/* * Copyright (c) 2004 Video54 Technologies, Inc. * Copyright (c) 2004-2009 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" static const struct ath_rate_table ar5416_11na_ratetable = { 42, { { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 0, 0, 0, 0, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 1, 1, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 2, 2, 2, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 3, 3, 3, 3, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 4, 4, 4, 4, 4, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 5, 5, 5, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 6, 6, 6, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 7, 7, 7, 7, 0 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 0, 8, 24, 8, 24, 3216 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 2, 9, 25, 9, 25, 6434 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 2, 10, 26, 10, 26, 9650 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 4, 11, 27, 11, 27, 12868 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 4, 12, 28, 12, 28, 19304 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 4, 13, 29, 13, 29, 25740 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 4, 14, 30, 14, 30, 28956 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 4, 15, 31, 15, 32, 32180 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 3, 16, 33, 16, 33, 6430 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 2, 17, 34, 17, 34, 12860 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 2, 18, 35, 18, 35, 19300 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 4, 19, 36, 19, 36, 25736 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 4, 20, 37, 20, 37, 38600 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 4, 21, 38, 21, 38, 51472 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 4, 22, 39, 22, 39, 57890 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 4, 23, 40, 23, 41, 64320 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 0, 8, 24, 24, 24, 6684 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 2, 9, 25, 25, 25, 13368 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 2, 10, 26, 26, 26, 20052 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 4, 11, 27, 27, 27, 26738 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 4, 12, 28, 28, 28, 40104 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 4, 13, 29, 29, 29, 53476 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */ 102700, 0x86, 0x00, 6, 4, 14, 30, 30, 30, 60156 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 4, 15, 31, 32, 32, 66840 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ 122000, 0x87, 0x00, 7, 4, 15, 31, 32, 32, 74200 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 0, 16, 33, 33, 33, 13360 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 2, 17, 34, 34, 34, 26720 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 2, 18, 35, 35, 35, 40080 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 4, 19, 36, 36, 36, 53440 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 4, 20, 37, 37, 37, 80160 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 4, 21, 38, 38, 38, 106880 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 4, 22, 39, 39, 39, 120240 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 4, 23, 40, 41, 41, 133600 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 4, 23, 40, 41, 41, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; /* 4ms frame limit not used for NG mode. The values filled * for HT are the 64K max aggregate limit */ static const struct ath_rate_table ar5416_11ng_ratetable = { 46, { { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 0, 0, 0, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 1, 1, 1, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 2, 2, 2, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 3, 3, 3, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 4, 4, 4, 4, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 5, 5, 5, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10100, 0x0a, 0x00, 24, 6, 6, 6, 6, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 14100, 0x0e, 0x00, 36, 6, 7, 7, 7, 7, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17700, 0x09, 0x00, 48, 8, 8, 8, 8, 8, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23700, 0x0d, 0x00, 72, 8, 9, 9, 9, 9, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 10, 10, 10, 10, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 30900, 0x0c, 0x00, 108, 8, 11, 11, 11, 11, 0 