/* * Intel Wireless WiMAX Connection 2400m * Linux driver model glue for USB device, reset & fw upload * * * Copyright (C) 2007-2008 Intel Corporation * Inaky Perez-Gonzalez * Yanir Lubetkin * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * * See i2400m-usb.h for a general description of this driver. * * This file implements driver model glue, and hook ups for the * generic driver to implement the bus-specific functions (device * communication setup/tear down, firmware upload and resetting). * * ROADMAP * * i2400mu_probe() * alloc_netdev()... * i2400mu_netdev_setup() * i2400mu_init() * i2400m_netdev_setup() * i2400m_setup()... * * i2400mu_disconnect * i2400m_release() * free_netdev() * * i2400mu_suspend() * i2400m_cmd_enter_powersave() * i2400mu_notification_release() * * i2400mu_resume() * i2400mu_notification_setup() * * i2400mu_bus_dev_start() Called by i2400m_dev_start() [who is * i2400mu_tx_setup() called by i2400m_setup()] * i2400mu_rx_setup() * i2400mu_notification_setup() * * i2400mu_bus_dev_stop() Called by i2400m_dev_stop() [who is * i2400mu_notification_release() called by i2400m_release()] * i2400mu_rx_release() * i2400mu_tx_release() * * i2400mu_bus_reset() Called by i2400m_reset * __i2400mu_reset() * __i2400mu_send_barker() * usb_reset_device() */ #include "i2400m-usb.h" #include #include #include #define D_SUBMODULE usb #include "usb-debug-levels.h" static char i2400mu_debug_params[128]; module_param_string(debug, i2400mu_debug_params, sizeof(i2400mu_debug_params), 0644); MODULE_PARM_DESC(debug, "String of space-separated NAME:VALUE pairs, where NAMEs " "are the different debug submodules and VALUE are the " "initial debug value to set."); /* Our firmware file name */ static const char *i2400mu_bus_fw_names_5x50[] = { #define I2400MU_FW_FILE_NAME_v1_5 "i2400m-fw-usb-1.5.sbcf" I2400MU_FW_FILE_NAME_v1_5, #define I2400MU_FW_FILE_NAME_v1_4 "i2400m-fw-usb-1.4.sbcf" I2400MU_FW_FILE_NAME_v1_4, NULL, }; static const char *i2400mu_bus_fw_names_6050[] = { #define I6050U_FW_FILE_NAME_v1_5 "i6050-fw-usb-1.5.sbcf" I6050U_FW_FILE_NAME_v1_5, NULL, }; static int i2400mu_bus_dev_start(struct i2400m *i2400m) { int result; struct i2400mu *i2400mu = container_of(i2400m, struct i2400mu, i2400m); struct device *dev = &i2400mu->usb_iface->dev; d_fnstart(3, dev, "(i2400m %p)\n", i2400m); result = i2400mu_tx_setup(i2400mu); if (result < 0) goto error_usb_tx_setup; result = i2400mu_rx_setup(i2400mu); if (result < 0) goto error_usb_rx_setup; result = i2400mu_notification_setup(i2400mu); if (result < 0) goto error_notif_setup; d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); return result; error_notif_setup: i2400mu_rx_release(i2400mu); error_usb_rx_setup: i2400mu_tx_release(i2400mu); error_usb_tx_setup: d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); return result; } static void i2400mu_bus_dev_stop(struct i2400m *i2400m) { struct i2400mu *i2400mu = container_of(i2400m, struct i2400mu, i2400m); struct device *dev = &i2400mu->usb_iface->dev; d_fnstart(3, dev, "(i2400m %p)\n", i2400m); i2400mu_notification_release(i2400mu); i2400mu_rx_release(i2400mu); i2400mu_tx_release(i2400mu); d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); } /* * Sends a barker buffer to the device * * This helper will allocate a kmalloced buffer and use it to transmit * (then free it). Reason for this is that other arches cannot use * stack/vmalloc/text areas for DMA transfers. * * Error recovery here is simpler: anything is considered a hard error * and will move the reset code to use a last-resort bus-based reset. */ static int __i2400mu_send_barker(struct