/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2007-2008 Matthew W. S. Bell * Copyright (c) 2007-2008 Luis Rodriguez * Copyright (c) 2007-2008 Pavel Roskin * Copyright (c) 2007-2008 Jiri Slaby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /*********************************\ * Protocol Control Unit Functions * \*********************************/ #include #include "ath5k.h" #include "reg.h" #include "debug.h" #include "base.h" /*******************\ * Generic functions * \*******************/ /** * ath5k_hw_set_opmode - Set PCU operating mode * * @ah: The &struct ath5k_hw * @op_mode: &enum nl80211_iftype operating mode * * Initialize PCU for the various operating modes (AP/STA etc) */ int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode) { struct ath_common *common = ath5k_hw_common(ah); u32 pcu_reg, beacon_reg, low_id, high_id; ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_MODE, "mode %d\n", op_mode); /* Preserve rest settings */ pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0)); beacon_reg = 0; switch (op_mode) { case NL80211_IFTYPE_ADHOC: pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_ADHOC; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE; beacon_reg |= AR5K_BCR_AP; if (ah->ah_version == AR5K_AR5210) pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; else AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); break; case NL80211_IFTYPE_STATION: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_PWR_SV : 0); case NL80211_IFTYPE_MONITOR: pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE | (ah->ah_version == AR5K_AR5210 ? AR5K_STA_ID1_NO_PSPOLL : 0); break; default: return -EINVAL; } /* * Set PCU registers */ low_id = get_unaligned_le32(common->macaddr); high_id = get_unaligned_le16(common->macaddr + 4); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); /* * Set Beacon Control Register on 5210 */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); return 0; } /** * ath5k_hw_update - Update MIB counters (mac layer statistics) * * @ah: The &struct ath5k_hw * * Reads MIB counters from PCU and updates sw statistics. Is called after a * MIB interrupt, because one of these counters might have reached their maximum * and triggered the MIB interrupt, to let us read and clear the counter. * * Is called in interrupt context! */ void ath5k_hw_update_mib_counters(struct ath5k_hw *ah) { struct ath5k_statistics *stats = &ah->ah_sc->stats; /* Read-And-Clear */ stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK); stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); } /** * ath5k_hw_set_ack_bitrate - set bitrate for ACKs * * @ah: The &struct ath5k_hw * @high: Flag to determine if we want to use high transmission rate * for ACKs or not * * If high flag is set, we tell hw to use a set of control rates based on * the current transmission rate (check out control_rates array inside reset.c). * If not hw just uses the lowest rate available for the current modulation * scheme being used (1Mbit for CCK and 6Mbits for OFDM). */ void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high) { if (ah->ah_version != AR5K_AR5212) return; else { u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; if (high) AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); else AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); } } /******************\ * ACK/CTS Timeouts * \******************/ /** * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU * * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ static int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) { if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK)) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, ath5k_hw_htoclock(ah, timeout)); return 0; } /** * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU * * @ah: The &struct ath5k_hw * @timeout: Timeout in usec */ static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) { if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS)) <= timeout) return -EINVAL; AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, ath5k_hw_htoclock(ah, timeout)); return 0; } /** * ath5k_hw_htoclock - Translate usec to hw clock units * * @ah: The &struct ath5k_hw * @usec: value in microseconds */ unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec) { return usec * ath5k_hw_get_clockrate(ah); } /** * ath5k_hw_clocktoh - Translate hw clock units to usec * @clock: value in hw clock units */ unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock) { return clock / ath5k_hw_get_clockrate(ah); } /** * ath5k_hw_get_clockrate - Get the clock rate for current mode * * @ah: The &struct ath5k_hw */ unsigned int ath5k_hw_get_clockrate(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; int clock; if (channel->hw_value & CHANNEL_5GHZ) clock = 40; /* 802.11a */ else if (channel->hw_value & CHANNEL_CCK) clock = 22; /* 802.11b */ else clock = 44; /* 802.11g */ /* Clock rate in turbo modes is twice the normal rate */ if (channel->hw_value & CHANNEL_TURBO) clock *= 2; return clock; } /** * ath5k_hw_get_default_slottime - Get the default slot time for current mode * * @ah: The &struct ath5k_hw */ static unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; if (channel->hw_value & CHANNEL_TURBO) return 6; /* both turbo modes */ if (channel->hw_value & CHANNEL_CCK) return 20; /* 802.11b */ return 9; /* 802.11 a/g */ } /** * ath5k_hw_get_default_sifs - Get the default SIFS for current mode * * @ah: The &struct ath5k_hw */ static unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah) { struct ieee80211_channel *channel = ah->ah_current_channel; if (channel->hw_value & CHANNEL_TURBO) return 8; /* both turbo modes */ if (channel->hw_value & CHANNEL_5GHZ) return 16; /* 802.11a */ return 10; /* 802.11 b/g */ } /** * ath5k_hw_set_lladdr - Set station id * * @ah: The &struct ath5k_hw * @mac: The card's mac address * * Set station id on hw using the provided mac address */ int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) { struct ath_common *common = ath5k_hw_common(ah); u32 low_id, high_id; u32 pcu_reg; /* Set new station ID */ memcpy(common->macaddr, mac, ETH_ALEN); pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; low_id = get_unaligned_le32(mac); high_id = get_unaligned_le16(mac + 4); ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); return 0; } /** * ath5k_hw_set_bssid - Set current BSSID on hw * * @ah: The &struct ath5k_hw * * Sets the current BSSID and BSSID mask we have from the * common struct into the hardware */ void ath5k_hw_set_bssid(struct ath5k_hw *ah) { struct ath_common *common = ath5k_hw_common(ah); u16 tim_offset = 0; /* * Set BSSID mask on 5212 */ if (ah->ah_version == AR5K_AR5212) ath_hw_setbssidmask(common); /* * Set BSSID */ ath5k_hw_reg_write(ah, get_unaligned_le32(common->curbssid), AR5K_BSS_ID0); ath5k_hw_reg_write(ah, get_unaligned_le16(common->curbssid + 4) | ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1); if (common->curaid == 0) { ath5k_hw_disable_pspoll(ah); return; } AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, tim_offset ? tim_offset + 4 : 0); ath5k_hw_enable_pspoll(ah, NULL, 0); } void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) { struct ath_common *common = ath5k_hw_common(ah); /* Cache bssid mask so that we can restore it * on reset */ memcpy(common->bssidmask, mask, ETH_ALEN); if (ah->ah_version == AR5K_AR5212) ath_hw_setbssidmask(common); } /************\ * RX Control * \************/ /** * ath5k_hw_start_rx_pcu - Start RX engine * * @ah: The &struct ath5k_hw * * Starts RX engine on PCU so that hw can process RXed frames * (ACK etc). * * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma */ void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) { AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /** * at5k_hw_stop_rx_pcu - Stop RX engine * * @ah: The &struct ath5k_hw * * Stops RX engine on PCU * * TODO: Detach ANI here */ void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) { AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); } /* * Set multicast filter */ void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) { ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); } /** * ath5k_hw_get_rx_filter - Get current rx filter * * @ah: The &struct ath5k_hw * * Returns the RX filter by reading rx filter and * phy error filter registers. RX filter is used * to set the allowed frame types that PCU will accept * and pass to the driver. For a list of frame types * check out reg.h. */ u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) { u32 data, filter = 0; filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); /*Radar detection for 5212*/ if (ah->ah_version == AR5K_AR5212) { data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); if (data & AR5K_PHY_ERR_FIL_RADAR) filter |= AR5K_RX_FILTER_RADARERR; if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) filter |= AR5K_RX_FILTER_PHYERR; } return filter; } /** * ath5k_hw_set_rx_filter - Set rx filter * * @ah: The &struct ath5k_hw * @filter: RX filter mask (see reg.h) * * Sets RX filter register and also handles PHY error filter * register on 5212 and newer chips so that we have proper PHY * error reporting. */ void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) { u32 data = 0; /* Set PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) { if (filter & AR5K_RX_FILTER_RADARERR) data |= AR5K_PHY_ERR_FIL_RADAR; if (filter & AR5K_RX_FILTER_PHYERR) data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; } /* * The AR5210 uses promiscous mode to detect radar activity */ if (ah->ah_version == AR5K_AR5210 && (filter & AR5K_RX_FILTER_RADARERR)) { filter &= ~AR5K_RX_FILTER_RADARERR; filter |= AR5K_RX_FILTER_PROM; } /*Zero length DMA (phy error reporting) */ if (data) AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); else AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); /*Write RX Filter register*/ ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); /*Write PHY error filter register on 5212*/ if (ah->ah_version == AR5K_AR5212) ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); } /****************\ * Beacon control * \****************/ #define ATH5K_MAX_TSF_READ 10 /** * ath5k_hw_get_tsf64 - Get the full 64bit TSF * * @ah: The &struct ath5k_hw * * Returns the current TSF */ u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah) { u32 tsf_lower, tsf_upper1, tsf_upper2; int i; /* * While reading TSF upper and then lower part, the clock is still * counting (or jumping in case of IBSS merge) so we might get * inconsistent values. To avoid this, we read the upper part again * and check it has not been changed. We make the hypothesis that a * maximum of 3 changes can happens in a row (we use 10 as a safe * value). * * Impact on performance is pretty small, since in most cases, only * 3 register reads are needed. */ tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); for (i = 0; i < ATH5K_MAX_TSF_READ; i++) { tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32); tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); if (tsf_upper2 == tsf_upper1) break; tsf_upper1 = tsf_upper2; } WARN_ON( i == ATH5K_MAX_TSF_READ ); return (((u64)tsf_upper1 << 32) | tsf_lower); } /** * ath5k_hw_set_tsf64 - Set a new 64bit TSF * * @ah: The &struct ath5k_hw * @tsf64: The new 64bit TSF * * Sets the new TSF */ void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64) { ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32); ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32); } /** * ath5k_hw_reset_tsf - Force a TSF reset * * @ah: The &struct ath5k_hw * * Forces a TSF reset on PCU */ void ath5k_hw_reset_tsf(struct ath5k_hw *ah) { u32 val; val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; /* * Each write to the RESET_TSF bit toggles a hardware internal * signal to reset TSF, but if left high it will cause a TSF reset * on the next chip reset as well. Thus we always write the value * twice to clear the signal. */ ath5k_hw_reg_write(ah, val, AR5K_BEACON); ath5k_hw_reg_write(ah, val, AR5K_BEACON); } /* * Initialize beacon timers */ void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval) { u32 timer1, timer2, timer3; /* * Set the additional timers by mode */ switch (ah->ah_sc->opmode) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_STATION: /* In STA mode timer1 is used as next wakeup * timer and timer2 as next CFP duration start * timer. Both in 1/8TUs. */ /* TODO: PCF handling */ if (ah->ah_version == AR5K_AR5210) { timer1 = 0xffffffff; timer2 = 0xffffffff; } else { timer1 = 0x0000ffff; timer2 = 0x0007ffff; } /* Mark associated AP as PCF incapable for now */ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF); break; case NL80211_IFTYPE_ADHOC: AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM); default: /* On non-STA modes timer1 is used as next DMA * beacon alert (DBA) timer and timer2 as next * software beacon alert. Both in 1/8TUs. */ timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; break; } /* Timer3 marks the end of our ATIM window * a zero length window is not allowed because * we 'll get no beacons */ timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1); /* * Set the beacon register and enable all timers. */ /* When in AP or Mesh Point mode zero timer0 to start TSF */ if (ah->ah_sc->opmode == NL80211_IFTYPE_AP || ah->ah_sc->opmode == NL80211_IFTYPE_MESH_POINT) ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); /* Force a TSF reset if requested and enable beacons */ if (interval & AR5K_BEACON_RESET_TSF) ath5k_hw_reset_tsf(ah); ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | AR5K_BEACON_ENABLE), AR5K_BEACON); /* Flush any pending BMISS interrupts on ISR by * performing a clear-on-write operation on PISR * register for the BMISS bit (writing a bit on * ISR togles a reset for that bit and leaves * the rest bits intact) */ if (ah->ah_version == AR5K_AR5210) ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR); else ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR); /* TODO: Set enchanced sleep registers on AR5212 * based on vif->bss_conf params, until then * disable power save reporting.