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 4, 12, 28, 12, 28, 3216 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 6, 13, 29, 13, 29, 6434 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 6, 14, 30, 14, 30, 9650 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 8, 15, 31, 15, 31, 12868 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 8, 16, 32, 16, 32, 19304 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 8, 17, 33, 17, 33, 25740 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 8, 18, 34, 18, 34, 28956 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 8, 19, 35, 19, 36, 32180 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 4, 20, 37, 20, 37, 6430 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 6, 21, 38, 21, 38, 12860 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 6, 22, 39, 22, 39, 19300 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 8, 23, 40, 23, 40, 25736 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 8, 24, 41, 24, 41, 38600 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 8, 25, 42, 25, 42, 51472 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 8, 26, 43, 26, 44, 57890 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 8, 27, 44, 27, 45, 64320 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 8, 12, 28, 28, 28, 6684 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 8, 13, 29, 29, 29, 13368 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 8, 14, 30, 30, 30, 20052 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 8, 15, 31, 31, 31, 26738 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 8, 16, 32, 32, 32, 40104 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 8, 17, 33, 33, 33, 53476 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */ 102700, 0x86, 0x00, 6, 8, 18, 34, 34, 34, 60156 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 8, 19, 35, 36, 36, 66840 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ 122000, 0x87, 0x00, 7, 8, 19, 35, 36, 36, 74200 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 8, 20, 37, 37, 37, 13360 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 8, 21, 38, 38, 38, 26720 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 8, 22, 39, 39, 39, 40080 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 8, 23, 40, 40, 40, 53440 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 8, 24, 41, 41, 41, 80160 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 8, 25, 42, 42, 42, 106880 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 8, 26, 43, 43, 43, 120240 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 8, 27, 44, 45, 45, 133600 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 8, 27, 44, 45, 45, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; static const struct ath_rate_table ar5416_11a_ratetable = { 8, { { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, (0x80|12), 0, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, (0x80|24), 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 3, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, (0x80|48), 4, 4, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 7, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static const struct ath_rate_table ar5416_11g_ratetable = { 12, { { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 4, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 6, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 6, 7, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 8, 8, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 8, 9, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 10, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 8, 11, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static inline int8_t median(int8_t a, int8_t b, int8_t c) { if (a >= b) { if (b >= c) return b; else if (a > c) return c; else return a; } else { if (a >= c) return a; else if (b >= c) return c; else return b; } } static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv) { u8 i, j, idx, idx_next; for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) { for (j = 0; j <= i-1; j++) { idx = ath_rc_priv->valid_rate_index[j]; idx_next = ath_rc_priv->valid_rate_index[j+1]; if (rate_table->info[idx].ratekbps > rate_table->info[idx_next].ratekbps) { ath_rc_priv->valid_rate_index[j] = idx_next; ath_rc_priv->valid_rate_index[j+1] = idx; } } } } static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv) { u8 i; for (i = 0; i < ath_rc_priv->rate_table_size; i++) ath_rc_priv->valid_rate_index[i] = 