08x\n", err, (int)fw->size, bus->ci->rambase); else if (!brcmf_sdio_verifymemory(bus->sdiodev, bus->ci->rambase, (u8 *)fw->data, fw->size)) err = -EIO; return err; } static int brcmf_sdio_download_nvram(struct brcmf_sdio *bus, void *vars, u32 varsz) { int address; int err; brcmf_dbg(TRACE, "Enter\n"); address = bus->ci->ramsize - varsz + bus->ci->rambase; err = brcmf_sdiod_ramrw(bus->sdiodev, true, address, vars, varsz); if (err) brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n", err, varsz, address); else if (!brcmf_sdio_verifymemory(bus->sdiodev, address, vars, varsz)) err = -EIO; return err; } static int brcmf_sdio_download_firmware(struct brcmf_sdio *bus, const struct firmware *fw, void *nvram, u32 nvlen) { int bcmerror; u32 rstvec; sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_clkctl(bus, CLK_AVAIL, false); rstvec = get_unaligned_le32(fw->data); brcmf_dbg(SDIO, "firmware rstvec: %x\n", rstvec); bcmerror = brcmf_sdio_download_code_file(bus, fw); release_firmware(fw); if (bcmerror) { brcmf_err("dongle image file download failed\n"); brcmf_fw_nvram_free(nvram); goto err; } bcmerror = brcmf_sdio_download_nvram(bus, nvram, nvlen); brcmf_fw_nvram_free(nvram); if (bcmerror) { brcmf_err("dongle nvram file download failed\n"); goto err; } /* Take arm out of reset */ if (!brcmf_chip_set_active(bus->ci, rstvec)) { brcmf_err("error getting out of ARM core reset\n"); goto err; } err: brcmf_sdio_clkctl(bus, CLK_SDONLY, false); sdio_release_host(bus->sdiodev->func1); return bcmerror; } static void brcmf_sdio_sr_init(struct brcmf_sdio *bus) { int err = 0; u8 val; brcmf_dbg(TRACE, "Enter\n"); val = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, &err); if (err) { brcmf_err("error reading SBSDIO_FUNC1_WAKEUPCTRL\n"); return; } val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT; brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, val, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_WAKEUPCTRL\n"); return; } /* Add CMD14 Support */ brcmf_sdiod_func0_wb(bus->sdiodev, SDIO_CCCR_BRCM_CARDCAP, (SDIO_CCCR_BRCM_CARDCAP_CMD14_SUPPORT | SDIO_CCCR_BRCM_CARDCAP_CMD14_EXT), &err); if (err) { brcmf_err("error writing SDIO_CCCR_BRCM_CARDCAP\n"); return; } brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HT, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_CHIPCLKCSR\n"); return; } /* set flag */ bus->sr_enabled = true; brcmf_dbg(INFO, "SR enabled\n"); } /* enable KSO bit */ static int brcmf_sdio_kso_init(struct brcmf_sdio *bus) { struct brcmf_core *core = bus->sdio_core; u8 val; int err = 0; brcmf_dbg(TRACE, "Enter\n"); /* KSO bit added in SDIO core rev 12 */ if (core->rev < 12) return 0; val = brcmf_sdiod_readb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, &err); if (err) { brcmf_err("error reading SBSDIO_FUNC1_SLEEPCSR\n"); return err; } if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, val, &err); if (err) { brcmf_err("error writing SBSDIO_FUNC1_SLEEPCSR\n"); return err; } } return 0; } static int brcmf_sdio_bus_preinit(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; struct brcmf_core *core = bus->sdio_core; uint pad_size; u32 value; int err; /* maxctl provided by common layer */ if (WARN_ON(!bus_if->maxctl)) return -EINVAL; /* Allocate control receive buffer */ bus_if->maxctl += bus->roundup; value = roundup((bus_if->maxctl + SDPCM_HDRLEN), ALIGNMENT); value += bus->head_align; bus->rxbuf = kmalloc(value, GFP_ATOMIC); if (bus->rxbuf) bus->rxblen = value; brcmf_sdio_debugfs_create(bus); /* the commands below use the terms tx and rx from * a device perspective, ie. bus:txglom affects the * bus transfers from device to host. */ if (core->rev < 12) { /* for sdio core rev < 12, disable txgloming */ value = 0; err = brcmf_iovar_data_set(dev, "bus:txglom", &value, sizeof(u32)); } else { /* otherwise, set txglomalign */ value = sdiodev->settings->bus.sdio.sd_sgentry_align; /* SDIO ADMA requires at least 32 bit alignment */ value = max_t(u32, value, ALIGNMENT); err = brcmf_iovar_data_set(dev, "bus:txglomalign", &value, sizeof(u32)); } if (err < 0) goto done; bus->tx_hdrlen = SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN; if (sdiodev->sg_support) { bus->txglom = false; value = 1; pad_size = bus->sdiodev->func2->cur_blksize << 1; err = brcmf_iovar_data_set(bus->sdiodev->dev, "bus:rxglom", &value, sizeof(u32)); if (err < 0) { /* bus:rxglom is allowed to fail */ err = 0; } else { bus->txglom = true; bus->tx_hdrlen += SDPCM_HWEXT_LEN; } } brcmf_bus_add_txhdrlen(bus->sdiodev->dev, bus->tx_hdrlen); done: return err; } static size_t brcmf_sdio_bus_get_ramsize(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; return bus->ci->ramsize - bus->ci->srsize; } static int brcmf_sdio_bus_get_memdump(struct device *dev, void *data, size_t mem_size) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiodev->bus; int err; int address; int offset; int len; brcmf_dbg(INFO, "dump at 0x%08x: size=%zu\n", bus->ci->rambase, mem_size); address = bus->ci->rambase; offset = err = 0; sdio_claim_host(sdiodev->func1); while (offset < mem_size) { len = ((offset + MEMBLOCK) < mem_size) ? MEMBLOCK : mem_size - offset; err = brcmf_sdiod_ramrw(sdiodev, false, address, data, len); if (err) { brcmf_err("error %d on reading %d membytes at 0x%08x\n", err, len, address); goto done; } data += len; offset += len; address += len; } done: sdio_release_host(sdiodev->func1); return err; } void brcmf_sdio_trigger_dpc(struct brcmf_sdio *bus) { if (!bus->dpc_triggered) { bus->dpc_triggered = true; queue_work(bus->brcmf_wq, &bus->datawork); } } void brcmf_sdio_isr(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (!bus) { brcmf_err("bus is null pointer, exiting\n"); return; } /* Count the interrupt call */ bus->sdcnt.intrcount++; if (in_interrupt()) atomic_set(&bus->ipend, 1); else if (brcmf_sdio_intr_rstatus(bus)) { brcmf_err("failed backplane access\n"); } /* Disable additional interrupts (is this needed now)? */ if (!bus->intr) brcmf_err("isr w/o interrupt configured!\n"); bus->dpc_triggered = true; queue_work(bus->brcmf_wq, &bus->datawork); } static void brcmf_sdio_bus_watchdog(struct brcmf_sdio *bus) { brcmf_dbg(TIMER, "Enter\n"); /* Poll period: check device if appropriate. */ if (!bus->sr_enabled && bus->poll && (++bus->polltick >= bus->pollrate)) { u32 intstatus = 0; /* Reset poll tick */ bus->polltick = 0; /* Check device if no interrupts */ if (!bus->intr || (bus->sdcnt.intrcount == bus->sdcnt.lastintrs)) { if (!bus->dpc_triggered) { u8 devpend; sdio_claim_host(bus->sdiodev->func1); devpend = brcmf_sdiod_func0_rb(bus->sdiodev, SDIO_CCCR_INTx, NULL); sdio_release_host(bus->sdiodev->func1); intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2); } /* If there is something, make like the