*/ AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV); } /*********************\ * Key table functions * \*********************/ /* * Reset a key entry on the table */ int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry) { unsigned int i, type; u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry)); for (i = 0; i < AR5K_KEYCACHE_SIZE; i++) ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i)); /* Reset associated MIC entry if TKIP * is enabled located at offset (entry + 64) */ if (type == AR5K_KEYTABLE_TYPE_TKIP) { AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE); for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++) ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(micentry, i)); } /* * Set NULL encryption on AR5212+ * * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5) * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007 * * Note2: Windows driver (ndiswrapper) sets this to * 0x00000714 instead of 0x00000007 */ if (ah->ah_version >= AR5K_AR5211) { ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(entry)); if (type == AR5K_KEYTABLE_TYPE_TKIP) { ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(micentry)); } } return 0; } static int ath5k_keycache_type(const struct ieee80211_key_conf *key) { switch (key->cipher) { case WLAN_CIPHER_SUITE_TKIP: return AR5K_KEYTABLE_TYPE_TKIP; case WLAN_CIPHER_SUITE_CCMP: return AR5K_KEYTABLE_TYPE_CCM; case WLAN_CIPHER_SUITE_WEP40: return AR5K_KEYTABLE_TYPE_40; case WLAN_CIPHER_SUITE_WEP104: return AR5K_KEYTABLE_TYPE_104; default: return -EINVAL; } } /* * Set a key entry on the table */ int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, const struct ieee80211_key_conf *key, const u8 *mac) { unsigned int i; int keylen; __le32 key_v[5] = {}; __le32 key0 = 0, key1 = 0; __le32 *rxmic, *txmic; int keytype; u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET; bool is_tkip; const u8 *key_ptr; is_tkip = (key->cipher == WLAN_CIPHER_SUITE_TKIP); /* * key->keylen comes in from mac80211 in bytes. * TKIP is 128 bit + 128 bit mic */ keylen = (is_tkip) ? (128 / 8) : key->keylen; if (entry > AR5K_KEYTABLE_SIZE || (is_tkip && micentry > AR5K_KEYTABLE_SIZE)) return -EOPNOTSUPP; if (unlikely(keylen > 16)) return -EOPNOTSUPP; keytype = ath5k_keycache_type(key); if (keytype < 0) return keytype; /* * each key block is 6 bytes wide, written as pairs of * alternating 32 and 16 bit le values. */ key_ptr = key->key; for (i = 0; keylen >= 6; keylen -= 6) { memcpy(&key_v[i], key_ptr, 6); i += 2; key_ptr += 6; } if (keylen) memcpy(&key_v[i], key_ptr, keylen); /* intentionally corrupt key until mic is installed */ if (is_tkip) { key0 = key_v[0] = ~key_v[0]; key1 = key_v[1] = ~key_v[1]; } for (i = 0; i < ARRAY_SIZE(key_v); i++) ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), AR5K_KEYTABLE_OFF(entry, i)); ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry)); if (is_tkip) { /* Install rx/tx MIC */ rxmic = (__le32 *) &key->key[16]; txmic = (__le32 *) &key->key[24]; if (ah->ah_combined_mic) { key_v[0] = rxmic[0]; key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16); key_v[2] = rxmic[1]; key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff); key_v[4] = txmic[1]; } else { key_v[0] = rxmic[0]; key_v[1] = 0; key_v[2] = rxmic[1]; key_v[3] = 0; key_v[4] = 0; } for (i = 0; i < ARRAY_SIZE(key_v); i++) ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), AR5K_KEYTABLE_OFF(micentry, i)); ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, AR5K_KEYTABLE_TYPE(micentry)); ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry)); ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry)); /* restore first 2 words of key */ ath5k_hw_reg_write(ah, le32_to_cpu(~key0), AR5K_KEYTABLE_OFF(entry, 0)); ath5k_hw_reg_write(ah, le32_to_cpu(~key1), AR5K_KEYTABLE_OFF(entry, 1)); } return ath5k_hw_set_key_lladdr(ah, entry, mac); } int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac) { u32 low_id, high_id; /* Invalid entry (key table overflow) */ AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); /* * MAC may be NULL if it's a broadcast key. In this case no need to * to compute get_unaligned_le32 and get_unaligned_le16 as we * already know it. */ if (!mac) { low_id = 0xffffffff; high_id = 0xffff | AR5K_KEYTABLE_VALID; } else { low_id = get_unaligned_le32(mac); high_id = get_unaligned_le16(mac + 4) | AR5K_KEYTABLE_VALID; } ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry)); ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry)); return 0; } /** * ath5k_hw_set_coverage_class - Set IEEE 802.11 coverage class * * @ah: The &struct ath5k_hw * @coverage_class: IEEE 802.11 coverage class number * * Sets slot time, ACK timeout and CTS timeout for given coverage class. */ void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class) { /* As defined by IEEE 802.11-2007 17.3.8.6 */ int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class; int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time; int cts_timeout = ack_timeout; ath5k_hw_set_slot_time(ah, slot_time); ath5k_hw_set_ack_timeout(ah, ack_timeout); ath5k_hw_set_cts_timeout(ah, cts_timeout); ah->ah_coverage_class = coverage_class; }