0; } static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv, u8 index, int valid_tx_rate) { ASSERT(index <= ath_rc_priv->rate_table_size); ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0; } static inline int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, u8 cur_valid_txrate, u8 *next_idx) { u8 i; for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) { if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { *next_idx = ath_rc_priv->valid_rate_index[i+1]; return 1; } } /* No more valid rates */ *next_idx = 0; return 0; } /* Return true only for single stream */ static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) { if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG)) return 0; if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) return 0; if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) return 0; if (!ignore_cw && WLAN_RC_PHY_HT(phy)) if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) return 0; if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) return 0; return 1; } static inline int ath_rc_get_lower_rix(const struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, u8 cur_valid_txrate, u8 *next_idx) { int8_t i; for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) { if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { *next_idx = ath_rc_priv->valid_rate_index[i-1]; return 1; } } return 0; } static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv, const struct ath_rate_table *rate_table, u32 capflag) { u8 i, hi = 0; u32 valid; for (i = 0; i < rate_table->rate_cnt; i++) { valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? rate_table->info[i].valid_single_stream : rate_table->info[i].valid); if (valid == 1) { u32 phy = rate_table->info[i].phy; u8 valid_rate_count = 0; if (!ath_rc_valid_phyrate(phy, capflag, 0)) continue; valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i; ath_rc_priv->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(ath_rc_priv, i, 1); hi = A_MAX(hi, i); } } return hi; } static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, const struct ath_rate_table *rate_table, struct ath_rateset *rateset, u32 capflag) { u8 i, j, hi = 0; /* Use intersection of working rates and valid rates */ for (i = 0; i < rateset->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { u32 phy = rate_table->info[j].phy; u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); u8 rate = rateset->rs_rates[i]; u8 dot11rate = rate_table->info[j].dot11rate; /* We allow a rate only if its valid and the * capflag matches one of the validity * (VALID/VALID_20/VALID_40) flags */ if (((rate & 0x7F) == (dot11rate & 0x7F)) && ((valid & WLAN_RC_CAP_MODE(capflag)) == WLAN_RC_CAP_MODE(capflag)) && !WLAN_RC_PHY_HT(phy)) { u8 valid_rate_count = 0; if (!ath_rc_valid_phyrate(phy, capflag, 0)) continue; valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; ath_rc_priv->valid_phy_rateidx[phy] [valid_rate_count] = j; ath_rc_priv->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(ath_rc_priv, j, 1); hi = A_MAX(hi, j); } } } return hi; } static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv, const struct ath_rate_table *rate_table, u8 *mcs_set, u32 capflag) { struct ath_rateset *rateset = (struct ath_rateset *)mcs_set; u8 i, j, hi = 0; /* Use intersection of working rates and valid rates */ for (i = 0; i < rateset->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { u32 phy = rate_table->info[j].phy; u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); u8 rate = rateset->rs_rates[i]; u8 dot11rate = rate_table->info[j].dot11rate; if (((rate & 0x7F) != (dot11rate & 0x7F)) || !WLAN_RC_PHY_HT(phy) || !WLAN_RC_PHY_HT_VALID(valid, capflag)) continue; if (!ath_rc_valid_phyrate(phy, capflag, 0)) continue; ath_rc_priv->valid_phy_rateidx[phy] [ath_rc_priv->valid_phy_ratecnt[phy]] = j; ath_rc_priv->valid_phy_ratecnt[phy] += 1; ath_rc_set_valid_txmask(ath_rc_priv, j, 1); hi = A_MAX(hi, j); } } return hi; } /* Finds the highest rate index we can use */ static u8 ath_rc_get_highest_rix(struct ath_softc *sc, struct ath_rate_priv *ath_rc_priv, const struct ath_rate_table *rate_table, int *is_probing) { u32 best_thruput, this_thruput, now_msec; u8 rate, next_rate, best_rate, maxindex, minindex; int8_t index = 0; now_msec = jiffies_to_msecs(jiffies); *is_probing = 0; best_thruput = 0; maxindex = ath_rc_priv->max_valid_rate-1; minindex = 0; best_rate = minindex; /* * Try the higher rate first. It will reduce memory moving time * if we have very good channel characteristics. */ for (index = maxindex; index >= minindex ; index--) { u8 