/*
 * Generic HDLC support routines for Linux
 * Cisco HDLC support
 *
 * Copyright (C) 2000 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License
 * as published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/pkt_sched.h>
#include <linux/inetdevice.h>
#include <linux/lapb.h>
#include <linux/rtnetlink.h>
#include <linux/hdlc.h>

#undef DEBUG_HARD_HEADER

#define CISCO_MULTICAST		0x8F	/* Cisco multicast address */
#define CISCO_UNICAST		0x0F	/* Cisco unicast address */
#define CISCO_KEEPALIVE		0x8035	/* Cisco keepalive protocol */
#define CISCO_SYS_INFO		0x2000	/* Cisco interface/system info */
#define CISCO_ADDR_REQ		0	/* Cisco address request */
#define CISCO_ADDR_REPLY	1	/* Cisco address reply */
#define CISCO_KEEPALIVE_REQ	2	/* Cisco keepalive request */


struct hdlc_header {
	u8 address;
	u8 control;
	__be16 protocol;
}__attribute__ ((packed));


struct cisco_packet {
	__be32 type;		/* code */
	__be32 par1;
	__be32 par2;
	__be16 rel;		/* reliability */
	__be32 time;
}__attribute__ ((packed));
#define	CISCO_PACKET_LEN	18
#define	CISCO_BIG_PACKET_LEN	20


struct cisco_state {
	cisco_proto settings;

	struct timer_list timer;
	unsigned long last_poll;
	int up;
	int request_sent;
	u32 txseq; /* TX sequence number */
	u32 rxseq; /* RX sequence number */
};


static int cisco_ioctl(struct net_device *dev, struct ifreq *ifr);


static inline struct cisco_state * state(hdlc_device *hdlc)
{
	return(struct cisco_state *)(hdlc->state);
}


static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
			     u16 type, void *daddr, void *saddr,
			     unsigned int len)
{
	struct hdlc_header *data;
#ifdef DEBUG_HARD_HEADER
	printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name);
#endif

	skb_push(skb, sizeof(struct hdlc_header));
	data = (struct hdlc_header*)skb->data;
	if (type == CISCO_KEEPALIVE)
		data->address = CISCO_MULTICAST;
	else
		data->address = CISCO_UNICAST;
	data->control = 0;
	data->protocol = htons(type);

	return sizeof(struct hdlc_header);
}



static void cisco_keepalive_send(struct net_device *dev, u32 type,
				 __be32 par1, __be32 par2)
{
	struct sk_buff *skb;
	struct cisco_packet *data;

	skb = dev_alloc_skb(sizeof(struct hdlc_header) +
			    sizeof(struct cisco_packet));
	if (!skb) {
		printk(KERN_WARNING
		       "%s: Memory squeeze on cisco_keepalive_send()\n",
		       dev->name);
		return;
	}
	skb_reserve(skb, 4);
	cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0);
	data = (struct cisco_packet*)(skb->data + 4);

	data->type = htonl(type);
	data->par1 = par1;
	data->par2 = par2;
	data->rel = __constant_htons(0xFFFF);
	/* we will need do_div here if 1000 % HZ != 0 */
	data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ));

	skb_put(skb, sizeof(struct cisco_packet));
	skb->priority = TC_PRIO_CONTROL;
	skb->dev = dev;
	skb_reset_network_header(skb);

	dev_queue_xmit(skb);
}



static __be16 cisco_type_trans(struct sk_buff *skb, struct net_device *dev)
{
	struct hdlc_header *data = (struct hdlc_header*)skb->data;

	if (skb->len < sizeof(struct hdlc_header))
		return __constant_htons(ETH_P_HDLC);

	if (data->address != CISCO_MULTICAST &&
	    data->address != CISCO_UNICAST)
		return __constant_htons(ETH_P_HDLC);