i2400mu *i2400mu, const __le32 *barker, size_t barker_size, unsigned endpoint) { struct usb_endpoint_descriptor *epd = NULL; int pipe, actual_len, ret; struct device *dev = &i2400mu->usb_iface->dev; void *buffer; int do_autopm = 1; ret = usb_autopm_get_interface(i2400mu->usb_iface); if (ret < 0) { dev_err(dev, "RESET: can't get autopm: %d\n", ret); do_autopm = 0; } ret = -ENOMEM; buffer = kmalloc(barker_size, GFP_KERNEL); if (buffer == NULL) goto error_kzalloc; epd = usb_get_epd(i2400mu->usb_iface, endpoint); pipe = usb_sndbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress); memcpy(buffer, barker, barker_size); retry: ret = usb_bulk_msg(i2400mu->usb_dev, pipe, buffer, barker_size, &actual_len, 200); switch (ret) { case 0: if (actual_len != barker_size) { /* Too short? drop it */ dev_err(dev, "E: %s: short write (%d B vs %zu " "expected)\n", __func__, actual_len, barker_size); ret = -EIO; } break; case -EPIPE: /* * Stall -- maybe the device is choking with our * requests. Clear it and give it some time. If they * happen to often, it might be another symptom, so we * reset. * * No error handling for usb_clear_halt(0; if it * works, the retry works; if it fails, this switch * does the error handling for us. */ if (edc_inc(&i2400mu->urb_edc, 10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "E: %s: too many stalls in " "URB; resetting device\n", __func__); usb_queue_reset_device(i2400mu->usb_iface); /* fallthrough */ } else { usb_clear_halt(i2400mu->usb_dev, pipe); msleep(10); /* give the device some time */ goto retry; } case -EINVAL: /* while removing driver */ case -ENODEV: /* dev disconnect ... */ case -ENOENT: /* just ignore it */ case -ESHUTDOWN: /* and exit */ case -ECONNRESET: ret = -ESHUTDOWN; break; default: /* Some error? */ if (edc_inc(&i2400mu->urb_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "E: %s: maximum errors in URB " "exceeded; resetting device\n", __func__); usb_queue_reset_device(i2400mu->usb_iface); } else { dev_warn(dev, "W: %s: cannot send URB: %d\n", __func__, ret); goto retry; } } kfree(buffer); error_kzalloc: if (do_autopm) usb_autopm_put_interface(i2400mu->usb_iface); return ret; } /* * Reset a device at different levels (warm, cold or bus) * * @i2400m: device descriptor * @reset_type: soft, warm or bus reset (I2400M_RT_WARM/SOFT/BUS) * * Warm and cold resets get a USB reset if they fail. * * Warm reset: * * The device will be fully reset internally, but won't be * disconnected from the USB bus (so no reenumeration will * happen). Firmware upload will be necessary. * * The device will send a reboot barker in the notification endpoint * that will trigger the driver to reinitialize the state * automatically from notif.c:i2400m_notification_grok() into * i2400m_dev_bootstrap_delayed(). * * Cold and bus (USB) reset: * * The device will be fully reset internally, disconnected from the * USB bus an a reenumeration will happen. Firmware upload will be * necessary. Thus, we don't do any locking or struct * reinitialization, as we are going to be fully disconnected and * reenumerated. * * Note we need to return -ENODEV if a warm reset was requested and we * had to resort to a bus reset. See i2400m_op_reset(), wimax_reset() * and wimax_dev->op_reset. * * WARNING: no driver state saved/fixed */ static int i2400mu_bus_reset(struct i2400m *i2400m, enum i2400m_reset_type rt) { int result; struct i2400mu *i2400mu = container_of(i2400m, struct i2400mu, i2400m); struct device *dev = i2400m_dev(i2400m); static const __le32 