per_thres; rate = ath_rc_priv->valid_rate_index[index]; if (rate > ath_rc_priv->rate_max_phy) continue; /* * For TCP the average collision rate is around 11%, * so we ignore PERs less than this. This is to * prevent the rate we are currently using (whose * PER might be in the 10-15 range because of TCP * collisions) looking worse than the next lower * rate whose PER has decayed close to 0. If we * used to next lower rate, its PER would grow to * 10-15 and we would be worse off then staying * at the current rate. */ per_thres = ath_rc_priv->state[rate].per; if (per_thres < 12) per_thres = 12; this_thruput = rate_table->info[rate].user_ratekbps * (100 - per_thres); if (best_thruput <= this_thruput) { best_thruput = this_thruput; best_rate = rate; } } rate = best_rate; /* * Must check the actual rate (ratekbps) to account for * non-monoticity of 11g's rate table */ if (rate >= ath_rc_priv->rate_max_phy) { rate = ath_rc_priv->rate_max_phy; /* Probe the next allowed phy state */ if (ath_rc_get_nextvalid_txrate(rate_table, ath_rc_priv, rate, &next_rate) && (now_msec - ath_rc_priv->probe_time > rate_table->probe_interval) && (ath_rc_priv->hw_maxretry_pktcnt >= 1)) { rate = next_rate; ath_rc_priv->probe_rate = rate; ath_rc_priv->probe_time = now_msec; ath_rc_priv->hw_maxretry_pktcnt = 0; *is_probing = 1; } } if (rate > (ath_rc_priv->rate_table_size - 1)) rate = ath_rc_priv->rate_table_size - 1; if (rate_table->info[rate].valid && (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)) return rate; if (rate_table->info[rate].valid_single_stream && !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)); return rate; /* This should not happen */ WARN_ON(1); rate = ath_rc_priv->valid_rate_index[0]; return rate; } static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table, struct ieee80211_tx_rate *rate, struct ieee80211_tx_rate_control *txrc, u8 tries, u8 rix, int rtsctsenable) { rate->count = tries; rate->idx = rix; if (txrc->short_preamble) rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE; if (txrc->rts || rtsctsenable) rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS; if (WLAN_RC_PHY_40(rate_table->info[rix].phy)) rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy)) rate->flags |= IEEE80211_TX_RC_SHORT_GI; if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) rate->flags |= IEEE80211_TX_RC_MCS; } static void ath_rc_rate_set_rtscts(struct ath_softc *sc, const struct ath_rate_table *rate_table, struct ieee80211_tx_info *tx_info) { struct ieee80211_tx_rate *rates = tx_info->control.rates; int i = 0, rix = 0, cix, enable_g_protection = 0; /* get the cix for the lowest valid rix */ for (i = 3; i >= 0; i--) { if (rates[i].count && (rates[i].idx >= 0)) { rix = rates[i].idx; break; } } cix = rate_table->info[rix].ctrl_rate; /* All protection frames are transmited at 2Mb/s for 802.11g, * otherwise we transmit them at 1Mb/s */ if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ && !conf_is_ht(&sc->hw->conf)) enable_g_protection = 1; /* * If 802.11g protection is enabled, determine whether to use RTS/CTS or * just CTS. Note that this is only done for OFDM/HT unicast frames. */ if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) && (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM || WLAN_RC_PHY_HT(rate_table->info[rix].phy))) { rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT; cix = rate_table->info[enable_g_protection].ctrl_rate; } tx_info->control.rts_cts_rate_idx = cix; } static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { struct ath_softc *sc = priv; struct ath_rate_priv *ath_rc_priv = priv_sta; const struct ath_rate_table *rate_table; struct sk_buff *skb = txrc->skb; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_rate *rates = tx_info->control.rates; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; u8 try_per_rate, i = 0, rix, nrix; int is_probe = 0; if (rate_control_send_low(sta, priv_sta, txrc)) return; /* * For Multi Rate Retry we use a different number of * retry attempt counts. This ends up looking like this: * * MRR[0] = 2 * MRR[1] = 2 * MRR[2] = 2 * MRR[3] = 4 * */ try_per_rate = sc->hw->max_rate_tries; rate_table = sc->cur_rate_table; rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe); nrix = rix; if (is_probe) { /* set one try for probe rates. For the * probes don't enable rts */ ath_rc_rate_set_series(rate_table, &rates[i++], txrc, 1, nrix, 0); /* Get the next tried/allowed rate. No RTS for the next series * after the probe rate */ ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix); ath_rc_rate_set_series(rate_table, &rates[i++], txrc, try_per_rate, nrix, 0); tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; } else { /* Set the choosen rate. No RTS for first series entry. */ ath_rc_rate_set_series(rate_table, &rates[i++], txrc, try_per_rate, nrix, 0); } /* Fill in the other rates for multirate retry */ for ( ; i < 4; i++) { /* Use twice the number of tries for the last MRR segment. */ if (i + 1 == 4) try_per_rate = 4; ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix); /* All other rates in the series have RTS enabled */ ath_rc_rate_set_series(rate_table, &rates[i], txrc, try_per_rate, nrix, 1); } /* * NB:Change rate series to enable aggregation when operating * at lower MCS rates. When first rate in series is MCS2 * in HT40 @ 2.4GHz, series should look like: * * {MCS2, MCS1, MCS0, MCS0}. * * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should * look like: * * {MCS3, MCS2, MCS1, MCS1} * * So, set fourth rate in series to be same as third one for * above conditions. */ if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) && (conf_is_ht(&sc->hw->conf))) { u8 dot11rate = rate_table->info[rix].dot11rate; u8 phy = rate_table->info[rix].phy; if (i == 4 && ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { rates[3].idx = rates[2].idx; rates[3].flags = rates[2].flags; } } /* * Force hardware to use computed duration for next * fragment by disabling multi-rate retry, which * updates duration based on the multi-rate duration table. * * FIXME: Fix duration */ if (ieee80211_has_morefrags(fc) || (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { rates[1].count = rates[2].count = rates[3].count = 0; rates[1].idx = rates[2].idx = rates[3].idx = 0; rates[0].count = ATH_TXMAXTRY; } /* Setup RTS/CTS */ ath_rc_rate_set_rtscts(sc, rate_table, tx_info); } static bool ath_rc_update_per(struct ath_softc *sc, const struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, struct ath_tx_info_priv *tx_info_priv, int tx_rate, int xretries, int retries, u32 now_msec) { bool state_change = false; int count; u8 last_per; static u32 nretry_to_per_lookup[10] = { 100 * 0 / 1, 100 * 1 / 4, 100 * 1 / 2, 100 * 3 / 4, 100 * 4 / 5, 100 * 5 / 6, 100 * 6 / 7, 100 * 7 / 8, 100 * 8 / 9, 100 * 9 / 10 }; last_per = ath_rc_priv->state[tx_rate].per; if (xretries) { if (xretries == 1) { ath_rc_priv->state[tx_rate].per += 30; if (ath_rc_priv->state[tx_rate].per > 100) ath_rc_priv->state[tx_rate].per = 100; } else { /* xretries == 2 */ count = ARRAY_SIZE(nretry_to_per_lookup); if (retries >= count) retries = count - 1; /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ ath_rc_priv->state[tx_rate].per = (u8)(last_per - (last_per >> 3) + (100 >> 3)); } /* xretries == 1 or 2 */ if (ath_rc_priv->probe_rate == tx_rate) ath_rc_priv->probe_rate = 0; } else { /* xretries == 0 */ count = ARRAY_SIZE(nretry_to_per_lookup); if (retries >= count) retries = count - 1; if (tx_info_priv->n_bad_frames) { /* new_PER = 7/8*old_PER + 1/8*(currentPER) * Assuming that n_frames is not 0. The current PER * from the retries is 100 * retries / (retries+1), * since the first retries attempts failed, and the * next one worked. For the one that worked, * n_bad_frames subframes out of n_frames wored, * so the PER for that part is * 100 * n_bad_frames / n_frames, and it contributes * 100 * n_bad_frames / (n_frames * (retries+1)) to * the above PER. The expression below is a * simplified version of the sum of these two terms. */ if (tx_info_priv->n_frames > 0) { int n_frames, n_bad_frames; u8 cur_per, new_per; n_bad_frames = retries * tx_info_priv->n_frames + tx_info_priv->n_bad_frames; n_frames = tx_info_priv->n_frames * (retries + 1); cur_per = (100 * n_bad_frames / n_frames) >> 3; new_per = (u8)(last_per - (last_per >> 3) + cur_per); ath_rc_priv->state[tx_rate].per = new_per; } } else { ath_rc_priv->state[tx_rate].per = (u8)(last_per - (last_per >> 3) + (nretry_to_per_lookup[retries] >> 3)); } /* * If we got at most one retry then increase the max rate if * this was a probe. Otherwise, ignore the probe. */ if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) { if (retries > 0 || 2 * tx_info_priv->n_bad_frames > tx_info_priv->n_frames) { /* * Since we probed with just a single attempt, * any retries means the probe failed. Also, * if the attempt worked, but more than half * the subframes were bad then also consider * the probe a failure. */ ath_rc_priv->probe_rate = 0; } else { u8 probe_rate = 0; ath_rc_priv->rate_max_phy = ath_rc_priv->probe_rate; probe_rate = ath_rc_priv->probe_rate; if (ath_rc_priv->state[probe_rate].per > 30) ath_rc_priv->state[probe_rate].per = 20; ath_rc_priv->probe_rate = 0; /* * Since this probe succeeded, we allow the next * probe twice as soon. This allows the maxRate * to move up faster if the probes are * succesful. */ ath_rc_priv->probe_time = now_msec - rate_table->probe_interval / 2; } } if (retries > 0) { /* * Don't update anything. We don't know if * this was because of collisions or poor signal. */ ath_rc_priv->hw_maxretry_pktcnt = 0; } else { /* * It worked with no retries. First ignore bogus (small) * rssi_ack values. */ if (tx_rate == ath_rc_priv->rate_max_phy && ath_rc_priv->hw_maxretry_pktcnt < 255) { ath_rc_priv->hw_maxretry_pktcnt++; } } } return state_change; } /* Update PER, RSSI and whatever else that the code thinks it is doing. If you can make sense of all this, you really need to go out more. */ static void ath_rc_update_ht(struct ath_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_tx_info_priv *tx_info_priv, int tx_rate, int xretries, int retries) { u32 now_msec = jiffies_to_msecs(jiffies); int rate; u8 last_per; bool state_change = false; const struct ath_rate_table *rate_table = sc->cur_rate_table; int size = ath_rc_priv->rate_table_size; if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt)) return; last_per = ath_rc_priv->state[tx_rate].per; /* Update PER first */ state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv, tx_info_priv, tx_rate, xretries, retries, now_msec); /* * If this rate looks bad (high PER) then stop using it for * a while (except if we are probing). */ if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 && rate_table->info[tx_rate].ratekbps <= rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) { ath_rc_get_lower_rix(rate_table, ath_rc_priv, (u8)tx_rate, &ath_rc_priv->rate_max_phy); /* Don't probe for a little while. */ ath_rc_priv->probe_time = now_msec; } /* Make sure the rates below this have lower PER */ /* Monotonicity is kept only for rates below the current rate. */ if (ath_rc_priv->state[tx_rate].per < last_per) { for (rate = tx_rate - 1; rate >= 0; rate--) { if (rate_table->info[rate].phy != rate_table->info[tx_rate].phy) break; if (ath_rc_priv->state[rate].per > ath_rc_priv->state[rate+1].per) { ath_rc_priv->state[rate].per = ath_rc_priv->state[rate+1].per; } } } /* Maintain monotonicity for rates above the current rate */ for (rate = tx_rate; rate < size - 1; rate++) { if (ath_rc_priv->state[rate+1].per < ath_rc_priv->state[rate].per) ath_rc_priv->state[rate+1].per = ath_rc_priv->state[rate].per; } /* Every so often, we reduce the thresholds * and PER (different for CCK and OFDM). */ if (now_msec - ath_rc_priv->per_down_time >= rate_table->rssi_reduce_interval) { for (rate = 0; rate < size; rate++) { ath_rc_priv->state[rate].per = 7 * ath_rc_priv->state[rate].per / 8; } ath_rc_priv->per_down_time = now_msec; } ath_debug_stat_retries(sc, tx_rate, xretries, retries, ath_rc_priv->state[tx_rate].per); } static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table, struct ieee80211_tx_rate *rate) { int rix; if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && (rate->flags & IEEE80211_TX_RC_SHORT_GI)) rix = rate_table->info[rate->idx].ht_index; else if (rate->flags & IEEE80211_TX_RC_SHORT_GI) rix = rate_table->info[rate->idx].sgi_index; else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) rix = rate_table->info[rate->idx].cw40index; else rix = rate_table->info[rate->idx].base_index; return rix; } static void ath_rc_tx_status(struct ath_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ieee80211_tx_info *tx_info, int final_ts_idx, int xretries, int long_retry) { struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); const struct ath_rate_table *rate_table; struct ieee80211_tx_rate *rates = tx_info->status.rates; u8 flags; u32 i = 0, rix; rate_table = sc->cur_rate_table; /* * If the first rate is not the final index, there * are intermediate rate failures to be processed. */ if (final_ts_idx != 0) { /* Process intermediate rates that failed.*/ for (i = 0; i < final_ts_idx ; i++) { if (rates[i].count != 0 && (rates[i].idx >= 0)) { flags = rates[i].flags; /* If HT40 and we have switched mode from * 40 to 20 => don't update */ if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG)) return; rix = ath_rc_get_rateindex(rate_table, &rates[i]); ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix, xretries ? 