	switch(data->protocol) {
	case __constant_htons(ETH_P_IP):
	case __constant_htons(ETH_P_IPX):
	case __constant_htons(ETH_P_IPV6):
		skb_pull(skb, sizeof(struct hdlc_header));
		return data->protocol;
	default:
		return __constant_htons(ETH_P_HDLC);
	}
}


static int cisco_rx(struct sk_buff *skb)
{
	struct net_device *dev = skb->dev;
	hdlc_device *hdlc = dev_to_hdlc(dev);
	struct hdlc_header *data = (struct hdlc_header*)skb->data;
	struct cisco_packet *cisco_data;
	struct in_device *in_dev;
	__be32 addr, mask;

	if (skb->len < sizeof(struct hdlc_header))
		goto rx_error;

	if (data->address != CISCO_MULTICAST &&
	    data->address != CISCO_UNICAST)
		goto rx_error;

	switch(ntohs(data->protocol)) {
	case CISCO_SYS_INFO:
		/* Packet is not needed, drop it. */
		dev_kfree_skb_any(skb);
		return NET_RX_SUCCESS;

	case CISCO_KEEPALIVE:
		if ((skb->len != sizeof(struct hdlc_header) +
		     CISCO_PACKET_LEN) &&
		    (skb->len != sizeof(struct hdlc_header) +
		     CISCO_BIG_PACKET_LEN)) {
			printk(KERN_INFO "%s: Invalid length of Cisco control"
			       " packet (%d bytes)\n", dev->name, skb->len);
			goto rx_error;
		}

		cisco_data = (struct cisco_packet*)(skb->data + sizeof
						    (struct hdlc_header));

		switch(ntohl (cisco_data->type)) {
		case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
			in_dev = dev->ip_ptr;
			addr = 0;
			mask = __constant_htonl(~0); /* is the mask correct? */

			if (in_dev != NULL) {
				struct in_ifaddr **ifap = &in_dev->ifa_list;

				while (*ifap != NULL) {
					if (strcmp(dev->name,
						   (*ifap)->ifa_label) == 0) {
						addr = (*ifap)->ifa_local;
						mask = (*ifap)->ifa_mask;
						break;
					}
					ifap = &(*ifap)->ifa_next;
				}

				cisco_keepalive_send(dev, CISCO_ADDR_REPLY,
						     addr, mask);
			}
			dev_kfree_skb_any(skb);
			return NET_RX_SUCCESS;

		case CISCO_ADDR_REPLY:
			printk(KERN_INFO "%s: Unexpected Cisco IP address "
			       "reply\n", dev->name);
			goto rx_error;

		case CISCO_KEEPALIVE_REQ:
			state(hdlc)->rxseq = ntohl(cisco_data->par1);
			if (state(hdlc)->request_sent &&
			    ntohl(cisco_data->par2) == state(hdlc)->txseq) {
				state(hdlc)->last_poll = jiffies;
				if (!state(hdlc)->up) {
					u32 sec, min, hrs, days;
					sec = ntohl(cisco_data->time) / 1000;
					min = sec / 60; sec -= min * 60;
					hrs = min / 60; min -= hrs * 60;
					days = hrs / 24; hrs -= days * 24;
					printk(KERN_INFO "%s: Link up (peer "
					       "uptime %ud%uh%um%us)\n",
					       dev->name, days, hrs,
					       min, sec);
					netif_dormant_off(dev);
					state(hdlc)->up = 1;
				}
			}

			dev_kfree_skb_any(skb);
			return NET_RX_SUCCESS;
		} /* switch(keepalive type) */
	} /* switch(protocol) */

	printk(KERN_INFO "%s: Unsupported protocol %x\n", dev->name,
	       ntohs(data->protocol));
	dev_kfree_skb_any(skb);
	return NET_RX_DROP;

 rx_error:
	dev_to_desc(dev)->stats.rx_errors++; /* Mark error */
	dev_kfree_skb_any(skb);
	return NET_RX_DROP;
}