ISR and schedule the DPC */ if (intstatus) { bus->sdcnt.pollcnt++; atomic_set(&bus->ipend, 1); bus->dpc_triggered = true; queue_work(bus->brcmf_wq, &bus->datawork); } } /* Update interrupt tracking */ bus->sdcnt.lastintrs = bus->sdcnt.intrcount; } #ifdef DEBUG /* Poll for console output periodically */ if (bus->sdiodev->state == BRCMF_SDIOD_DATA && BRCMF_FWCON_ON() && bus->console_interval != 0) { bus->console.count += jiffies_to_msecs(BRCMF_WD_POLL); if (bus->console.count >= bus->console_interval) { bus->console.count -= bus->console_interval; sdio_claim_host(bus->sdiodev->func1); /* Make sure backplane clock is on */ brcmf_sdio_bus_sleep(bus, false, false); if (brcmf_sdio_readconsole(bus) < 0) /* stop on error */ bus->console_interval = 0; sdio_release_host(bus->sdiodev->func1); } } #endif /* DEBUG */ /* On idle timeout clear activity flag and/or turn off clock */ if (!bus->dpc_triggered) { rmb(); if ((!bus->dpc_running) && (bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) { bus->idlecount++; if (bus->idlecount > bus->idletime) { brcmf_dbg(SDIO, "idle\n"); sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_wd_timer(bus, false); bus->idlecount = 0; brcmf_sdio_bus_sleep(bus, true, false); sdio_release_host(bus->sdiodev->func1); } } else { bus->idlecount = 0; } } else { bus->idlecount = 0; } } static void brcmf_sdio_dataworker(struct work_struct *work) { struct brcmf_sdio *bus = container_of(work, struct brcmf_sdio, datawork); bus->dpc_running = true; wmb(); while (READ_ONCE(bus->dpc_triggered)) { bus->dpc_triggered = false; brcmf_sdio_dpc(bus); bus->idlecount = 0; } bus->dpc_running = false; if (brcmf_sdiod_freezing(bus->sdiodev)) { brcmf_sdiod_change_state(bus->sdiodev, BRCMF_SDIOD_DOWN); brcmf_sdiod_try_freeze(bus->sdiodev); brcmf_sdiod_change_state(bus->sdiodev, BRCMF_SDIOD_DATA); } } static void brcmf_sdio_drivestrengthinit(struct brcmf_sdio_dev *sdiodev, struct brcmf_chip *ci, u32 drivestrength) { const struct sdiod_drive_str *str_tab = NULL; u32 str_mask; u32 str_shift; u32 i; u32 drivestrength_sel = 0; u32 cc_data_temp; u32 addr; if (!(ci->cc_caps & CC_CAP_PMU)) return; switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) { case SDIOD_DRVSTR_KEY(BRCM_CC_4330_CHIP_ID, 12): str_tab = sdiod_drvstr_tab1_1v8; str_mask = 0x00003800; str_shift = 11; break; case SDIOD_DRVSTR_KEY(BRCM_CC_4334_CHIP_ID, 17): str_tab = sdiod_drvstr_tab6_1v8; str_mask = 0x00001800; str_shift = 11; break; case SDIOD_DRVSTR_KEY(BRCM_CC_43143_CHIP_ID, 17): /* note: 43143 does not support tristate */ i = ARRAY_SIZE(sdiod_drvstr_tab2_3v3) - 1; if (drivestrength >= sdiod_drvstr_tab2_3v3[i].strength) { str_tab = sdiod_drvstr_tab2_3v3; str_mask = 0x00000007; str_shift = 0; } else brcmf_err("Invalid SDIO Drive strength for chip %s, strength=%d\n", ci->name, drivestrength); break; case SDIOD_DRVSTR_KEY(BRCM_CC_43362_CHIP_ID, 13): str_tab = sdiod_drive_strength_tab5_1v8; str_mask = 0x00003800; str_shift = 11; break; default: brcmf_dbg(INFO, "No SDIO driver strength init needed for chip %s rev %d pmurev %d\n", ci->name, ci->chiprev, ci->pmurev); break; } if (str_tab != NULL) { struct brcmf_core *pmu = brcmf_chip_get_pmu(ci); for (i = 0; str_tab[i].strength != 0; i++) { if (drivestrength >= str_tab[i].strength) { drivestrength_sel = str_tab[i].sel; break; } } addr = CORE_CC_REG(pmu->base, chipcontrol_addr); brcmf_sdiod_writel(sdiodev, addr, 