i2400m_WARM_BOOT_BARKER[4] = { cpu_to_le32(I2400M_WARM_RESET_BARKER), cpu_to_le32(I2400M_WARM_RESET_BARKER), cpu_to_le32(I2400M_WARM_RESET_BARKER), cpu_to_le32(I2400M_WARM_RESET_BARKER), }; static const __le32 i2400m_COLD_BOOT_BARKER[4] = { cpu_to_le32(I2400M_COLD_RESET_BARKER), cpu_to_le32(I2400M_COLD_RESET_BARKER), cpu_to_le32(I2400M_COLD_RESET_BARKER), cpu_to_le32(I2400M_COLD_RESET_BARKER), }; d_fnstart(3, dev, "(i2400m %p rt %u)\n", i2400m, rt); if (rt == I2400M_RT_WARM) result = __i2400mu_send_barker( i2400mu, i2400m_WARM_BOOT_BARKER, sizeof(i2400m_WARM_BOOT_BARKER), i2400mu->endpoint_cfg.bulk_out); else if (rt == I2400M_RT_COLD) result = __i2400mu_send_barker( i2400mu, i2400m_COLD_BOOT_BARKER, sizeof(i2400m_COLD_BOOT_BARKER), i2400mu->endpoint_cfg.reset_cold); else if (rt == I2400M_RT_BUS) { result = usb_reset_device(i2400mu->usb_dev); switch (result) { case 0: case -EINVAL: /* device is gone */ case -ENODEV: case -ENOENT: case -ESHUTDOWN: result = 0; break; /* We assume the device is disconnected */ default: dev_err(dev, "USB reset failed (%d), giving up!\n", result); } } else { result = -EINVAL; /* shut gcc up in certain arches */ BUG(); } if (result < 0 && result != -EINVAL /* device is gone */ && rt != I2400M_RT_BUS) { /* * Things failed -- resort to lower level reset, that * we queue in another context; the reason for this is * that the pre and post reset functionality requires * the i2400m->init_mutex; RT_WARM and RT_COLD can * come from areas where i2400m->init_mutex is taken. */ dev_err(dev, "%s reset failed (%d); trying USB reset\n", rt == I2400M_RT_WARM ? "warm" : "cold", result); usb_queue_reset_device(i2400mu->usb_iface); result = -ENODEV; } d_fnend(3, dev, "(i2400m %p rt %u) = %d\n", i2400m, rt, result); return result; } static void i2400mu_netdev_setup(struct net_device *net_dev) { struct i2400m *i2400m = net_dev_to_i2400m(net_dev); struct i2400mu *i2400mu = container_of(i2400m, struct i2400mu, i2400m); i2400mu_init(i2400mu); i2400m_netdev_setup(net_dev); } /* * Debug levels control; see debug.h */ struct d_level D_LEVEL[] = { D_SUBMODULE_DEFINE(usb), D_SUBMODULE_DEFINE(fw), D_SUBMODULE_DEFINE(notif), D_SUBMODULE_DEFINE(rx), D_SUBMODULE_DEFINE(tx), }; size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL); #define __debugfs_register(prefix, name, parent) \ do { \ result = d_level_register_debugfs(prefix, name, parent); \ if (result < 0) \ goto error; \ } while (0) static int i2400mu_debugfs_add(struct i2400mu *i2400mu) { int result; struct device *dev = &i2400mu->usb_iface->dev; struct dentry *dentry = i2400mu->i2400m.wimax_dev.debugfs_dentry; struct dentry *fd; dentry = debugfs_create_dir("i2400m-usb", dentry); result = PTR_ERR(dentry); if (IS_ERR(dentry)) { if (result == -ENODEV) result = 0; /* No debugfs support */ goto error; } i2400mu->debugfs_dentry = dentry; __debugfs_register("dl_", usb, dentry); __debugfs_register("dl_", fw, dentry); __debugfs_register("dl_", notif, dentry); __debugfs_register("dl_", rx, dentry); __debugfs_register("dl_", tx, dentry); /* Don't touch these if you don't know what you are doing */ fd = debugfs_create_u8("rx_size_auto_shrink", 0600, dentry, &i2400mu->rx_size_auto_shrink); result = PTR_ERR(fd); if (IS_ERR(fd) && result != -ENODEV) { dev_err(dev, "Can't create debugfs entry " "rx_size_auto_shrink: %d\n", result); goto error; } fd = debugfs_create_size_t("rx_size", 0600, dentry, &i2400mu->rx_size); result = PTR_ERR(fd); if (IS_ERR(fd) && result != -ENODEV) { dev_err(dev, "Can't create debugfs entry " "rx_size: %d\n", result); goto error; } return 0; error: debugfs_remove_recursive(i2400mu->debugfs_dentry); return result; } static struct device_type i2400mu_type = { .name = "wimax", }; /* * Probe a i2400m interface and register it * * @iface: USB interface to link to * @id: USB class/subclass/protocol id * @returns: 0 if ok, < 0 errno code on error. * * Alloc a net device, initialize the bus-specific details and then * calls the bus-generic initialization routine. That will register * the wimax and netdev devices, upload the firmware [using * _bus_bm_*()], call _bus_dev_start() to finalize the setup of the * communication with the device and then will start to talk to it to * finnish setting it up. */ static int i2400mu_probe(struct usb_interface *iface, const struct usb_device_id *id) { int result; struct net_device *net_dev; struct device *dev = &iface->dev; struct i2400m *i2400m; struct i2400mu *i2400mu; struct usb_device *usb_dev = interface_to_usbdev(iface); if (usb_dev->speed != USB_SPEED_HIGH) dev_err(dev, "device not connected as high speed\n"); /* Allocate instance [calls i2400m_netdev_setup() on it]. */ result = -ENOMEM; net_dev = alloc_netdev(sizeof(*i2400mu), "wmx%d", i2400mu_netdev_setup); if (net_dev == NULL) { dev_err(dev, "no memory for network device instance\n"); goto error_alloc_netdev; } SET_NETDEV_DEV(net_dev, dev); SET_NETDEV_DEVTYPE(net_dev, &i2400mu_type); i2400m = net_dev_to_i2400m(net_dev); i2400mu = container_of(i2400m, struct i2400mu, i2400m); i2400m->wimax_dev.net_dev = net_dev; i2400mu->usb_dev = usb_get_dev(usb_dev); i2400mu->usb_iface = iface; usb_set_intfdata(iface, i2400mu); i2400m->bus_tx_block_size = I2400MU_BLK_SIZE; /* * Room required in the Tx queue for USB message to accommodate * a smallest payload while allocating header space is 16 bytes. * Adding this room for the new tx message increases the * possibilities of including any payload with size <= 16 bytes. */ i2400m->bus_tx_room_min = I2400MU_BLK_SIZE; i2400m->bus_pl_size_max = I2400MU_PL_SIZE_MAX; i2400m->bus_setup = NULL; i2400m->bus_dev_start = i2400mu_bus_dev_start; i2400m->bus_dev_stop = i2400mu_bus_dev_stop; i2400m->bus_release = NULL; i2400m->bus_tx_kick = i2400mu_bus_tx_kick; i2400m->bus_reset = i2400mu_bus_reset; i2400m->bus_bm_retries = I2400M_USB_BOOT_RETRIES; i2400m->bus_bm_cmd_send = i2400mu_bus_bm_cmd_send; i2400m->bus_bm_wait_for_ack = i2400mu_bus_bm_wait_for_ack; i2400m->bus_bm_mac_addr_impaired = 0; switch (id->idProduct) { case USB_DEVICE_ID_I6050: case USB_DEVICE_ID_I6050_2: i2400mu->i6050 = 1; break; default: break; } if (i2400mu->i6050) { i2400m->bus_fw_names = i2400mu_bus_fw_names_6050; i2400mu->endpoint_cfg.bulk_out = 0; i2400mu->endpoint_cfg.notification = 3; i2400mu->endpoint_cfg.reset_cold = 2; i2400mu->endpoint_cfg.bulk_in = 1; } else { i2400m->bus_fw_names = i2400mu_bus_fw_names_5x50; i2400mu->endpoint_cfg.bulk_out = 0; i2400mu->endpoint_cfg.notification = 1; i2400mu->endpoint_cfg.reset_cold = 2; i2400mu->endpoint_cfg.bulk_in = 3; } #ifdef CONFIG_PM iface->needs_remote_wakeup = 1; /* autosuspend (15s delay) */ device_init_wakeup(dev, 1); usb_dev->autosuspend_delay = 15 * HZ; usb_dev->autosuspend_disabled = 0; #endif result = i2400m_setup(i2400m, I2400M_BRI_MAC_REINIT); if (result < 0) { dev_err(dev, "cannot setup device: %d\n", result); goto error_setup; } result = i2400mu_debugfs_add(i2400mu); if (result < 0) { dev_err(dev, "Can't register i2400mu's debugfs: %d\n", result); goto error_debugfs_add; } return 0; error_debugfs_add: i2400m_release(i2400m); error_setup: usb_set_intfdata(iface, NULL); usb_put_dev(i2400mu->usb_dev); free_netdev(net_dev); error_alloc_netdev: return result; } /* * Disconect a i2400m from the system. * * i2400m_stop() has been called before, so al the rx