static void cisco_timer(unsigned long arg)
{
	struct net_device *dev = (struct net_device *)arg;
	hdlc_device *hdlc = dev_to_hdlc(dev);

	if (state(hdlc)->up &&
	    time_after(jiffies, state(hdlc)->last_poll +
		       state(hdlc)->settings.timeout * HZ)) {
		state(hdlc)->up = 0;
		printk(KERN_INFO "%s: Link down\n", dev->name);
		netif_dormant_on(dev);
	}

	cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ,
			     htonl(++state(hdlc)->txseq),
			     htonl(state(hdlc)->rxseq));
	state(hdlc)->request_sent = 1;
	state(hdlc)->timer.expires = jiffies +
		state(hdlc)->settings.interval * HZ;
	state(hdlc)->timer.function = cisco_timer;
	state(hdlc)->timer.data = arg;
	add_timer(&state(hdlc)->timer);
}



static void cisco_start(struct net_device *dev)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	state(hdlc)->up = 0;
	state(hdlc)->request_sent = 0;
	state(hdlc)->txseq = state(hdlc)->rxseq = 0;

	init_timer(&state(hdlc)->timer);
	state(hdlc)->timer.expires = jiffies + HZ; /*First poll after 1s*/
	state(hdlc)->timer.function = cisco_timer;
	state(hdlc)->timer.data = (unsigned long)dev;
	add_timer(&state(hdlc)->timer);
}



static void cisco_stop(struct net_device *dev)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	del_timer_sync(&state(hdlc)->timer);
	netif_dormant_on(dev);
	state(hdlc)->up = 0;
	state(hdlc)->request_sent = 0;
}



static struct hdlc_proto proto = {
	.start		= cisco_start,
	.stop		= cisco_stop,
	.type_trans	= cisco_type_trans,
	.ioctl		= cisco_ioctl,
	.module		= THIS_MODULE,
};
 
 
static int cisco_ioctl(struct net_device *dev, struct ifreq *ifr)
{
	cisco_proto __user *cisco_s = ifr->ifr_settings.ifs_ifsu.cisco;
	const size_t size = sizeof(cisco_proto);
	cisco_proto new_settings;
	hdlc_device *hdlc = dev_to_hdlc(dev);
	int result;

	switch (ifr->ifr_settings.type) {
	case IF_GET_PROTO:
		if (dev_to_hdlc(dev)->proto != &proto)
			return -EINVAL;
		ifr->ifr_settings.type = IF_PROTO_CISCO;
		if (ifr->ifr_settings.size < size) {
			ifr->ifr_settings.size = size; /* data size wanted */
			return -ENOBUFS;
		}
		if (copy_to_user(cisco_s, &state(hdlc)->settings, size))
			return -EFAULT;
		return 0;

	case IF_PROTO_CISCO:
		if(!capable(CAP_NET_ADMIN))
			return -EPERM;

		if(dev->flags & IFF_UP)
			return -EBUSY;

		if (copy_from_user(&new_settings, cisco_s, size))
			return -EFAULT;

		if (new_settings.interval < 1 ||
		    new_settings.timeout < 2)
			return -EINVAL;

		result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
		if (result)
			return result;

		result = attach_hdlc_protocol(dev, &proto, cisco_rx,
					      sizeof(struct cisco_state));
		if (result)
			return result;

		memcpy(&state(hdlc)->settings, &new_settings, size);
		dev->hard_start_xmit = hdlc->xmit;
		dev->hard_header = cisco_hard_header;
		dev->type = ARPHRD_CISCO;
		netif_dormant_on(dev);
		return 0;
	}

	return -EINVAL;
}


static int __init mod_init(void)
{
	register_hdlc_protocol(&proto);
	return 0;
}



static void __exit mod_exit(void)
{
	unregister_hdlc_protocol(&proto);
}


module_init(mod_init);
module_exit(mod_exit);

MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
MODULE_DESCRIPTION("Cisco HDLC protocol support for generic HDLC");
MODULE_LICENSE("GPL v2");