1, NULL); cc_data_temp = brcmf_sdiod_readl(sdiodev, addr, NULL); cc_data_temp &= ~str_mask; drivestrength_sel <<= str_shift; cc_data_temp |= drivestrength_sel; brcmf_sdiod_writel(sdiodev, addr, cc_data_temp, NULL); brcmf_dbg(INFO, "SDIO: %d mA (req=%d mA) drive strength selected, set to 0x%08x\n", str_tab[i].strength, drivestrength, cc_data_temp); } } static int brcmf_sdio_buscoreprep(void *ctx) { struct brcmf_sdio_dev *sdiodev = ctx; int err = 0; u8 clkval, clkset; /* Try forcing SDIO core to do ALPAvail request only */ clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ; brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); if (err) { brcmf_err("error writing for HT off\n"); return err; } /* If register supported, wait for ALPAvail and then force ALP */ /* This may take up to 15 milliseconds */ clkval = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, NULL); if ((clkval & ~SBSDIO_AVBITS) != clkset) { brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n", clkset, clkval); return -EACCES; } SPINWAIT(((clkval = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)), PMU_MAX_TRANSITION_DLY); if (!SBSDIO_ALPAV(clkval)) { brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n", clkval); return -EBUSY; } clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP; brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); udelay(65); /* Also, disable the extra SDIO pull-ups */ brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL); return 0; } static void brcmf_sdio_buscore_activate(void *ctx, struct brcmf_chip *chip, u32 rstvec) { struct brcmf_sdio_dev *sdiodev = ctx; struct brcmf_core *core = sdiodev->bus->sdio_core; u32 reg_addr; /* clear all interrupts */ reg_addr = core->base + SD_REG(intstatus); brcmf_sdiod_writel(sdiodev, reg_addr, 0xFFFFFFFF, NULL); if (rstvec) /* Write reset vector to address 0 */ brcmf_sdiod_ramrw(sdiodev, true, 0, (void *)&rstvec, sizeof(rstvec)); } static u32 brcmf_sdio_buscore_read32(void *ctx, u32 addr) { struct brcmf_sdio_dev *sdiodev = ctx; u32 val, rev; val = brcmf_sdiod_readl(sdiodev, addr, NULL); /* * this is a bit of special handling if reading the chipcommon chipid * register. The 4339 is a next-gen of the 4335. It uses the same * SDIO device id as 4335 and the chipid register returns 4335 as well. * It can be identified as 4339 by looking at the chip revision. It * is corrected here so the chip.c module has the right info. */ if (addr == CORE_CC_REG(SI_ENUM_BASE, chipid) && (sdiodev->func1->device == SDIO_DEVICE_ID_BROADCOM_4339 || sdiodev->func1->device == SDIO_DEVICE_ID_BROADCOM_4335_4339)) { rev = (val & CID_REV_MASK) >> CID_REV_SHIFT; if (rev >= 2) { val &= ~CID_ID_MASK; val |= BRCM_CC_4339_CHIP_ID; } } return val; } static void brcmf_sdio_buscore_write32(void *ctx, u32 addr, u32 val) { struct brcmf_sdio_dev *sdiodev = ctx; brcmf_sdiod_writel(sdiodev, addr, val, NULL); } static const struct brcmf_buscore_ops brcmf_sdio_buscore_ops = { .prepare = brcmf_sdio_buscoreprep, .activate = brcmf_sdio_buscore_activate, .read32 = brcmf_sdio_buscore_read32, .write32 = brcmf_sdio_buscore_write32, }; static bool brcmf_sdio_probe_attach(struct brcmf_sdio *bus) { struct brcmf_sdio_dev *sdiodev; u8 clkctl = 0; int err = 0; int reg_addr; u32 reg_val; u32 drivestrength; sdiodev = bus->sdiodev; sdio_claim_host(sdiodev->func1); pr_debug("F1 signature