and tx contexts * have been taken down already. Make sure the queue is stopped, * unregister netdev and i2400m, free and kill. */ static void i2400mu_disconnect(struct usb_interface *iface) { struct i2400mu *i2400mu = usb_get_intfdata(iface); struct i2400m *i2400m = &i2400mu->i2400m; struct net_device *net_dev = i2400m->wimax_dev.net_dev; struct device *dev = &iface->dev; d_fnstart(3, dev, "(iface %p i2400m %p)\n", iface, i2400m); debugfs_remove_recursive(i2400mu->debugfs_dentry); i2400m_release(i2400m); usb_set_intfdata(iface, NULL); usb_put_dev(i2400mu->usb_dev); free_netdev(net_dev); d_fnend(3, dev, "(iface %p i2400m %p) = void\n", iface, i2400m); } /* * Get the device ready for USB port or system standby and hibernation * * USB port and system standby are handled the same. * * When the system hibernates, the USB device is powered down and then * up, so we don't really have to do much here, as it will be seen as * a reconnect. Still for simplicity we consider this case the same as * suspend, so that the device has a chance to do notify the base * station (if connected). * * So at the end, the three cases require common handling. * * If at the time of this call the device's firmware is not loaded, * nothing has to be done. Note we can be "loose" about not reading * i2400m->updown under i2400m->init_mutex. If it happens to change * inmediately, other parts of the call flow will fail and effectively * catch it. * * If the firmware is loaded, we need to: * * - tell the device to go into host interface power save mode, wait * for it to ack * * This is quite more interesting than it is; we need to execute a * command, but this time, we don't want the code in usb-{tx,rx}.c * to call the usb_autopm_get/put_interface() barriers as it'd * deadlock, so we need to decrement i2400mu->do_autopm, that acts * as a poor man's semaphore. Ugly, but it works. * * As well, the device might refuse going to sleep for whichever * reason. In this case we just fail. For system suspend/hibernate, * we *can't* fail. We check PM_EVENT_AUTO to see if the * suspend call comes from the USB stack or from the system and act * in consequence. * * - stop the notification endpoint polling */ static int i2400mu_suspend(struct usb_interface *iface, pm_message_t pm_msg) { int result = 0; struct device *dev = &iface->dev; struct i2400mu *i2400mu = usb_get_intfdata(iface); unsigned is_autosuspend = 0; struct i2400m *i2400m = &i2400mu->i2400m; #ifdef CONFIG_PM if (pm_msg.event & PM_EVENT_AUTO) is_autosuspend = 1; #endif d_fnstart(3, dev, "(iface %p pm_msg %u)\n", iface, pm_msg.event); rmb(); /* see i2400m->updown's documentation */ if (i2400m->updown == 0) goto no_firmware; if (i2400m->state == I2400M_SS_DATA_PATH_CONNECTED && is_autosuspend) { /* ugh -- the device is connected and this suspend * request is an autosuspend one (not a system standby * / hibernate). * * The only way the device can go to standby is if the * link with the base station is in IDLE mode; that * were the case, we'd be in status * I2400M_SS_CONNECTED_IDLE. But we are not. * * If we *tell* him to go power save now, it'll reset * as a precautionary measure, so if this is an * autosuspend thing, say no and it'll come back * later, when the link is IDLE */ result = -EBADF; d_printf(1, dev, "fw up, link up, not-idle, autosuspend: " "not entering powersave\n"); goto error_not_now; } d_printf(1, dev, "fw up: entering powersave\n"); atomic_dec(&i2400mu->do_autopm); result = i2400m_cmd_enter_powersave(i2400m); atomic_inc(&i2400mu->do_autopm); if (result < 0 && !is_autosuspend) { /* System suspend, can't fail */ dev_err(dev, "failed to suspend, will reset on resume\n"); result = 0; } if (result < 0) goto error_enter_powersave; i2400mu_notification_release(i2400mu); d_printf(1, dev, "powersave requested\n"); error_enter_powersave: error_not_now: no_firmware: d_fnend(3, dev, "(iface %p pm_msg %u) = %d\n", iface, pm_msg.event, result); return result; } static int i2400mu_resume(struct usb_interface *iface) { int ret = 0; struct device *dev = &iface->dev; struct i2400mu *i2400mu = usb_get_intfdata(iface); struct i2400m *i2400m = &i2400mu->i2400m; d_fnstart(3, dev, "(iface %p)\n", iface); rmb(); /* see i2400m->updown's documentation */ if (i2400m->updown == 0) { d_printf(1, dev, "fw was down, no resume neeed\n"); goto out; } d_printf(1, dev, "fw was up, resuming\n"); i2400mu_notification_setup(i2400mu); /* USB has flow control, so we don't need to give it time to * come back; otherwise, we'd use something like a get-state * command... */ out: d_fnend(3, dev, "(iface %p) = %d\n", iface, ret); return ret; } static int i2400mu_reset_resume(struct usb_interface *iface) { int result; struct device *dev = &iface->dev; struct i2400mu *i2400mu = usb_get_intfdata(iface); struct i2400m *i2400m = &i2400mu->i2400m; d_fnstart(3, dev, "(iface %p)\n", iface); result = i2400m_dev_reset_handle(i2400m, "device reset on resume"); d_fnend(3, dev, "(iface %p) = %d\n", iface, result); return result < 0 ? result : 0; } /* * Another driver or user space is triggering a reset on the device * which contains the interface passed as an argument. Cease IO and * save any device state you need to restore. * * If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if * you are in atomic context. */ static int i2400mu_pre_reset(struct usb_interface *iface) { struct i2400mu *i2400mu = usb_get_intfdata(iface); return i2400m_pre_reset(&i2400mu->i2400m); } /* * The reset has completed. Restore any saved device state and begin * using the device again. * * If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if * you are in atomic context. */ static int i2400mu_post_reset(struct usb_interface *iface) { struct i2400mu *i2400mu = usb_get_intfdata(iface); return i2400m_post_reset(&i2400mu->i2400m); } static struct usb_device_id i2400mu_id_table[] = { { USB_DEVICE(0x8086, USB_DEVICE_ID_I6050) }, { USB_DEVICE(0x8086, USB_DEVICE_ID_I6050_2) }, { USB_DEVICE(0x8086, 0x0181) }, { USB_DEVICE(0x8086, 0x1403) }, { USB_DEVICE(0x8086, 0x1405) }, { USB_DEVICE(0x8086, 0x0180) }, { USB_DEVICE(0x8086, 0x0182) }, { USB_DEVICE(0x8086, 0x1406) }, { USB_DEVICE(0x8086, 0x1403) }, { }, }; MODULE_DEVICE_TABLE(usb, i2400mu_id_table); static struct usb_driver i2400mu_driver = { .name = KBUILD_MODNAME, .suspend = i2400mu_suspend, .resume = i2400mu_resume, .reset_resume = i2400mu_reset_resume, .probe = i2400mu_probe, .disconnect = i2400mu_disconnect, .pre_reset = i2400mu_pre_reset, .post_reset = i2400mu_post_reset, .id_table = i2400mu_id_table, .supports_autosuspend = 1, }; static int __init i2400mu_driver_init(void) { d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400mu_debug_params, "i2400m_usb.debug"); return usb_register(&i2400mu_driver); } module_init(i2400mu_driver_init); static void __exit i2400mu_driver_exit(void) { flush_scheduled_work(); /* for the stuff we schedule from sysfs.c */ usb_deregister(&i2400mu_driver); } module_exit(i2400mu_driver_exit); MODULE_AUTHOR("Intel Corporation "); MODULE_DESCRIPTION("Driver for USB based Intel Wireless WiMAX Connection 2400M " "(5x50 & 6050)"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(I2400MU_FW_FILE_NAME_v1_5); MODULE_FIRMWARE(I6050U_FW_FILE_NAME_v1_5);