1 : 2, rates[i].count); } } } else { /* * Handle the special case of MIMO PS burst, where the second * aggregate is sent out with only one rate and one try. * Treating it as an excessive retry penalizes the rate * inordinately. */ if (rates[0].count == 1 && xretries == 1) xretries = 2; } flags = rates[i].flags; /* If HT40 and we have switched mode from 40 to 20 => don't update */ if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) && !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG)) return; rix = ath_rc_get_rateindex(rate_table, &rates[i]); ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix, xretries, long_retry); } static const struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc, enum ieee80211_band band, bool is_ht, bool is_cw_40) { int mode = 0; switch(band) { case IEEE80211_BAND_2GHZ: mode = ATH9K_MODE_11G; if (is_ht) mode = ATH9K_MODE_11NG_HT20; if (is_cw_40) mode = ATH9K_MODE_11NG_HT40PLUS; break; case IEEE80211_BAND_5GHZ: mode = ATH9K_MODE_11A; if (is_ht) mode = ATH9K_MODE_11NA_HT20; if (is_cw_40) mode = ATH9K_MODE_11NA_HT40PLUS; break; default: DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n"); return NULL; } BUG_ON(mode >= ATH9K_MODE_MAX); DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode); return sc->hw_rate_table[mode]; } static void ath_rc_init(struct ath_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, const struct ath_rate_table *rate_table) { struct ath_rateset *rateset = &ath_rc_priv->neg_rates; u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates; u8 i, j, k, hi = 0, hthi = 0; if (!rate_table) { DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n"); return; } /* Initial rate table size. Will change depending * on the working rate set */ ath_rc_priv->rate_table_size = RATE_TABLE_SIZE; /* Initialize thresholds according to the global rate table */ for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) { ath_rc_priv->state[i].per = 0; } /* Determine the valid rates */ ath_rc_init_valid_txmask(ath_rc_priv); for (i = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < MAX_TX_RATE_PHY; j++) ath_rc_priv->valid_phy_rateidx[i][j] = 0; ath_rc_priv->valid_phy_ratecnt[i] = 0; } if (!rateset->rs_nrates) { /* No working rate, just initialize valid rates */ hi = ath_rc_init_validrates(ath_rc_priv, rate_table, ath_rc_priv->ht_cap); } else { /* Use intersection of working rates and valid rates */ hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table, rateset, ath_rc_priv->ht_cap); if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) { hthi = ath_rc_setvalid_htrates(ath_rc_priv, rate_table, ht_mcs, ath_rc_priv->ht_cap); } hi = A_MAX(hi, hthi); } ath_rc_priv->rate_table_size = hi + 1; ath_rc_priv->rate_max_phy = 0; ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) { ath_rc_priv->valid_rate_index[k++] = ath_rc_priv->valid_phy_rateidx[i][j]; } if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) || !ath_rc_priv->valid_phy_ratecnt[i]) continue; ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1]; } ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); ASSERT(k <= RATE_TABLE_SIZE); ath_rc_priv->max_valid_rate = k; ath_rc_sort_validrates(rate_table, ath_rc_priv); ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4]; sc->cur_rate_table = rate_table; DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n", ath_rc_priv->ht_cap); } static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta, bool is_cw40, bool is_sgi40) { u8 caps = 0; if (sta->ht_cap.ht_supported) { caps = WLAN_RC_HT_FLAG; if (sc->sc_ah->caps.tx_chainmask != 1 && ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) { if (sta->ht_cap.mcs.rx_mask[1]) caps |= WLAN_RC_DS_FLAG; } if (is_cw40) caps |= WLAN_RC_40_FLAG; if (is_sgi40) caps |= WLAN_RC_SGI_FLAG; } return caps; } /***********************************/ /* mac80211 Rate Control callbacks */ /***********************************/ static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { struct ath_softc *sc = priv; struct ath_rate_priv *ath_rc_priv = priv_sta; struct ath_tx_info_priv *tx_info_priv = NULL; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; int final_ts_idx, tx_status = 0, is_underrun = 0; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; tx_info_priv = ATH_TX_INFO_PRIV(tx_info); final_ts_idx = tx_info_priv->tx.ts_rateindex; if (!priv_sta || !ieee80211_is_data(fc) || !tx_info_priv->update_rc) goto exit; if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT) goto exit; /* * If underrun error is seen assume it as an excessive retry only * if prefetch trigger level have reached the max (0x3f for 5416) * Adjust the long retry as if the frame was tried hw->max_rate_tries * times. This affects how ratectrl updates PER for the failed rate. */ if (tx_info_priv->tx.ts_flags & (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) { tx_status = 1; is_underrun = 1; } if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) tx_status = 1; ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status, (is_underrun) ? sc->hw->max_rate_tries : tx_info_priv->tx.ts_longretry); /* Check if aggregation has to be enabled for this tid */ if (conf_is_ht(&sc->hw->conf) && !