read @0x18000000=0x%4x\n", brcmf_sdiod_readl(sdiodev, SI_ENUM_BASE, NULL)); /* * Force PLL off until brcmf_chip_attach() * programs PLL control regs */ brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, BRCMF_INIT_CLKCTL1, &err); if (!err) clkctl = brcmf_sdiod_readb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) { brcmf_err("ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n", err, BRCMF_INIT_CLKCTL1, clkctl); goto fail; } bus->ci = brcmf_chip_attach(sdiodev, &brcmf_sdio_buscore_ops); if (IS_ERR(bus->ci)) { brcmf_err("brcmf_chip_attach failed!\n"); bus->ci = NULL; goto fail; } /* Pick up the SDIO core info struct from chip.c */ bus->sdio_core = brcmf_chip_get_core(bus->ci, BCMA_CORE_SDIO_DEV); if (!bus->sdio_core) goto fail; /* Pick up the CHIPCOMMON core info struct, for bulk IO in bcmsdh.c */ sdiodev->cc_core = brcmf_chip_get_core(bus->ci, BCMA_CORE_CHIPCOMMON); if (!sdiodev->cc_core) goto fail; sdiodev->settings = brcmf_get_module_param(sdiodev->dev, BRCMF_BUSTYPE_SDIO, bus->ci->chip, bus->ci->chiprev); if (!sdiodev->settings) { brcmf_err("Failed to get device parameters\n"); goto fail; } /* platform specific configuration: * alignments must be at least 4 bytes for ADMA */ bus->head_align = ALIGNMENT; bus->sgentry_align = ALIGNMENT; if (sdiodev->settings->bus.sdio.sd_head_align > ALIGNMENT) bus->head_align = sdiodev->settings->bus.sdio.sd_head_align; if (sdiodev->settings->bus.sdio.sd_sgentry_align > ALIGNMENT) bus->sgentry_align = sdiodev->settings->bus.sdio.sd_sgentry_align; /* allocate scatter-gather table. sg support * will be disabled upon allocation failure. */ brcmf_sdiod_sgtable_alloc(sdiodev); #ifdef CONFIG_PM_SLEEP /* wowl can be supported when KEEP_POWER is true and (WAKE_SDIO_IRQ * is true or when platform data OOB irq is true). */ if ((sdio_get_host_pm_caps(sdiodev->func1) & MMC_PM_KEEP_POWER) && ((sdio_get_host_pm_caps(sdiodev->func1) & MMC_PM_WAKE_SDIO_IRQ) || (sdiodev->settings->bus.sdio.oob_irq_supported))) sdiodev->bus_if->wowl_supported = true; #endif if (brcmf_sdio_kso_init(bus)) { brcmf_err("error enabling KSO\n"); goto fail; } if (sdiodev->settings->bus.sdio.drive_strength) drivestrength = sdiodev->settings->bus.sdio.drive_strength; else drivestrength = DEFAULT_SDIO_DRIVE_STRENGTH; brcmf_sdio_drivestrengthinit(sdiodev, bus->ci, drivestrength); /* Set card control so an SDIO card reset does a WLAN backplane reset */ reg_val = brcmf_sdiod_func0_rb(sdiodev, SDIO_CCCR_BRCM_CARDCTRL, &err); if (err) goto fail; reg_val |= SDIO_CCCR_BRCM_CARDCTRL_WLANRESET; brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_BRCM_CARDCTRL, reg_val, &err); if (err) goto fail; /* set PMUControl so a backplane reset does PMU state reload */ reg_addr = CORE_CC_REG(brcmf_chip_get_pmu(bus->ci)->base, pmucontrol); reg_val = brcmf_sdiod_readl(sdiodev, reg_addr, &err); if (err) goto fail; reg_val |= (BCMA_CC_PMU_CTL_RES_RELOAD << BCMA_CC_PMU_CTL_RES_SHIFT); brcmf_sdiod_writel(sdiodev, reg_addr, reg_val, &err); if (err) goto fail; sdio_release_host(sdiodev->func1); brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN); /* allocate header buffer */ bus->hdrbuf = kzalloc(MAX_HDR_READ + bus->head_align, GFP_KERNEL); if (!bus->hdrbuf) return false; /* Locate an appropriately-aligned portion of hdrbuf */ bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0], bus->head_align); /* Set the poll and/or interrupt flags */ bus->intr = true; bus->poll = false; if (bus->poll) bus->pollrate = 1; return true; fail: sdio_release_host(sdiodev->func1); return false; } static int brcmf_sdio_watchdog_thread(void *data) { struct brcmf_sdio *bus = (struct brcmf_sdio *)data; int wait; allow_signal(SIGTERM); /* Run until signal received */ brcmf_sdiod_freezer_count(bus->sdiodev); while (1) { if (kthread_should_stop()) break; brcmf_sdiod_freezer_uncount(bus->sdiodev); wait = wait_for_completion_interruptible(&bus->watchdog_wait); brcmf_sdiod_freezer_count(bus->sdiodev); brcmf_sdiod_try_freeze(bus->sdiodev); if (!wait) { brcmf_sdio_bus_watchdog(bus); /* Count the tick for reference */ bus->sdcnt.tickcnt++; reinit_completion(&bus->watchdog_wait); } else break; } return 0; } static void brcmf_sdio_watchdog(struct timer_list *t) { struct brcmf_sdio *bus = from_timer(bus, t, timer); if (bus->watchdog_tsk) { complete(&bus->watchdog_wait); /* Reschedule the watchdog */ if (bus->wd_active) mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL); } } static int brcmf_sdio_get_fwname(struct device *dev, const char *ext, u8 *fw_name) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_fw_request *fwreq; struct brcmf_fw_name fwnames[] = { { ext, fw_name }, }; fwreq = brcmf_fw_alloc_request(bus_if->chip, bus_if->chiprev, brcmf_sdio_fwnames, ARRAY_SIZE(brcmf_sdio_fwnames), fwnames, ARRAY_SIZE(fwnames)); if (!fwreq) return -ENOMEM; kfree(fwreq); return 0; } static const struct brcmf_bus_ops brcmf_sdio_bus_ops = { .stop = brcmf_sdio_bus_stop, .preinit = brcmf_sdio_bus_preinit, .txdata = brcmf_sdio_bus_txdata, .txctl = brcmf_sdio_bus_txctl, .rxctl = brcmf_sdio_bus_rxctl, .gettxq = brcmf_sdio_bus_gettxq, .wowl_config = brcmf_sdio_wowl_config, .get_ramsize = brcmf_sdio_bus_get_ramsize, .get_memdump = brcmf_sdio_bus_get_memdump, .get_fwname = brcmf_sdio_get_fwname, }; #define BRCMF_SDIO_FW_CODE 0 #define BRCMF_SDIO_FW_NVRAM 1 static void brcmf_sdio_firmware_callback(struct device *dev, int err, struct brcmf_fw_request *fwreq) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiod = bus_if->bus_priv.sdio; struct brcmf_sdio *bus = sdiod->bus; struct brcmf_core *core = bus->sdio_core; const struct firmware *code; void *nvram; u32 nvram_len; u8 saveclk; brcmf_dbg(TRACE, "Enter: dev=%s, err=%d\n", dev_name(dev), err); if (err) goto fail; code = fwreq->items[BRCMF_SDIO_FW_CODE].binary; nvram = fwreq->items[BRCMF_SDIO_FW_NVRAM].nv_data.data; nvram_len = fwreq->items[BRCMF_SDIO_FW_NVRAM].nv_data.len; kfree(fwreq); /* try to download image and nvram to the dongle */ bus->alp_only = true; err = brcmf_sdio_download_firmware(bus, code, nvram, nvram_len); if (err) goto fail; bus->alp_only = false; /* Start the watchdog timer */ bus->sdcnt.tickcnt = 0; brcmf_sdio_wd_timer(bus, true); sdio_claim_host(sdiod->func1); /* Make sure backplane clock is on, needed to generate F2 interrupt */ brcmf_sdio_clkctl(bus, CLK_AVAIL, false); if (bus->clkstate != CLK_AVAIL) goto release; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = brcmf_sdiod_readb(sdiod, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { brcmf_sdiod_writeb(sdiod, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { brcmf_err("Failed to force clock for F2: err %d\n", err); goto release; } /* Enable function 2 (frame transfers) */ brcmf_sdiod_writel(sdiod, core->base + SD_REG(tosbmailboxdata), SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT, NULL); err = sdio_enable_func(sdiod->func2); brcmf_dbg(INFO, "enable F2: err=%d\n", err); /* If F2 successfully enabled, set core and enable interrupts */ if (!err) { /* Set up the interrupt mask and enable interrupts */ bus->hostintmask = HOSTINTMASK; brcmf_sdiod_writel(sdiod, core->base + SD_REG(hostintmask), bus->hostintmask, NULL); brcmf_sdiod_writeb(sdiod, SBSDIO_WATERMARK, 8, &err); } else { /* Disable F2 again */ sdio_disable_func(sdiod->func2); goto release; } if (brcmf_chip_sr_capable(bus->ci)) { brcmf_sdio_sr_init(bus); } else { /* Restore previous clock setting */ brcmf_sdiod_writeb(sdiod, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err); } if (err == 0) { /* Allow full data communication using DPC from now on. */ brcmf_sdiod_change_state(bus->sdiodev, BRCMF_SDIOD_DATA); err = brcmf_sdiod_intr_register(sdiod); if (err != 0) brcmf_err("intr register failed:%d\n", err); } /* If we didn't come up, turn off backplane clock */ if (err != 0) brcmf_sdio_clkctl(bus, CLK_NONE, false); sdio_release_host(sdiod->func1); /* Assign bus interface call back */ sdiod->bus_if->dev = sdiod->dev; sdiod->bus_if->ops = &brcmf_sdio_bus_ops; sdiod->bus_if->chip = bus->ci->chip; sdiod->bus_if->chiprev = bus->ci->chiprev; /* Attach to the common layer, reserve hdr space */ err = brcmf_attach(sdiod->dev, sdiod->settings); if (err != 0) { brcmf_err("brcmf_attach failed\n"); goto fail; } /* ready */ return; release: sdio_release_host(sdiod->func1); fail: brcmf_dbg(TRACE, "failed: dev=%s, err=%d\n", dev_name(dev), err); device_release_driver(&sdiod->func2->dev); device_release_driver(dev); } static struct brcmf_fw_request * brcmf_sdio_prepare_fw_request(struct brcmf_sdio *bus) { struct brcmf_fw_request *fwreq; struct brcmf_fw_name fwnames[] = { { ".bin", bus->sdiodev->fw_name }, { ".txt", bus->sdiodev->nvram_name }, }; fwreq = brcmf_fw_alloc_request(bus->ci->chip, bus->ci->chiprev, brcmf_sdio_fwnames, ARRAY_SIZE(brcmf_sdio_fwnames), fwnames, ARRAY_SIZE(fwnames)); if (!fwreq) return NULL; fwreq->items[BRCMF_SDIO_FW_CODE].type = BRCMF_FW_TYPE_BINARY; fwreq->items[BRCMF_SDIO_FW_NVRAM].type = BRCMF_FW_TYPE_NVRAM; return fwreq; } struct brcmf_sdio *brcmf_sdio_probe(struct brcmf_sdio_dev *sdiodev) { int ret; struct brcmf_sdio *bus; struct workqueue_struct *wq; struct brcmf_fw_request *fwreq; brcmf_dbg(TRACE, "Enter\n"); /* Allocate private bus interface state */ bus = kzalloc(sizeof(struct brcmf_sdio), GFP_ATOMIC); if (!bus) goto fail; bus->sdiodev = sdiodev; sdiodev->bus = bus; skb_queue_head_init(&bus->glom); bus->txbound = BRCMF_TXBOUND; bus->rxbound = BRCMF_RXBOUND; bus->txminmax = BRCMF_TXMINMAX; bus->tx_seq = SDPCM_SEQ_WRAP - 1; /* single-threaded workqueue */ wq = alloc_ordered_workqueue("brcmf_wq/%s", WQ_MEM_RECLAIM, dev_name(&sdiodev->func1->dev)); if (!wq) { brcmf_err("insufficient memory to create txworkqueue\n"); goto fail; } brcmf_sdiod_freezer_count(sdiodev); INIT_WORK(&bus->datawork, brcmf_sdio_dataworker); bus->brcmf_wq = wq; /* attempt to attach to the dongle */ if (!