(skb->protocol == cpu_to_be16(ETH_P_PAE))) { if (ieee80211_is_data_qos(fc)) { u8 *qc, tid; struct ath_node *an; qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; an = (struct ath_node *)sta->drv_priv; if(ath_tx_aggr_check(sc, an, tid)) ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid); } } ath_debug_stat_rc(sc, skb); exit: kfree(tx_info_priv); } static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta) { struct ath_softc *sc = priv; struct ath_rate_priv *ath_rc_priv = priv_sta; const struct ath_rate_table *rate_table = NULL; bool is_cw40, is_sgi40; int i, j = 0; for (i = 0; i < sband->n_bitrates; i++) { if (sta->supp_rates[sband->band] & BIT(i)) { ath_rc_priv->neg_rates.rs_rates[j] = (sband->bitrates[i].bitrate * 2) / 10; j++; } } ath_rc_priv->neg_rates.rs_nrates = j; if (sta->ht_cap.ht_supported) { for (i = 0, j = 0; i < 77; i++) { if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8))) ath_rc_priv->neg_ht_rates.rs_rates[j++] = i; if (j == ATH_RATE_MAX) break; } ath_rc_priv->neg_ht_rates.rs_nrates = j; } is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40; is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40; /* Choose rate table first */ if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) || (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) || (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) { rate_table = ath_choose_rate_table(sc, sband->band, sta->ht_cap.ht_supported, is_cw40); } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) { /* cur_rate_table would be set on init through config() */ rate_table = sc->cur_rate_table; } ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40); ath_rc_init(sc, priv_sta, sband, sta, rate_table); } static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, u32 changed) { struct ath_softc *sc = priv; struct ath_rate_priv *ath_rc_priv = priv_sta; const struct ath_rate_table *rate_table = NULL; bool oper_cw40 = false, oper_sgi40; bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ? true : false; bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ? true : false; /* FIXME: Handle AP mode later when we support CWM */ if (changed & IEEE80211_RC_HT_CHANGED) { if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION) return; if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS || sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS) oper_cw40 = true; oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? true : false; if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) { rate_table = ath_choose_rate_table(sc, sband->band, sta->ht_cap.ht_supported, oper_cw40); ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, oper_cw40, oper_sgi40); ath_rc_init(sc, priv_sta, sband, sta, rate_table); DPRINTF(sc, ATH_DBG_CONFIG, "Operating HT Bandwidth changed to: %d\n", sc->hw->conf.channel_type); } } } static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { struct ath_wiphy *aphy = hw->priv; return aphy->sc; } static void ath_rate_free(void *priv) { return; } static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct ath_softc *sc = priv; struct ath_rate_priv *rate_priv; rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp); if (!rate_priv) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to allocate private rc structure\n"); return NULL; } rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max; return rate_priv; } static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { struct ath_rate_priv *rate_priv = priv_sta; kfree(rate_priv); } static struct rate_control_ops ath_rate_ops = { .module = NULL, .name = "ath9k_rate_control", .tx_status = ath_tx_status, .get_rate = ath_get_rate, .rate_init = ath_rate_init, .rate_update = ath_rate_update, .alloc = ath_rate_alloc, .free = ath_rate_free, .alloc_sta = ath_rate_alloc_sta, .free_sta = ath_rate_free_sta, }; void ath_rate_attach(struct ath_softc *sc) { sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable; } int ath_rate_control_register(void) { return ieee80211_rate_control_register(&ath_rate_ops); } void ath_rate_control_unregister(void) { ieee80211_rate_control_unregister(&ath_rate_ops); }