(brcmf_sdio_probe_attach(bus))) { brcmf_err("brcmf_sdio_probe_attach failed\n"); goto fail; } spin_lock_init(&bus->rxctl_lock); spin_lock_init(&bus->txq_lock); init_waitqueue_head(&bus->ctrl_wait); init_waitqueue_head(&bus->dcmd_resp_wait); /* Set up the watchdog timer */ timer_setup(&bus->timer, brcmf_sdio_watchdog, 0); /* Initialize watchdog thread */ init_completion(&bus->watchdog_wait); bus->watchdog_tsk = kthread_run(brcmf_sdio_watchdog_thread, bus, "brcmf_wdog/%s", dev_name(&sdiodev->func1->dev)); if (IS_ERR(bus->watchdog_tsk)) { pr_warn("brcmf_watchdog thread failed to start\n"); bus->watchdog_tsk = NULL; } /* Initialize DPC thread */ bus->dpc_triggered = false; bus->dpc_running = false; /* default sdio bus header length for tx packet */ bus->tx_hdrlen = SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN; /* Query the F2 block size, set roundup accordingly */ bus->blocksize = bus->sdiodev->func2->cur_blksize; bus->roundup = min(max_roundup, bus->blocksize); sdio_claim_host(bus->sdiodev->func1); /* Disable F2 to clear any intermediate frame state on the dongle */ sdio_disable_func(bus->sdiodev->func2); bus->rxflow = false; /* Done with backplane-dependent accesses, can drop clock... */ brcmf_sdiod_writeb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); sdio_release_host(bus->sdiodev->func1); /* ...and initialize clock/power states */ bus->clkstate = CLK_SDONLY; bus->idletime = BRCMF_IDLE_INTERVAL; bus->idleclock = BRCMF_IDLE_ACTIVE; /* SR state */ bus->sr_enabled = false; brcmf_dbg(INFO, "completed!!\n"); fwreq = brcmf_sdio_prepare_fw_request(bus); if (!fwreq) { ret = -ENOMEM; goto fail; } ret = brcmf_fw_get_firmwares(sdiodev->dev, fwreq, brcmf_sdio_firmware_callback); if (ret != 0) { brcmf_err("async firmware request failed: %d\n", ret); kfree(fwreq); goto fail; } return bus; fail: brcmf_sdio_remove(bus); return NULL; } /* Detach and free everything */ void brcmf_sdio_remove(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus) { /* De-register interrupt handler */ brcmf_sdiod_intr_unregister(bus->sdiodev); brcmf_detach(bus->sdiodev->dev); cancel_work_sync(&bus->datawork); if (bus->brcmf_wq) destroy_workqueue(bus->brcmf_wq); if (bus->ci) { if (bus->sdiodev->state != BRCMF_SDIOD_NOMEDIUM) { sdio_claim_host(bus->sdiodev->func1); brcmf_sdio_wd_timer(bus, false); brcmf_sdio_clkctl(bus, CLK_AVAIL, false); /* Leave the device in state where it is * 'passive'. This is done by resetting all * necessary cores. */ msleep(20); brcmf_chip_set_passive(bus->ci); brcmf_sdio_clkctl(bus, CLK_NONE, false); sdio_release_host(bus->sdiodev->func1); } brcmf_chip_detach(bus->ci); } if (bus->sdiodev->settings) brcmf_release_module_param(bus->sdiodev->settings); kfree(bus->rxbuf); kfree(bus->hdrbuf); kfree(bus); } brcmf_dbg(TRACE, "Disconnected\n"); } void brcmf_sdio_wd_timer(struct brcmf_sdio *bus, bool active) { /* Totally stop the timer */ if (!active && bus->wd_active) { del_timer_sync(&bus->timer); bus->wd_active = false; return; } /* don't start the wd until fw is loaded */ if (bus->sdiodev->state != BRCMF_SDIOD_DATA) return; if (active) { if (!bus->wd_active) { /* Create timer again when watchdog period is dynamically changed or in the first instance */ bus->timer.expires = jiffies + BRCMF_WD_POLL; add_timer(&bus->timer); bus->wd_active = true; } else { /* Re arm the timer, at last watchdog period */ mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL); } } } int brcmf_sdio_sleep(struct brcmf_sdio *bus, bool sleep) { int ret; sdio_claim_host(bus->sdiodev->func1); ret = brcmf_sdio_bus_sleep(bus, sleep, false); sdio_release_host(bus->sdiodev->func1); return ret; }